首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
苏扣林 《江苏地质》2018,42(2):197-205
广州从化区良口亚髻山霞石正长岩为典型岩石遗迹,在碱性岩体野外填图研究过程中,新发现东侧分布有黄田埔高分异花岗岩,形成时间约(146±13)Ma,为晚侏罗世岩浆活动产物。元素地球化学特征显示硅高、钾富、分异指数高、Rb/Sr比值高以及Rb/Ba、Nb/Ta、Zr/Hf、TFeO/MgO比值低;稀土元素ΣREE平均值为248 g/t,ΣCe/ΣYb平均值为2.34,δEu(0.16)负异常明显;Ga(×10~4)/Al比值较低(平均值为3.47),Zr+Nb+Ce+Y含量(平均值为264g/t)低于A型花岗岩(350 g/t);I(Sr)值为0.691 8~0.712 8,平均值为0.708 1;ε_(Nd)(t)值为-3.5~-10.0,平均值为-6.7。元素地球化学、同位素地球化学和同位素年代学综合研究结果表明,岩株的形成可能与上地幔岩浆分异有关,为高分异Ⅰ型花岗岩。  相似文献   

2.
高精度LA-ICP-MS锆石U-Pb测年结果表明,黄羊山岩浆混合花岗岩加权平均~(206)Pb/~(238)U年龄为311±12Ma,首次获得闪长质微细粒包体加权平均~(206)Pb/~(238)U年龄为300±6Ma,在误差范围内完全一致,均属于晚石炭世,前者代表黄羊山岩浆混合花岗岩成岩年龄,后者代表暗色闪长质微粒包体的形成年龄,表明两者是同时代形成的,属于300Ma前后准噶尔周边地区后碰撞岩浆活动的产物.岩石地球化学研究表明,寄主岩石具有高硅、低铝、贫钙镁、富碱和高分异的特征,寄主岩石、包体和辉绿岩脉成分均落在了混合趋势线上,寄主岩富集Rb和Th等大离子亲石元素及Zr、Hf等高场强元素,亏损Ba、Sr、Ta和Ti等元素,δEu值(为0.01)极低,具有低的~(87)Sr/~(86)Sr初始比值和高正的ε_(Nd)(t)值.黄羊山碱性花岗岩是在后碰撞拉张的构造背景下,幔源岩浆发生底垫作用,由于幔源岩浆底垫作用,下地壳温度升高而熔融形成酸性壳源岩浆,部分幔源岩浆沿着地壳中的深断裂带上涌,发生不同程度壳幔混合形成的,其中闪长质微细粒包体就是基性的幔源岩浆和酸性的壳源岩浆不同程度的混合的记录者,研究区的辉绿岩脉是幔源岩浆直接分异演化的产物.  相似文献   

3.
孔吾萨依花岗岩体位于新疆西天山阿拉套山南坡东侧,岩体主要由碱长花岗岩、粗粒钾长花岗岩、细粒钾长花岗岩组成。碱长花岗岩的~(206)Pb/~(238)U加权平均年龄值为293.1±3.6Ma,细粒钾长花岗岩的年龄为293±3.7Ma。三类花岗岩具相似的地球化学特征,属准铝质—弱过铝质的高钾钙碱性系列花岗岩。从碱长花岗岩到粗粒钾长花岗岩再到细粒钾长花岗岩,其Eu负异常程度越来越高,元素Ba、Sr、P、Ti等的亏损及Rb、Th、U等的富集程度逐步增高,显示三者的岩浆之间具有结晶分异趋势。碱长花岗岩、粗粒钾长花岗岩及细粒钾长花岗岩均富Ga(10~4Ga/Al比值2.6~3.5)、高Fe~*值(=FeO~T/(FeO~T+MgO),0.88~0.97)和具较高的TiO_2/MgO比值(0.51~1.25),显示出典型A型花岗岩的特征。研究区A型花岗岩具有高的锆石饱和温度(853.86~931.56℃)和低的锆石Ce(Ⅳ)/Ce(Ⅲ)比值(1.9~77),暗示该A型花岗岩岩浆形成于高温和低氧逸度条件下。三类花岗岩具较高的Y含量(43.3×10~(-6)~106×10~(-6))、较高的ε_(Nd)(t)(+3.0~+5.2)和较低的(~(87)Sr/~(86)Sr)_i值(0.7027~0.7069),表明孔吾萨依A型花岗岩可能源于玄武质地壳的部分熔融。但与西天山石炭纪玄武岩相比,孔吾萨依花岗岩的ε_(Nd)(t)值较低,而(~(87)Sr/~(86)Sr)_i值较高,因此孔吾萨依花岗岩的岩浆源区应有古老地壳物质的加入。  相似文献   

4.
浙西北地区晚中生代处于环太平洋活动大陆边缘,区内岩浆侵入活动强烈,发育Ⅰ型和铝质A型两类花岗岩,前者又分为低分异Ⅰ型(简称Ⅰ型)和高分异Ⅰ型花岗岩两种,形成时限为中侏罗世-早白垩世早期(172~135 Ma),其中高分异Ⅰ型花岗岩集中于早白垩世早期(147~135 Ma);铝质A型花岗岩形成于早白垩世中期(135~123 Ma).同位素地球化学研究表明,中侏罗世-早白垩世早期Ⅰ型花岗岩(87Sr/86Sr)i值为0.707 004~0.711 896,εNd(t)值为-6.70~-2.00,锆石εHf(t)值为-5.08~-1.67,TDMC值为1 162~1 358 Ma,系古太平洋板块俯冲挤压的构造环境下,少量幔源物质沿变向俯冲引起的板片裂隙(窗)与下地壳重熔岩浆混合作用的产物;晚侏罗世末期-早白垩世早期高分异Ⅰ型花岗岩(87Sr/86Sr)i为0.706 890~ 0.709 880,εNd(t)值为-6.80~-4.50,锆石εHf(t)为-6.59~-5.23,TDMC为1 350~1 423 Ma,是古太平洋板块撤离机制下挤压向伸展转换的产物,系软流圈上涌诱发的幔源基性岩浆与中元古代地壳物质的部分熔融形成长英质岩浆混合并经高程度分异演化形成;早白垩世中期铝质A型花岗岩(87Sr/86Sr)i值为0.703 503~0.710 171,εNd(t)值为-8.90~-0.30,锆石εHf(t)值为-9.70~2.48,TDMC值为734~1 593 Ma,为岩石圈持续减薄机制下,越来越多的幔源物质(或新生地壳)涌入深部长英质岩浆房混合形成.   相似文献   

5.
强烈的分离结晶作用会显著改变A型花岗岩的主要地球化学指标,模糊A型花岗岩与I、S型花岗岩之间的地球化学界限,如何准确判别成为一个难题,江西大乌山岩体提供了一个较为理想的研究实例。大乌山岩体位于华夏板块中部、南岭以北的赣中地区,由中粒黑云母二长花岗岩和细粒含白云母黑云母碱长花岗岩组成,锆石U-Pb定年结果显示,前者结晶年龄为156 Ma,后者为155~157 Ma。岩体具有低P_2O_5(0.05%~0.16%)、高SiO_2(70.8%~74.9%)、高Rb/Sr(平均9.05)和Rb/Ba比值(平均2.38)的特征,弱过铝到强过铝质;Rb-Ba-Sr和Th/Nd-Th等元素含量关系特征显示高分异花岗岩的特点;较高的Ga/Al比值(2.89~3.48)和初始锆石饱和温度(839℃)以及填隙状黑云母所反映的贫水岩浆特征,均与A型花岗岩特性一致。高度的岩浆分异作用过程中,由于锆石、榍石等富锆矿物发生强烈分离结晶作用,结果使该岩体的(10000×Ga/Al)-(Zr+Nb+Ce+Y)以及Zr-SiO_2两元相关演化趋势显著不同于分异的I、S型花岗岩;此外,该岩体的Y/Nb比值大于1.2。综合以上特征,可以判定大乌山岩体为高分异的A_2型花岗岩。因此,在岩石学、矿物学和地球化学分析基础上,利用高分异的花岗岩在(10000×Ga/Al)-(Zr+Nb+Ce+Y)以及Zr-SiO_2二元图解上所表现出的不同演化趋势是判别高分异花岗岩的成因类型比较有效的方法。该岩体具有较低的ε_(Nd)(t)(-9.23~-14.6)和ε_(Hf)(t)(-10.2~-6.5)值,两阶段Nd模式年龄为1.7~2.0 Ga,结合区域变质岩的资料,推断该岩体起源于类似于周潭群包含正-副变质岩的复合源区,在经历了印支期S型花岗质岩浆的抽离之后,在燕山早期拉张构造环境下,残留的较难熔的类似于闪长质的物质在上涌地幔物质加热的背景下进一步发生部分熔融而形成。  相似文献   

6.
邱检生 《地质学报》2009,83(4):515-527
金山复式岩体位于福建南部华安县和南靖县交界地区,为一燕山晚期的花岗质复式大岩基,由早白垩世早期的华安洋竹径单元(锆石U-Pb年龄为140.3±1.2Ma)和早白垩世晚期的南靖龙山单元(锆石U-Pb年龄为105.1±0.8Ma)组成。复式岩体东部的洋竹径单元主体岩性为中粒钾长花岗岩,在中心部位发育部分黑云母花岗岩,地球化学特征上,该单元岩石总体为弱过铝质(A/NKC值变化于1.00~1.05),富硅,碱含量中等(K2O+Na2O介于8.30%~8.84%),碱铝指数(AKI值)变化于0.80~0.90,富钾(K2O含量变化于4.59%~5.58%,K2O/Na2O比值介于1.18~1.95),富轻稀土和大离子亲石元素(如Rh、Th等),贫Ba、Sr、Ti、P,Rb/Sr比值高,具中到强的铕负异常。复式岩体西部的龙山单元主体岩性为黑云母二长花岗岩,与洋竹径单元相比,其硅、碱含量及Rb/Sr比值均相对偏低,轻重稀土比值更高,而铕负异常相对不明显。复式岩体各单元岩石的Ga/Al比值以及Zr、Nb、Ce、Y等高场强元素含量较之典型的A型花岗岩均偏低,综合地质地球化学资料指示该复式岩体应属高钾钙碱性I型花岗岩。洋竹径单元黑云母花岗岩和钾长花岗岩具有一致的Nd同位素组成,Nd(t)值分别为-1.13和-1.16~-1.94,表明它们具有相同的岩浆源区,二者应为同源岩浆经分异演化的产物。龙山单元的成岩年龄晚于洋竹径单元,Nd(t)值略低(=-2.22),其岩石学和元素地球化学特征与洋竹径单元存在较明显的差别,相关的元素演变趋势表明龙山单元不可能为洋竹径单元岩浆分异演化的产物,而应具独立的岩浆起源。金山复式岩体极可能是在弧后伸展背景下,由于持续的幔源岩浆底侵作用导致早期底侵物质(初生地壳)与古老基底地壳混合的地壳原岩叠次熔融复合的产物。  相似文献   

7.
安徽庐枞地区位于下扬子断陷带内,区内中生代岩浆活动强烈,壳幔交换频繁,形成了一系列A型花岗岩类,其中产有一些同源岩石包体。这些A型花岗岩类以富碱富钾为特征,为准铝质硅饱和岩石,具有高的104×Ga/Al比值和REE含量,明显富集Rb,Th,K等大离子亲石元素,而Nb,Ta,Ti和Zr等高场强元素和Sr,P相对亏损。与寄主岩相比,岩石包体SiO2和全碱含量偏低,Cr,Co,Sc,V等元素明显偏高,Zr和Eu的负异常不明显。包体和寄主岩的(87Sr/86Sr)i 值为0.7053~0.7089,εNd(t)值为-2.2~-8.66。这些资料表明,庐枞地区中生代A型花岗岩类是起源于富集岩石圈地幔的玄武质岩浆与地壳物质发生轻度同化混染作用,并经历结晶分异作用的产物,在岩浆演化过程中,结晶分异作用发挥着主导作用。从岩石组合来看,庐枞地区的A型花岗岩类主要由石英正长斑岩、正长斑岩、辉石二长岩和碱长花岗岩组成,属于碰撞后准铝质镁铁质-长英质岩套的一部分。岩石样品分析数据在Nb-Y-Ce,Nb-Y-3Ga和Rb/Nb-Y/Nb图上的投影结果表明,庐枞A型花岗岩类为碰撞后环境结束阶段的产物。结合区域地质背景分析,可以认为庐枞地区A型花岗岩类形成于岩石圈伸展背景下的碰撞后岩浆活动的末期,其出现可能标志着碰撞后环境的结束。  相似文献   

8.
王超  刘良  张安达  杨文强  曹玉亭 《岩石学报》2008,24(12):2809-2819
阿尔金造山带南缘玉苏普阿勒克塔格岩体中的似斑状中粗粒黑云钾长花岗岩发育有岩浆成因的暗色包体,并且该花岗岩被花岗细晶岩呈脉状侵入。该岩体含有丰富的岩浆混合作用特征: 如暗色包体中的碱性长石斑晶、针状磷灰石、长石的环斑结构、石英/斜长石主晶和榍石眼斑等。暗色包体、寄主花岗岩和花岗细晶岩代表了岩浆混合演化过程中不同端元比例混合的产物。地球化学特征上,钾长花岗岩和暗色包体的主要氧化物含量在Harker图解中多呈线性变化。暗色包体主要为闪长质,MgO、K2O含量高,为钾玄岩系列,总体上高场强元素不亏损,显示了岩浆混合中的基性端元信息,可能为幔源熔体结晶分异或壳幔物质的混合产物。寄主花岗岩均为准铝质,富碱,为高钾钙碱性系列,亏损Nb、Ta、Sr、P、Ti等高场强元素,高K2O/Na2O,富集高不相容元素,Ga含量高,显示了A型花岗岩的特征,Th/U 和Nb/Ta比值分别介于为6.67~10.96、8.99~11.94,代表了下地壳源区。花岗细晶岩均为钠质、过铝质,TiO2、MgO含量低, Na2O和CaO含量高,具有混合岩浆侵位后分异的特征。岩相学和地球化学特征说明岩浆混合作用对于环斑结构花岗岩的形成起到重要作用。花岗细晶岩中环斑长石的斜长石外环与钾长石内核的厚度比大于钾长花岗岩中的环斑长石,指示混合岩浆在一定的减压条件下更有利于环斑结构的形成。玉苏普阿勒克塔格岩体中的钾玄质暗色包体、高钾钙碱性花岗岩和中钾钙碱性花岗细晶岩代表了岩浆演化不同阶段的产物,反映了一个幔源岩浆和下地壳不断相互作用,引起地壳连续伸展减薄的过程,指示阿尔金南缘在早古生代末期存在造山后伸展背景下的幔源岩浆底侵作用。同一岩体中两种不同时代岩性的环斑结构显示了该岩体形成历史中的一定时空演化关系,代表了伸展过程中不同阶段的产物。  相似文献   

9.
对南岭地区侏罗纪4个典型"铝质"A型花岗岩岩基——柯树北、寨背、西山和南昆山的成因分析表明:柯树北、寨背岩基中的低分异花岗岩SiO2≈70%,A/CNK<1.1,CaO≥1%,高Zr、Ba含量,是下地壳部分熔融产物;而SiO2含量较高者由低分异花岗岩岩浆通过分离结晶演化而来。西山花岗质火山-侵入杂岩也是下地壳部分熔融产物。南昆山花岗岩为高硅花岗岩,贫Zr、低Ba、Sr和Eu/Eu*值,但具有高的Nb、Ga、REE含量和Ga/Al比值,在Whalen等(1987)图解中地球化学参数落在A型花岗岩区域内。碱性玄武岩浆分离结晶的成岩模式无法解释南昆山岩基较大的体积、均一的成分和低的Nb/Ta比值。详细的成岩分析表明,南昆山花岗岩可能是先期侵入的(幔源)碱性正长岩在富水和相对低温低压条件下发生部分熔融的产物。由这些"铝质"A型花岗岩的熔融温压条件估算得出热流值达到80~95mWm-2的南岭地区侏罗纪古地温线。由古地温线推算出的岩石圈厚度45~75km。南岭侏罗纪高热流背景及其对应的花岗质岩浆活动可能与后碰撞造山阶段岩石圈地幔拆沉或被"热侵蚀"有关,但并不一定意味着岩石圈伸展的大地构造环境。  相似文献   

10.
东准噶尔卡拉麦里黄羊山花岗岩岩石成因探讨   总被引:3,自引:0,他引:3  
黄羊山花岗岩体是卡拉麦里造山带典型的后碰撞花岗岩体, 发育大量闪长质微细粒包体。黄羊山花岗岩具有高硅(72.21%~77.36%)、低铝(9.00%~12.93%)、贫钙镁(CaO: 0.20%~1.21%; MgO: 0.03%~0.44%)、富碱(Na2O+K2O: 7.43%~9.02%)以及高分异(SI=0.28~3.47, DI=76.45~95.99)的特征。强烈富集LILE和HFSE (Zr+ Nb+Ce+Y=260.01 μg/g~797.83 μg/g), Ga含量高(10000×Ga/Al=3.95~5.69), 属于A型花岗岩类。岩石学和岩相学(包体细粒淬冷边, 反向脉, 复合包体以及寄主岩石和包体中斜长石斑晶在形态、成分、光性上的一致性等)、岩石地球化学(Y/Nb=2.77~6.82, La/Nb=0.91~4.33, Ba/Nb=0.13~37.86等)、Sr和Nd同位素(ISr多数在0.7031~0.7041, εNd(t)在5.2~7.1之间)以及LA-ICP-MS锆石U-Pb测年(寄主岩石为311±12 Ma, 包体为300±6 Ma)综合研究显示, 黄羊山花岗岩是壳-幔源岩浆混合成因。从晚石炭世到二叠世, 东准噶尔地区进入后碰撞构造演化阶段, 在后碰撞构造阶段, 早期的俯冲板片断离, 软流圈减压熔融, 玄武质岩浆底侵至下地壳底部, 底侵基性岩浆带来的巨大热量, 导致地壳物质熔融, 形成大规模的花岗质岩浆, 两种岩浆发生了不同程度的混合, 其中闪长质微细粒包体就是基性的幔源岩浆和酸性的壳源岩浆不同程度混合的产物。  相似文献   

11.
对黄山铌钽矿区含矿岩体(黑云母二长花岗岩、花岗伟晶岩、细粒黑云母花岗岩)的主量元素、微量元素进行地球化学分析,并与成矿带典型A型花岗岩对比,发现它们属于高分异花岗岩,具富硅高碱、贫钙低镁的特征,A/CNK值均>1,属于准铝质—过铝质岩石。岩石富集高场强元素Nb、Th、Ta、Zr、U、Hf及大离子亲石元素Rb,亏损大离子亲石元素Ba、Sr、P及高场强元素Ti。球粒陨石标准化稀土元素配分形式属于“海鸥型”,具强烈的Eu负异常。10 000×Ga/Al值均>2.60、Zr+Nb+Ce+Y总量远高于350×10-6,岩石成因类型为板内花岗岩A1亚类,推断岩体是在拉张构造背景下由于地幔物质上涌导致底侵作用,促使下地壳部分熔融形成了初始岩浆,在上侵过程中有地壳物质的混染。岩浆在侵位过程中发生的结晶分异作用,使铌钽等成矿元素与岩浆熔体分离,高分异演化熔体、富挥发份流体(主要是F、Cl)共同作用是铌钽富集的主要因素。  相似文献   

12.
为了解由早期(伟晶、巨晶)斑状二长花岗岩、中期(细粒)花岗岩和晚期花岗(斑)岩脉组成的马鞍山杂岩体的成因, 采用SHRIMP和LA-ICP-MS锆石U-Pb法厘定其侵入时代, 年龄显示伟晶斑状二长花岗岩为132.2±1.6 Ma, 巨晶斑状二长花岗岩为127. 7±1.2 Ma, 细粒花岗岩为128.3±1.1 Ma, 花岗斑岩脉为127.4±1.8 Ma.岩石地球化学研究结果表明岩体从早到晚具有从钾玄岩系列向高钾钙碱系列演变特征, 分异演化程度逐渐变高; 斑状二长花岗岩具有高REE含量, 轻重稀土分异较为明显, 具较强负铕异常和弱右倾的配分曲线特征, 富集K、Th、U、Rb等元素, 弱亏损Ba、Sr、P、Nb、Ta、Ti等元素; 细粒花岗岩及花岗(斑)岩脉具有较低REE含量, 轻重稀土分异不明显, 具强负铕异常和"V"型配分曲线特征, 富集K、Th、U、Rb等元素, 强亏损Ba、Sr、P、Nb、Ti等元素.马鞍山岩体为浙西北-皖南地区早白垩世俯冲造山后陆内拉张作用环境下下地壳部分熔融的同源岩浆侵位结晶分异作用形成的产物, 具有高分异I型花岗岩的特征.   相似文献   

13.
利用EMPA对广西花山A型花岗岩最晚期岩相-细粒花岗岩及其晶洞中电气石进行矿物学、地球化学研究.结果表明,细粒花岗岩中电气石与晶洞中电气石化学组成非常一致,以高Fe (2.78~3.44 apfu)﹑低的总Al (5.62~6.20 apfu)﹑极低Mg (0.05~0.12 apfu)﹑不含Li、F、Cl等特征.在Fe-Mg图解中,其化学组成近于端元黑电气石.Al3 =Fe3 和R R2 =R3 □是所研究的电气石中两个主要的置换反应;岩浆电气石和热液成因电气石均位于Al-Fe-Mg三角图解中黑电气石-镁电气石线之下,表明电气石结构中存在明显的Fe3 ,预示岩浆是在相对高的氧逸度条件下分异演化的.细粒花岗岩中普遍发育几厘米到几十厘米尺度的晶洞以及大量电气石在晶洞中沉淀,暗示A型的花山花岗岩形成演化过程中未发生大规模含水流体相出溶,代之的是蒸汽相分离.由于不存在岩浆-热液体系的演化过程,在银屏细粒花岗岩内及周边地区可能不是寻找锡石-石英脉型矿床的理想靶区.  相似文献   

14.
个旧花岗岩的微量元素和稀土元素地球化学演化特征   总被引:6,自引:2,他引:6  
陆杰 《地球化学》1987,(3):249-259
个旧花岗岩,从斑状黑云母二长花岗岩→中粗粒黑云母钾长花岗岩→二云母碱长花岗岩构成了较完整的同源多阶段演化系列,岩浆是以分离结晶方式演化的。不同类型花岗岩的lg(Rb/Sr)-lgSn,lg(Rb/Ba)-lgSn,lgLa-lgSr,lgCe-lgSr,lgEu-lgSr等具有很好的线性关系,REE分布模式的演化也反映了岩浆分异特征。晚期二云母碱长花岗岩是强烈分异的锡多金属矿化花岗岩,其以高Rb/Sr,Rb/Ba比值和低K/Rb、∑Ce/∑Y比值以及Eu强烈亏损为特征。  相似文献   

15.
大兴安岭中生代花岗岩类的地球化学   总被引:33,自引:18,他引:33  
大兴安岭中生代花岗岩根据微量元素地球化学特征划分为高锶花岗岩类和低锶花岗岩类,前者富集Ba、Sr、Ti,而后者强烈亏损这些元素而富集大离子亲石元素和高场强元素。高锶花岗岩类主要由石英闪长岩、英云闪长岩和花岗闪长岩组成,属于Ⅰ型花岗岩;低锶花岗岩类由二长花岗岩、正长花岗岩、碱长花岗岩和碱性花岗岩组成,二长花岗岩一正长花岗岩一碱长花岗岩也属于Ⅰ型花岗岩,碱性花岗岩为A1型花岗岩。这两类花岗岩均显示εNd(t)正值^87Sr/^86Sr低值以及较低的Nd模式年龄。高锶与低锶花岗岩类地球化学差异性表明,高锶花岗岩起源于相对亏损的幔源岩浆的分异作用,而低锶花岗岩类的源区与显生宙地壳增生时期起源于地幔的年轻地壳物质有关,即起源于富集型幔源基性岩石的部分熔融。大兴安岭中生代花岗岩与流纹岩之间地球化学相似性以及与玄武岩类的相关性表明,它们是统一的构造一岩浆体系的产物,共同制约于古亚洲洋闭合后的大陆伸展的构造环境和闭合期间壳幔相互作用形成的地幔源区。  相似文献   

16.
南岭地区钨锡铌钽花岗岩及其成矿作用   总被引:26,自引:1,他引:25  
在晚侏罗世时,南岭地区发生了与花岗岩有关的钨锡铌钽大规模成矿作用。依据花岗岩的岩石学、地球化学及其矿化特征,可将南岭地区含钨锡铌钽花岗岩划分为三个主要类型:含钨花岗岩、含锡钨花岗岩和含钽铌花岗岩。含钨花岗岩的地球化学特征可归纳为铝过饱和,低Ba+Sr 和TiO2,轻重稀土比值低,铕亏损强烈,富Y 和Rb,Rb/Sr 比值高,分异强烈。含锡钨花岗岩总体特征表现为TiO2 含量高,准铝质—弱过铝质,轻重稀土比值和CaO/(K2O+Na2O)比值高,富高场强元素、稀土、Ba+Sr 和Rb,低Rb/Sr 比值,分异演化程度较低。含钽铌花岗岩的地球化学特征主要为TiO2 含量和CaO/(K2O+Na2O)比值低,Al2O3/TiO2 和Rb/Sr 比值明显偏高,强过铝质,贫Ba+Sr、稀土和高场强元素,铕亏损强烈,明显富Rb 和Nb,高度分异演化。三类含矿花岗岩具有明显不同的演化特征,成矿作用与它们的演化密切相关。黑云母花岗岩主要与锡成矿作用有关,二云母花岗岩和白云母花岗岩主要产生钨矿化或锡钨共生矿化,钠长石花岗岩主要与钽铌或锡(钨)钽铌矿化有关。总结了南岭锡钨钽铌矿床的重要类型,提出了绿泥石化花岗岩型锡矿新类型,指出南岭地区要特别注意在含锡钨花岗岩中寻找此类锡矿和云英岩- 石英脉型锡钨矿。  相似文献   

17.
韩振哲 《地质与勘探》2010,46(5):852-862
小兴安岭东南鹿鸣-兴安-前进地区,与早中生代二长-正长花岗岩有关多金属成岩成矿过程可划分为三期:第一期为似斑状二长花岗岩有关的Mo(Au)成矿期,第二期为二长花岗斑岩有关的Mo成矿期,第三期为正长花岗岩有关的Pb、Zn、Mo成矿期,总体显示不同成矿元素与不同时期岩体存在一定程度的耦合性。从早期至晚期成矿元素由Mo(Au)→Mo→Pb、Zn、Mo依次演化,其中Mo成矿作用延续时间较长,成矿作用也由强变弱,成岩成矿时代为225.0~191.4Ma。在野外岩相学、岩石主微量元素特征上,成岩成矿显示出时间上的相近性和同源岩浆分异演化的特征,其中含矿岩体以高硅富碱和过铝为特征,含矿二长花岗斑岩、正长花岗岩分别属低Sr低Yb类、低Sr高Yb类花岗岩,而不含矿似斑状二长花岗岩、正长花岗岩多为低Sr较高Yb类花岗岩。上述成岩成矿特征上的差异,以及岩体是富集Mo还是Pb、Zn,可能与源区物源、岩浆成因(壳幔混源程度、混合比例等)和岩浆结晶分异、岩浆侵位深度,以及与成矿构造背景等有关。  相似文献   

18.
大桦背岩体由钾长花岗岩和似斑状黑云母二长花岗岩组成。锆石LA-MC-ICP-MS U-Pb定年获得其侵位年龄为328.3±1.5Ma,表明该岩体属早石炭世岩浆活动产物。大桦背岩体总体上富硅(Si O2=70.59%~76.04%)、富碱(Na2O+K2O=8.41%~8.99%)、准铝质-弱过铝质(A/CNK=0.98~1.11),形成温度较低(620~810℃),属于高分异高钾钙碱性I型花岗岩。岩石富集大离子亲石元素K、Rb、Th、U和LREE,亏损高场强元素Nb、Ta、Ti、P和HREE,具有较高的Th/Ta比值(10.30~21.60)及较低的Ce/Pb比值(0.90~3.13),显示大陆弧岩浆岩地球化学特征。除暗色微粒包体广泛发育外,岩体具有均一Sr-Nd同位素组成((87Sr/86Sr)i=0.704799~0.706272,εNd(t)=-8.8~-8.2)和较大变化范围的锆石Hf同位素(εHf(t)=-8.3~-2.6),暗示岩体为岩浆混合成因。结合区域地质背景,认为大桦背岩体的形成与古亚洲洋向华北克拉通之下的俯冲密切相关,是俯冲板片流体交代诱发熔融的岩石圈地幔岩浆与下地壳岩浆相混合的产物。混合岩浆在上升侵位过程中又发生了显著的分离结晶作用和较弱的地壳物质的同化混染。  相似文献   

19.
东南沿海分布大面积的白垩纪晚期侵入岩。这些岩石可分为两期:其中115~100Ma以钙碱性系列岩石为主,岩石组合为辉长岩-闪长岩-花岗闪长岩-二长花岗岩-碱性长石花岗岩;而100~86Ma的岩石为碱性系列,岩石组合为石英二长斑岩-正长斑岩-碱性长石花岗岩。115~100Ma的辉长岩以角闪辉长岩为主,具有极高的CaO、MgO和Al_(2)O_(3)含量,具有极低的SiO_(2)(42.9%~53.8%)、全碱(K_(2)O+Na_(2)O:0.86%~5.28%)、Ba、Nb、Th、Rb和Zr含量,也具有极低的FeO^(T)/MgO、La/Yb和Zr/Hf比值,较高的Eu/Eu^(*)、Sr/Y比值和Sr含量,为基性-超基性堆晶岩。与辉长岩同期的闪长岩和细粒暗色包体具有较高的SiO_(2)(50.34%~63.68%),较低的CaO、P_(2)O_(5)、MgO、Al_(2)O_(3)含量,相对低的Eu/Eu^(*)和Sr/Y比值,变化较大的La/Yb和Zr/Hf比值,代表了从基性岩浆储库中抽取的富硅熔体。115~100Ma的花岗闪长岩和二长花岗岩类岩石为准铝质岩石,SiO_(2)含量变化较大(61.7%~75.3%),具有较低的FeO^(T)/MgO、Ga/Al比值和Nb、Zr及Nb+Zr+Ce+Y元素含量,显示出典型I型花岗岩的特征。这些花岗岩具有相对高的La/Yb、Eu/Eu^(*)和Zr/Hf比值和高的Sr、Ba和Zr含量。结合岩相学特征,这些花岗岩为堆晶花岗岩。而115~100Ma的碱性长石花岗岩具有极高的SiO_(2)含量(大于75%),低的Eu/Eu^(*)、La/Yb、Zr/Hf和Sr/Y比值,具有低的Ba、Sr和Zr含量和高的Rb、Nb、Y和Th含量和Rb/Sr比值,表明这些花岗岩是由富硅岩浆储库中抽离的高硅熔体侵入地壳形成。100~86Ma期间形成的二长斑岩和正长斑岩具有极高的全碱含量,可以达到8%~12%,其SiO_(2)主要集中在60%~70%,具有极高的Zr、Sr和Ba含量和Eu/Eu^(*)、La/Yb和Sr/Y比值,显示出堆晶花岗岩的特征。而100~86Ma期间形成的大部分碱性长石花岗岩具有极高的SiO_(2)含量(大于75%),并显示出A型花岗岩的特征,具有高的Rb/Sr比值和高的Rb、Y和Th和低的Ba、Sr含量和低的Zr/Hf、La/Yb、Eu/Eu^(*)和Sr/Y比值,表明它们是由富硅岩浆储库抽离的高硅熔体侵入浅部地壳形成。东南沿海高硅花岗岩的形成和穿地壳岩浆系统密切相关,高硅花岗岩是由浅部地壳内晶体-熔体分异产生的熔体侵入地壳所形成,而高硅花岗岩的地球化学特征与岩浆储库的水及挥发份含量密切相关。115~100Ma期间,从富水的岩浆储库抽离的熔体形成具有低高场强元素含量和低Rb/Sr比值的高硅花岗岩,这一过程与古太平洋板块俯冲有关;100~86Ma期间,从富挥发份的岩浆储库抽离的熔体形成碱性特征、富含高场强元素和具有高的Rb/Sr比值的高硅花岗岩,这一过程和古太平洋板块回撤软流圈上涌有关。  相似文献   

20.
本文通过对大兴安岭中段扎兰屯地区早二叠世花岗岩进行岩石学、年代学及地球化学分析,揭示早二叠世花岗岩的成因和构造背景,探讨贺根山-黑河缝合带中段晚古生代构造演化特征。早二叠世花岗岩主要由二长花岗岩和碱长花岗岩组成,形成年龄为289~298Ma。样品的高硅、高铝、低P_2O_5、低CaO、低MgO的岩石地球化学特征及较低的FeO/MgO比值和低的Ba、Sr、Eu组分,表现出A型花岗岩的岩石地球化学特征;此外,样品的低Sc、Ni、Co、V含量及Nb/Ta(488~219)和Zr/Hf比值(832~291)表明研究区早二叠世花岗岩岩浆是壳幔物质混合作用的产物。早二叠世A2型花岗岩形成于伸展环境,说明早二叠世之前兴安地块与松辽地块已完成拼贴,早二叠世期间贺根山-黑河缝合带在扎兰屯地区处于碰撞拼贴以后的后碰撞伸展环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号