首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The island of Ischia, located at the northwestern end of the Gulf of Napoli (Italy), is a volcanic area that is historically active (the Arso eruption, in 1302 and the Casamicciola earthquake, in 1883) and has diffuse hydrothermal phenomena. We present in this work a study of the surface deformation occurring in the island, which is based on applying the Differential Synthetic Aperture Radar Interferometry (DInSAR) algorithm referred to as Small BAseline Subset (SBAS) technique. This study is focused on the 1992–2003 time interval and SAR data acquired by the European Remote Sensing (ERS) satellites from ascending and descending orbits have been used, thus allowing us to discriminate the vertical and east–west components of the displacements. A validation of the DInSAR results has been carried out first by comparing the vertical deformations estimated from the SAR data with those measured from the spirit leveling network that is present in the area. In particular, we computed the difference between the mean vertical deformation velocities estimated from the SAR and the corresponding geodetic measurements along three main leveling lines; the maximum value of the root mean square difference is of about 1 mm/yr. The final discussion is dedicated to the interpretation of the detected displacements, benefiting from the overall information extracted from the ascending and descending DInSAR measurements. In particular, DInSAR data relative to the vertical deformation component show that the present-day subsidence of Ischia mainly develops in areas characterized by active landsliding and along faults; moreover, the deflation of the island, which is recorded by the horizontal displacement component, is probably related to the de-pressurization of the hydrothermal system.  相似文献   

2.
3.
The chronology of the most significant eruptions at the island of Ischia in the last 5000 years has been studied by means of Accelerator Mass Spectrometry to obtain 14C data. The results are in good agreement with stratigraphical and archeological constraints. This allows interpretation of the measured dates as ages of the eruptions which produced the deposits overlying or incorporating the sampled paleosols and charcoal fragments, respectively. These ages define the timing of volcanism in the last 5000 years, suggesting that the recent volcanic activity at Ischia is characterized by periods of very intense volcanism alternating to periods of quiescence. This timing of the volcanism is correlated with the behaviour of the magmatic system and dynamics of resurgence of the Mt. Epomeo block.  相似文献   

4.
Gravity and magnetic data for the volcanic island of Ischia, Naples, Italy, have been analyzed and interpreted in light of recent geological and volcanological data to define a model of the island's shallow and deep structures. From the interpretation of the gravity data it appears that the shallow structures consist of pyroclastic material (p=2.0 g/cm3). Within these pyroclastics there are domes and lava flows of higher density and eruptive centres filled with lower density material. The basement is a “horst” with the shallowest depth at about 1.0 km, south of the centre of the island, if we assign a density contrast of 0.5 g/cm3 relative to the above pyroclastics.Interpretation of magnetic data measured at 725 stations showed that the basement derived from the gravity interpretation is magnetized. Moreover, this basement is less magnetized on the western side of Ischia which may be caused by the anomalous thermal state of the area, as indicated by surface fumaroles, hot springs etc. and temperature measurements in deep drillings.  相似文献   

5.
New stratigraphic, major- and trace-element, and Sr-, Nd- and Pb- isotopic data on volcanic deposits older than 14 ka from the island of Procida, Italy, are presented and compared with published analyses from the rest of the Phlegraean Volcanic District (PVD). Procida rocks range in composition from basalt to shoshonite and trachyte and show 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios varying within the ranges 0.70523–0.70678, 0.512539–0.512630, 18.99–19.29, 15.67–15.69 and 39.10–39.39, respectively. The presence of a compositional gap in the range SiO2=54–59 wt % is evidence of magma bimodality, and suggests that the feeding magmatic system was formed by at least two different reservoirs located at different depths. Geochemical and isotopic variations with increasing differentiation can be explained by fractional crystallization mechanisms, that in some cases were associated with crustal contamination that occurred in both deeper and shallower reservoirs; the most evolved magmas formed in the shallower one. Mixing/mingling processes also occurred. The variation of isotopic composition through time observed both for Procida and for Campi Flegrei and Ischia rocks is evidence of strong affinity between magmas that erupted on the entire PVD until about 40 ka. This indicates that they share a common origin and a common plumbing system. Most of the PVD eruptive centers active until about 40 ka lie within a NE-SW-oriented volcano-tectonic belt extending from the southeastern part of Ischia, through Procida and Torregaveta volcano to the northeastern sector of the present Campi Flegrei caldera. This not only indicates the existence of a link between regional structures and volcanism in the area, but also suggests that PVD magma genesis and evolution were strongly regulated by extensional tectonics. In the last 40 ka the mafic rocks erupted along this extensional structure – from Torregaveta and the islands of Ischia and Procida – indicate that it still represents an important crustal discontinuity that focuses mantle-derived magmas. Procida trachybasalts are enriched in large ion lithophile elements (LILE) and light and middle rare earth elements (LREE and MREE), and show slight negative anomalies in the high field strength elements (HFSE) relative to average MORB. A slight depletion in HREE is present. Trace element and isotope systematics can be referred to a lithospheric mantle source. The lithospheric mantle source carries intra-plate and slab-derived components, the latter probably inherited from a previous subduction event.  相似文献   

6.
A cineritic level, which appears very interesting from a chronostratigraphic point of view because it is found throughout the eastern Mediterranean Sea, has been related to the « Cetara — Serrara Fontana » tuff formation (Ischia Island, Italy) by previous authors who estimated the age of this cineritic level to be about 25,000 years. A direct dating of the « Cetara — Serrara Fontana » tuff has been attempted by means of isotopic analyses of uranium and thorium in sphene, glass, clinopyroxenes and magnetite from four tuff samples. The calculated age is 41,500±3,000 years only if glass and sphene are assumed to be coeval. On the other hand, assuming as true the age of 25,000 years for the Cetara tuff, we must conclude that the sphene crystallized before the eruption. The age of the clinopyroxenes and magnetite is older than 300,000 years: therefore, they are possibly pre-existing minerals reworked by the Cetara explosion.  相似文献   

7.
The Ischia hydrothermal system was analysed through hydrogeological and microbial community investigations. Mesophilic communities were detected in two cold springs, suggesting a negligible influence of thermal circuits in freshwater sub‐systems which are mainly or only fed by local precipitations. Thermophilic and extremely thermophilic bacteria were detected in two wells, according to higher water temperatures (61 and 85 °C), even if the two communities show significant differences. In one well, thermophilic and extremely thermophilic bacteria are associated with strains belonging to ε‐Proteobacteria isolated in different sulphur‐rich carbonate environments. This association suggests a greater influence on ascending hot fluids that interact with the carbonate basement of volcanic rocks. In the other well, thermophilic and extremely thermophilic bacteria are associated with strains isolated in cold hypersaline environments or in aquatic habitats where terrestrial and marine components are coupled. This association supports the fact that seawater intrusion can affect this part of Ischia, according to results of hydrogeological and geochemical surveys. Differences in groundwater temperature and bacterial communities are probably mainly due to differences in permeability between volcanic rocks and differences in hydrogeologic behaviour between faults in the upper carbonate basement, above the deep magma chamber, that influence relationships between ascending hot fluids and local recharge. This study contributes to discussion of the reliability of the actual behaviour models of the Ischia system, based on the results of geochemical and isotopic investigations, and, in a wider context, it shows that microbial community investigations may be a valuable supplementary tool for analysing hydrothermal system behaviour. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Stratigraphic investigations of the Vulsini Volcanic District indicate the existence of five prominent plinian fall deposits, deposited over a period of about 0.34 Ma. The oldest deposit (Basal pumices) crops out mainly in the peripheral areas and is one of the largest plinian events in the Vulsini District, with a volume of about 9 km3 and a calculated column height exceeding 30 km. Subcircular patterns of isopachs and isopleths around the Bolsena lake indicate emplacement in wind-free conditions and suggest a source vent location in the northernmost sector of the present Bolsena lake, where it is possible that an older central volcanic structure existed. The four younger plinian fall deposits are related to Bolsena activity. The oldest of these, named the Ponticello and Orvieto-Bagnoregio pumices, are mainly distributed on the north-eastern sector of the Vulsini District. Their volumes are an order of magnitude lower than that of the basal unit, and the estimated column heights do not exceed 20 km. The younger Ospedaletto pumice deposit has a NE-SW dispersal axis, whereas the youngest Casetta pumice deposit is found only in the north-eastern sector of the district. Their estimated volumes are respectively 1.2 and 0.1 km3, whereas the inferred vent areas appear to be located slightly to the east of the Ponticello and Orvieto-Bagnoregio pumice deposit source areas. The chronology of the Ospedaletto and Casetta pumices indicates that the final plinian activity from the Bolsena complex is contemporaneous with the Latera activity. The decreasing volumes from the oldest to the youngest units, together with the progressive shifting northeastwards of the source vents, may be related to the volcano-tectonic subsidence of the Bolsena area. The source vents for the post-Basal pumices events are mainly clustered just north of Bolsena village where the greatest displacement during subsidence occurred. Accordingly, source vent shifting appears to be related to the progressive opening of normal faults from the inner to the outer margin of the Bolsena depression.  相似文献   

9.
The island of Ischia is particularly susceptible to landslides and flash floods due to its particular geological and geomorphological context. Urbanization in recent decades coupled with the development of tourism has increased the risk. After the November 10, 2009 event occurring in the northern sector of the island (the town of Casamicciola), a detailed geo-morphological survey was conducted to ascertain the evolution of the phenomenon. In the watersheds upstream of Casamicciola, many landslides were mapped and the volume of material involved during detachment and sliding was estimated. In the lower course area, near the town and towards the sea, flow pathways were reconstructed with the aid of extensive video footage taken during the event. Rainfall data were also analyzed and a relationship was established between the hourly rainfall rate and the flash flood. The phenomenon was found to be quite complex, with many upstream landslides stopping before reaching the urban area. In the lower course the alluvial event occurred as a flood with a very small sediment discharge, which left a very thin layer of sediment. Reconstruction of the flash flood phenomenon suggested possible action for future risk mitigation, early warning and civil protection plans.  相似文献   

10.
The early activity of the Sabatini Volcanic District (SVD; central Italy) was characterised by highly explosive eruptions that produced widespread subplinian and plinian fall deposits. In this study, four major eruptive units—informally named as units A, B, C and D—were recognised in the 514–449 ka age interval. In particular, unit D was emplaced during the early phase of the 449 ka Tufo Rosso a Scorie Nere pyroclastic flow-forming eruption, the most important event in the whole SVD activity history. Estimates of relevant eruptive parameters indicate tephra fall volumes up to 4 km3 for individual units, peak eruption column heights in the range of 14–29 km and corresponding mass eruption rates of 7.8×106–1.3×108 kg/s. Isopach and isopleth maps of fallout deposits—as well as the distribution of the proximal lag-breccia of the Tufo Rosso a Scorie Nere—consistently indicate a common vent area, which does not correspond to any volcanic centre identified up to now in the SVD. This was located along NE–SW-trending tectonic lineaments that also controlled the location of the other major volcanic centres of the SVD. The characterisation by means of field aspects, grain size, componentry and density and chemical composition of juvenile clasts, renders the studied fall deposits as valuable stratigraphic markers for the SVD and well beyond it. In fact, their wide areal dispersals toward the E and SE may allow correlations on a regional scale for the Quaternary successions of intermountain basins of the Central Apennine and the Adriatic Sea basin successions. Finally, the correct identification of distal tephra from plinian and co-ignimbrite plumes and their attribution to specific explosive eruptions of the SVD and the other volcanic districts of the Roman Province—rather than to local intra-Apennine centres—provides crucial implications for geodynamic reconstructions.  相似文献   

11.
A new pyroclastic stratigraphy is presented for the island of Ischia, Italy, for the period ∼75–50 ka BP. The data indicate that this period bore witness to the largest eruptions recorded on the island and that it was considerably more volcanically active than previously thought. Numerous vents were probably active during this period. The deposits of at least 10 explosive phonolite to basaltic-trachyandesite eruptions are described and interpreted. They record a diverse range of explosive volcanic activity including voluminous fountain-fed ignimbrite eruptions, fallout from sustained eruption columns, block-and-ash flows, and phreatomagmatic eruptions. Previously unknown eruptions have been recognised for the first time on the island. Several of the eruptions produced pyroclastic density currents that covered the whole island as well as the neighbouring island of Procida and parts of the mainland. The morphology of Ischia was significantly different to that seen today, with edifices to the south and west and a submerged depression in the centre. The largest volcanic event, the Monte Epomeo Green Tuff (MEGT) resulted in caldera collapse across all or part of the island. It is shown to comprise at least two thick intracaldera ignimbrite flow-units, separated by volcaniclastic sediments that were deposited during a pause in the eruption. Extracaldera deposits of the MEGT include a pumice fall deposit emplaced during the opening phases of the eruption, a widespread lithic lag breccia outcropping across much of Ischia and Procida, and a distal ignimbrite in south-west Campi Flegrei. During this period the style and magnitude of volcanism was dictated by the dynamics of a large differentiated magma chamber, which was partially destroyed during the MEGT eruption. This contrasts with the small-volume Holocene and historical effusive and explosive activity on Ischia, the timing and distribution of which has been controlled by the resurgence of the Monte Epomeo block. The new data contribute to a clearer understanding of the long-term volcanic and magmatic evolution of Ischia.  相似文献   

12.
13.
Ischia is the emergent top of a large volcanic complex that rises more than 1,000 m above the sea floor, at the north-western end of the Gulf of Naples. Caldera resurgence in the central part of the island has resulted in the formation of differentially displaced blocks, among which Mt. Epomeo (787 m a.s.l.) is the most uplifted. Deformation and slope instability have been recognised as common features induced by a block resurgence mechanism that causes uplift and favours gravitational loading and flank failure. The Monte Nuovo block, a topographic high on the north-western flank of Mt. Epomeo, has recently been interpreted as a block affected by deep-seated gravitational slope deformation. This block may undergo a catastrophic failure in the case of renewal of magmatic activity. This paper investigates the potential failure of the Monte Nuovo block as a rockslide-debris avalanche, the consequent tsunami generation and wave propagation, and discusses the catastrophic effects of such an event. Mobilization-prone volume has been estimated at about 160·106 m3 and would move from a maximum elevation of 400 m a.s.l. The landslide itself would sweep away a densely populated territory as large as 3.5 km2. The highest waves generated by the tsunami, on which this paper is mainly focussed, would hit the northern and western shores of Ischia. However, the high coast would prevent inundation and limit devastation to beaches, harbours and surrounding areas. Most of the tsunami energy would head towards the north-east, hitting the Campania coast. Severe inundation would affect an area of up to 20 km2 around the mouth of the Volturno river, including the urban area of Castel Volturno. In contrast, less energy would travel towards the south, and the Gulf of Naples would be perturbed by long persisting waves of limited damaging potential.  相似文献   

14.
A programme of geothermal exploration on Réunion Island resulted in the siting of an exploration geothermal borehole in Salazie Cirque. The borehole attained a depth of 2108 m and encountered temperatures of 192 ± 8°C; no aquifer was found.The geological information obtained made it possible to propose a stratigraphy for the deep underlying rocks beneath the Salazie Cirque on the Piton des Neiges and thus to interpret the events that followed the emergence of the island. A large gabbroic mass was intersected and found to comprise several successive intrusions, the principal one of which is continuously zoned from melagabbro to monzonite. Modeling of geophysical data on the drillhole results enabled the distribution of the different geological units to be interpreted.A geothermal model is proposed taking into account the dynamic evolution of the hydrothermal processes that preceded and accompanied emplacement of the gabbro responsible for the geothermal anomaly underlying the three cirques that sculpt the flanks of the Piton des Neiges.  相似文献   

15.
A micro-seismic network was used for monitoring the wreck of the Costa Concordia cruise ship, wrecked and run agrounded along the Giglio Island coasts during the night of 13 January 2012, until its removal. The seismic traces were processed by means of real-time and “a posteriori” procedures to detect transients that could be ascribed to wreck movements on the sea bed to integrate this information in an early warning system for assessing the wreck stability. After a first discrimination of the transients using amplitude criteria we proceeded to the localization of the detected signals to focus the attention only on the transients originated in the shipwreck resting area. The results showed that most of the events localized on the wreck were likely related to human work activities or sudden internal brittle failure but not to displacements on the seafloor. Instead, the displacements are associated to the impact on the vessel of great sea storms which approach were well correlated with the increasing seismic noise at low frequency. The carried out procedures based on this unique dataset represent an opportunity to test seismic monitoring techniques also in not usual engineering context to support emergency management activities.  相似文献   

16.
Isotopic fractionation of 10B/11B provides a sound tool for identifying hydrogeochemical processes in complex areas, owing to its ability to discriminate between various scenarios. In addition, the occurrence of boron as a minor element in areas of active volcanism allows its use in comparison with concentrations of other conservative or non‐conservative ions. This allows the detection of water mixtures of diverse origin and temperature, deep or shallow, including fresh water, seawater and even brines. This tool was applied in studies of the volcanic islands of Ischia and São Miguel, across widely differing geographical and climatic contexts. Five groups of waters have been identified in Ischia Island: marine, transition, hot carbonated, cold carbonated and fresh waters. For São Miguel Island the identified groups are cold carbonic, hot carbonic, boiling and acidic boiling waters. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Sampling and analyses methods for determining the stable isotopic compositions of Hg in an active volcanic system were tested and optimized at the volcanic complex of Vulcano (Aeolian Islands, Italy). Condensed gaseous fumarole Hg(fum)T, plume gaseous elemental Hg(g)0 and plume particulate Hg(p)II were obtained at fumaroles F0, F5, F11, and FA. The average total Hg emissions, based on HgT/SO2 in condensed fumarolic gases and plumes, range from 2.5 to 10.1 kg y? 1, in agreement with published values [Ferrara, R., Mazzolai, B., Lanzillotta, E., Nucaro, E., Pirrone, N., 2000. Volcanoes as emission sources of atmospheric mercury in the Mediterranean Basin. Sci. Total Environ. 259(1–3), 115–121; Aiuppa, A., Bagnato, E., Witt, M.L.I., Mather, T.A., Parello, F., Pyle, D.M., Martin, R.S., 2007. Real-time simultaneous detection of volcanic Hg and SO2 at La Fossa Crater, Vulcano (Aeolian Islands, Sicily). Geophys. Res. Lett. 34(L21307).]. Plume Hg(p)II increases with distance from the fumarole vent, at the expense of Hg(g)0 and indicates significant in-plume oxidation and condensation of fumarole Hg(fum)T.Relative to the NIST SRM 3133 Hg standard, the stable isotopic compositions of Hg are δ202Hg(fum)T = ? 0.74‰ ± 0.18 (2SD, n = 4) for condensed gaseous fumarole Hg(fum)T, δ202Hg(g)0 = ? 1.74‰ ± 0.36 (2SD, n = 1) for plume gaseous elemental Hg(g)0 at the F0 fumarole, and δ202Hg(p)II = ? 0.11‰ ± 0.18 (2SD, n = 4) for plume particulate Hg(p)II. The enrichment of Hg(p)II in the heavy isotopes and Hg(g)0 in the light isotopes relative to the total condensed fumarolic Hg(fum)T gas complements the speciation data and demonstrates a gas-particle fractionation occurring after the gas expulsion in ambient T° atmosphere. A first order Rayleigh equilibrium condensation isotope fractionation model yields a fractionation factor αcond-gas of 1.00135 ± 0.00058.  相似文献   

18.
The geomorphological and morphometric analysis of the sea floor topography surrounding the Aeolian Islands, South Tyrrhenian Sea, Italy, provides insights into the relationships between the volcanological evolution of the islands and their tectonic features. We constructed geomorphological maps of the submarine portions of the seven large edifices constituting the islands on the basis of a DEM with a 5 m resolution step. These maps include constructional and destructional landforms such as submarine volcanic vents located west of Lipari and north of Alicudi, and hummocky surfaces recognised north of Lipari and Salina. The latter landforms, together with the occurrence of large scars affecting the main edifices on land, suggest that sector collapses affected some islands. Geomorphological data indicate that the location of subaerial and submarine vents is strongly controlled by local tectonic structures striking WNW-ESE (Alicudi-Filicudi sector), NNW-SSE (Salina-Lipari-Vulcano sector) and NE-SW (Panarea-Stromboli sector). The islands can be divided into two groups on the basis of some morphometric parameters: a first group with a pancake-like shape, Dp/D (abrasion platform diameter/basal diameter) higher than 0.40 and H/D (total height/basal diameter) lower than 0.13, and a second group with a conical shape, characterised by Dp/D lower than 0.34 and H/D higher than 0.14. These ratios and other morphometric parameters reflect the different volcanological and structural evolution of the Aeolian Islands. The pancake-like shaped complexes have been created, in addition to their submarine stage, by extrusive and highly explosive activity, whereas the cone-shaped edifices have been characterised by effusive or moderate explosive activity.Editorial responsibility: C Kilburn  相似文献   

19.
Stromboli is an Italian volcanic island known for its persistent state of activity, which leads to frequent mass failures and consequently to frequent tsunamis ranging from large (and rare) catastrophic events involving the entire southern Tyrrhenian Sea to smaller events with, however, extremely strong local impact. Most of tsunamigenic landslides occur in the Sciara del Fuoco (SdF) zone, which is a deep scar in the NW flank of the volcano, that was produced by a Holocene massive flank collapse and that is the accumulation area of all the eruptive ejecta from the craters. Shallow-water bathymetric surveys around the island help one to identify submarine canyons and detachment scars giving evidence of mass instabilities and failures that may have produced and might produce tsunamis. The main purpose of this paper is to call attention to tsunami sources in Stromboli that are located outside the SdF area. Further, we do not touch on tsunami scenarios associated with gigantic sector collapses that have repeat times in the order of several thousands of years, but rather concentrate on intermediate size tsunamis, such as the ones that occurred in December 2002. Though we cannot omit tsunamis from the zone of the SdF, the main emphasis is on the elaboration of preliminary scenarios for three more possible source areas around Stromboli, namely Punta Lena Sud, Forgia Vecchia and Strombolicchio, with the aim of purposeful contributing to the evaluation of the hazard associated with such events and to increase the knowledge of potential threats affecting Stromboli and the nearby islands of the Aeolian archipelago. The simulations show that tsunami sources outside of the SdF can produce disastrous effects. As a consequence, we recommend that the monitoring system that is presently operating in Stromboli and that is focussed on the SdF source area be extended in order to cover even the other sources. Moreover, a synoptic analysis of the results from all the considered tsunami scenarios leads to a very interesting relation between the tsunami total energy and the landslide potential energy, that could be used as a very effective tool to evaluate the expected tsunami size from estimates of the landslide size.  相似文献   

20.
 Numerous measurements of CO2 degassing from the soil, carried out with the accumulation chamber method, indicate that in the period April–July 1995 the upper part of the Fossa cone released a total output of 200 t d–1 of CO2, which corresponds to approximately 1000 t d–1 of steam. These large amounts of fluids are of the same order of magnitude as those released by the high temperature fumarolic field located inside the crater. The spatial distribution of soil gas fluxes shows that the main structures releasing CO2 are the inner slopes of the crater and a NW–SE line, located NE of the crater rim, which correspond to the main direction of Vulcano Island active faults. The comparison of the φCO2 maps with the soil temperature distribution, derived from both direct measurements and airborne infrared images, indicates the occurrence of extensive condensation of fumarolic steam within the upper part of the Fossa cone, whose total amount is comparable to the rainfall budget. Part of the condensate which originates from this process contributes to the recharge of the phreatic aquifer of Porto Plain, modifying the chemical and isotopic composition of the groundwater. Received: 1 September 1995 / Accepted: 8 January 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号