共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Paul S. Wesson 《Astrophysics and Space Science》1977,46(2):321-326
The possibility is discussed of using the latitude-dependent cutoff in the intensity and flux of cosmic ray particles reaching the surface of a planet to investigate ancient magnetic fields in the Moon, Mars and the Earth. In the last case, the method could provide a validity test for conventional palaeomagnetism. 相似文献
3.
Ajoy K. Dasgupta 《Astrophysics and Space Science》1983,96(2):333-342
Cosmic rays of interest here are electrically charged protons or nuclei having kinetic energy of the order of 1018 eV or more. The theory of cosmic-ray propagation is carried out on the assumption that the original particle may be of extragalactic origin. The curvature and gradient drift is incorporated in the anti-symmetric term of the diffusion tensor. The theory of force-field is examined including diffusion, convection, and energy losses of the cosmic rays. Finally some observation aspects are included in the concluding remarks. 相似文献
4.
I. H. Urch 《Astrophysics and Space Science》1977,48(1):231-236
The diffusion of charged particles in a turbulent magnetic field, but with no constant back-ground electromagnetic fields,
is discussed and expressions for the particle fluxes calculated. 相似文献
5.
Using the flux-transport equation in the absence of sources, we study the relation between a highly peaked polar magnetic field and the poleward meridional flow that concentrates it. If the maximum flow speed
m greatly exceeds the effective diffusion speed /R, then the field has a quasi-equilibrium configuration in which the poleward convection of flux via meridional flow approximately balances the equatorward spreading via supergranular diffusion. In this case, the flow speed () and the magnetic field B() are related by the steady-state approximation () (/R)B()/B() over a wide range of colatitudes from the poles to midlatitudes. In particular, a general flow profile of the form sin
p
cos
q
which peaks near the equator (q p) will correspond to a cos
n
magnetic field at high latitudes only if p = 1 and
m = n /R. Recent measurements of n 8 and 600 km2 s–1 would then give
m 7 m s–1. 相似文献
6.
7.
The large-scale photospheric magnetic field, measured by the Mt. Wilson magnetograph, has been analyzed in terms of surface harmonics (P
n
m
)()cosm and P
n
m
()sinm) for the years 1959 through 1972. Our results are as follows. The single harmonic which most often characterized the general solar magnetic field throughout the period of observation corresponds to a dipole lying in the plane of the equator (2 sectors, n = m = 1). This 2-sector harmonic was particularly dominant during the active years of solar cycles 19 and 20. The north-south dipole harmonic (n = 1, m = 0) was prominent only during quiet years and was relatively insignificant during the active years. (The derived north-south dipole includes magnetic fields from the entire solar surface and does not necessarily correlate with either the dipole-like appearance of the polar regions of the Sun or with the weak polar magnetic fields.) The 4-sector structure (n = m = 2) was prominent, and often dominant, at various times throughout the cycle. A 6-sector structure (n = m = 3) occasionally became dominant for very brief periods during the active years. Contributions to the general solar magnetic field from harmonics of principal index 4 n 9 were generally relatively small throughout this entire solar cycle with one outstanding exception. For a period of several months prior to the large August 1972 flares, the global photospheric field was dominated by an n = 5 harmonic; this harmonic returned to a low value shortly after the August 1972 flare events. Rapid changes in the global harmonics, in particular, relative and absolute changes in the contributions of harmonics of different principal index n to the global field, imply that the global solar field is not very deep or that very strong fluid flows connect the photosphere with deeper layers.The National Center for Atmospheric Research is sponsored by the National Science Foundation. 相似文献
8.
We have studied the structure of hot accretion flow bathed in a general large-scale magnetic field. We have considered magnetic parameters , where are the Alfvén sound speeds in three direction of cylindrical coordinate (r,φ,z). The dominant mechanism of energy dissipation is assumed to be the magnetic diffusivity due to turbulence and viscosity in the accretion flow. Also, we adopt a more realistic model for kinematic viscosity (ν=αc s H), with both c s and H as a function of magnetic field. As a result in our model, the kinematic viscosity and magnetic diffusivity (η=η 0 c s H) are not constant. In order to solve the integrated equations that govern the behavior of the accretion flow, a self-similar method is used. It is found that the existence of magnetic resistivity will increase the radial infall velocity as well as sound speed and vertical thickness of the disk. However the rotational velocity of the disk decreases by the increase of magnetic resistivity. Moreover, we study the effect of three components of global magnetic field on the structure of the disk. We found out that the radial velocity and sound speed are Sub-Keplerian for all values of magnetic field parameters, but the rotational velocity can be Super-Keplerian by the increase of toroidal magnetic field. Also, Our numerical results show that all components of magnetic field can be important and have a considerable effect on velocities and vertical thickness of the disk. 相似文献
9.
It has been suggested that the highest-energy cosmic rays might be protons resulting from collapsing cosmic strings in the Universe. We point out that this mechanism, although attractive, has important shortcomings, notably the fact that gamma rays produced along with the protons and those produced by the protons in their interactions with the cosmic background radiation generate cascades in the Universe and result in unacceptably high fluxes of cosmic gamma rays in the region of hundreds of MeV. 相似文献
10.
The maximum energy for cosmic ray acceleration at supernova shock fronts is usually thought to be limited to around 1014 –1015 eV by the size of the shock and the time for which it propagates at high velocity. We show that the magnetic field can be amplified non-linearly by the cosmic rays to many times the pre-shock value, thus increasing the acceleration rate and facilitating acceleration to energies well above 1015 eV. A supernova remnant expanding into a uniform circumstellar medium may accelerate protons to 1017 eV and heavy ions, with charge Ze , to Z ×1017 eV. Expansion into a pre-existing stellar wind may increase the maximum cosmic ray energy by a further factor of 10. 相似文献
11.
The effect of the solar wind on the spectrum of cosmic rays accelerated in the Galaxy is studied. The coefficient of cosmic-ray diffusion in the interplanetary turbulent magnetic field is assumed to be independent of the particle energy and a power-law function of the distance from the Sun. The particle spectrum at the heliospheric boundary is specified as a power-law function of the total particle energy. 相似文献
12.
This contribution to the 100th commemoration of the discovery of cosmic rays (6–8 August, 2012 in Bad Saarow, Germany) is about observations of those cosmic rays that are sensitive to the structure and the dynamics of the heliosphere. This places them in the energy range of 107–1010 eV. For higher energies the heliosphere becomes transparent; below this energy range the particles become strictly locked into the solar wind. Rather than give a strict chronological development, the paper is divided into distinct topics. It starts with the Pioneer/Voyager missions to the outer edges of the heliosphere, because the most recent observations indicate that a distinct boundary of the heliosphere might have been reached at the time of the meeting. Thereafter, the Ulysses mission is described as a unique one because it is still the only spacecraft that has explored the heliosphere at very high latitudes. Next, anomalous cosmic rays, discovered in 1972–1974, constitute a separate component that is ideally suited to study the acceleration and transport of energetic particles in the heliosphere. At this point the history and development of ground-based observations is discussed, with its unique contribution to supply a stable, long-term record. The last topic is about solar energetic particles with energies up to ∼1010 eV. 相似文献
13.
14.
Jens Jasche Benedetta Ciardi Torsten A. Enßlin 《Monthly notices of the Royal Astronomical Society》2007,380(2):417-429
One of the most-outstanding problems in the gravitational collapse scenario of early structure formation is the cooling of primordial gas to allow for small-mass objects to form. As the neutral primordial gas is a poor radiator at temperatures T ≤ 104 K , molecular hydrogen is needed for further cooling down to temperatures T ∼ 100 K . The formation of molecular hydrogen is catalyzed by the presence of free electrons, which could be provided by the ionization due to an early population of cosmic rays (CRs). In order to investigate this possibility, we developed a code to study the effects of ionizing CRs on the thermal and chemical evolution of primordial gas. We found that CRs can provide enough free electrons needed for the formation of molecular hydrogen, and therefore can increase the cooling ability of such primordial gas under following conditions. A dissociating photon flux with F < 10−18 erg cm−2 Hz−1 s−1 , initial temperature of the gas ∼103 K , total gas number densities n ≥ 1 cm−3 , and cosmic-ray sources with . 相似文献
15.
Wolfgang Kundt 《Astrophysics and Space Science》1983,90(1):59-66
Within the more than 30 yr of cosmic ray astrophysics, neither their origin nor their precise mode of propagation have found undisputable explanations. Among the favoured boosters have been point sources, like supernovae and pulsars, as well as extended sources, like cosmic clouds and supernova remnants. Extended sources have been proposed by Fermi (1949), and pushed more recently by a number of investigators because of the huge available reservoirs, and because repetitive shock acceleration can generate power law spectra which are similar to the ones observed (Axfordet al., 1977; Bell, 1978; Blandford and Ostriker, 1978; Krymsky, 1977). Yet the shock acceleration model cannot easily be adjusted to achieve particle energies in excess of some critical energy, of order 104±1 GeV (Völket al., 1981). For this and several other reasons, the suggestion is revived that neutron stars are the dominant source of high-energy cosmic rays. To be more precise: the (relativistic) ionic component of the cosmic rays is argued to be injected by young binary neutron stars (?105 yr) whose rotating magnetospheres act like grindstones in the wind of their companion (Kundt, 1976). The high-energy (?30 GeV) electron-positron component may be generated by young pulsars (?105 yr) and by collision processes, and the electron component below 30 GeV predominantly by supernova remnants. 相似文献
16.
V. H. Kryvdyk 《Kinematics and Physics of Celestial Bodies》2007,23(2):77-83
We examine the acceleration of cosmic rays in the magnetospheres of collapsing stars with initial dipole magnetic fields and various initial energy distributions of charged particles in their magnetospheres (the exponential, relativistic Maxwellian, and Boltzmann distributions were considered). When a magnetized star contracts at the gravitational collapse stage, its magnetic field grows considerably. Such a variable magnetic field generates an eddy electric field. Our calculations suggest that this electric field can accelerate charged particles to relativistic energies. In this way collapsing stars can be sources of high-energy cosmic rays in our Galaxy as well as in other galaxies. 相似文献
17.
Michael J. Clark 《Astrophysics and Space Science》2018,363(10):217
A theoretical basis for modifying Newtonian dynamics on a galactic scale can be obtained by postulating that cosmic rays interact with graviton exchanges between distant masses. This assumes that these charged particles move under the influence of local electromagnetic fields rather than the weak gravitational fields of distant matter. It leads to an enhancement of graviton exchanges between distant masses via an additional gravitational force term inversely proportional to distance. At planetary and local interstellar distances this predicts an extremely small additional gravitational force, but it can become significant on a galactic scale. The model is used here to predict rotational velocities in a wide range of galaxies including the Milky Way, Andromeda (M31) and some galaxies in the THINGS study. Results are obtained assuming a galactic cosmic ray density consistent with observations in the solar system. This approach is compared with the dark matter hypothesis and with Modified Newtonian Dynamics (MOND), the two primary postulates used to explain the constant rotational velocities observed in most galaxies. 相似文献
18.
We examine the possibility that recent data on cosmic ray anisotropies presented by the AGASA group may lead to the conclusion that our Galactic Center is a major source of the highest energy cosmic rays in our galaxy. We discuss how such a source would contribute to the magnitude and directional properties of the observed flux when measured against a background of extragalactic cosmic rays. We do this using the results of previous propagation calculations and our own more recent calculations which are specifically for a Galactic Center source.We find that the AGASA data can indeed be plausibly interpreted in this way and also that an argument can be made that the Galactic Center has the appropriate physical properties for acceleration to energies of the order of 1018 eV. We show that data from the SUGAR array are compatible with the AGASA result. 相似文献
19.
E. N. Parker 《Astrophysics and Space Science》1973,24(1):279-288
The origin and behavior of cosmic rays in the Galaxy depends crucially upon whether the galactic magnetic field has a closed topology, as does the field of Earth, or whether a major fraction of the lines of force connect into extragalactic space. If the latter, then cosmic rays could be of extragalactic origin, or they could be of galactic origin, detained in the Galaxy by the scattering offered by hydromagnetic waves, etc. If, on the other hand, the field is largely closed, then cosmic rays cannot be of extragalactic origin (at least below 1016 eV). They must be of galactic origin and escape because their collective pressure inflates the galactic field and they push their way out.This paper examines the structure of a galactic field that opens initially into intergalactic space and, with the inclusion of turbulent diffusion, finds no possibility for maintaining a significant magnetic connection with an extragalactic field. Unless some mechanism can be found, we are forced to the conclusion that the field is closed, that cosmic rays are of galactic origin, and that cosmic rays escape from the Galaxy only by pushing their way out. 相似文献
20.
A clearly evident large-scale pattern in the interplanetary magnetic field during 1964 is used to search for a similar large-scale pattern in the solar magnetic field. It is found that such a pattern did exist in the photospheric field observations on both sides of the equator over a range of at least 40°N to 35°S. The pattern is basically similar at all these latitudes, and differs from that to be expected from solar differential rotation in three important respects. It is found that the solar magnetic pattern changed at all latitudes investigated within an interval of a few solar rotations. 相似文献