首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Based on comprehensive petrological, geochronological, and geochemical studies, this study analyzed the relationships between the Beiya gold-polymetallic skarn deposit and quartz syenite porphyries, and discussed the source(s) and evolution of magmas. Our results suggest that syenite porphyries (i.e. the Wandongshan, the Dashadi, and the Hongnitang porphyries), which formed between the Eocene and the early Oligocene epochs, are the sources for the gold-polymetallic ores at the Beiya deposit. Carbonate rocks (T2b) of the Triassic Beiya Formation in the ore district provide favorable host space for deposit formation. Fold and fault structures collectively play an important role in ore formation. The contact zone between the porphyries and carbonates, the structurally fractured zone of carbonate and clastic rocks, and the zone with well-developed fractures are the ideal locations for ore bodies. Four types of mineralization have been recognized: 1) porphyry-style stockwork gold–iron (copper) ore, 2) skarn-style gold-iron (copper and lead) ore in the near contact zone, 3) strata-bound, lense-type lead–silver–gold ore in the outer contact zone, and 4) distal vein-type gold–lead–silver ore. Supergene processes led to the formation of oxide ore, such as the weathered and accumulated gold–iron ore, the strata-bound fracture oxide ore, and the structure-controlled vein-type ore. Most of these ore deposits are distributed along the axis of the depressed basin, with the hypogene ore controlling the shape and characteristics of the oxide ore. This study provides critical geology understanding for mineral prospecting scenarios.  相似文献   

2.
Late Mesozoic volcanic-subvolcanic rocks and related iron deposits, known as porphyry iron deposits in China, are widespread in the Ningwu ore district (Cretaceous basin) of the middle–lower Yangtze River polymetallic ore belt, East China. Two types of Late Mesozoic magmatic rocks are exposed: one is dioritic rocks closely related to iron mineralization as the hosted rock, and the other one is granodioritic (-granitic) rocks that cut the ore bodies. To understand the age of the iron mineralization and the ore-forming event, detailed zircon U-Pb dating and Hf isotope measurement were performed on granodioritic stocks in the Washan, Gaocun-Nanshan, Dongshan and Heshangqiao iron deposits in the basin. Four emplacement and crystallization (typically for zircons) ages of granodioritic rocks were measured as 126.1±0.5 Ma, 126.8±0.5 Ma, 127.3±0.5 Ma and 126.3±0.4 Ma, respectively in these four deposits, with the LA-MC-ICP-MS zircon U-Pb method. Based on the above results combined with previous dating, it is inferred that the iron deposits in the Ningwu Cretaceous basin occurred in a very short period of 131–127 Ma. In situ zircon Hf compositions of εHf(t) of the granodiorite are mainly from ?3 to ?8 and their corresponding 176Hf/177Hf ratio are from 0.28245 to 0.28265, indicating similar characteristics of dioritic rocks in the basin. We infer that granodioritic rocks occurring in the Ningwu ore district have an original relationship with dioritic rocks. These new results provide significant evidence for further study of this ore district so as to understand the ore-forming event in the study area.  相似文献   

3.
The Dongfengnanshan Cu polymetallic deposit is one representative deposit of the Tianbaoshan ore district in the Yanbian area, northeast(NE) China. There occur two types of ore bodies in this deposit, the stratiform ore bodies and veintype ones, controlled by the Early Permian strata and the Late Hercynian diorite intrusion, respectively. Due to the ambiguous genetic type of the stratiform ore bodies, there has been controversy on the relationship between them and veintype ore bodies. To determine the genetic type of stratiform ore bodies, laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS) in situ trace elements and S–Pb isotope analysis have been carried on the sulfides in the stratiform ore bodies. Compared with that in skarn, Mississippi Valley-type(MVT), and epithermal deposits, sphalerite samples in the stratiform ore bodies of the Dongfengnanshan deposit are significantly enriched in Fe, Mn, and In, while depleted in Ga, Ge, and Cd, which is similar to the sphalerite in volcanic-associated massive sulfide(VMS) deposits. Co/Ni ratio of pyrrhotites in the stratiform ore bodies is similar to that in VMS-type deposits. The concentrations of Zn and Cd of chalcopyrites are similar to those of recrystallized VMS-type deposits. These characteristics also reflect the intermediate ore-forming temperature of the stratiform ore bodies in this deposit. Sulfur isotope compositions of sulfides are similar to those of VMS-type deposits, reflecting that sulfur originated from the Permian Miaoling Formation. Lead isotope compositions indicate mixed-source for lead. Moreover, the comparison of the Dongfengnanshan stratiform ore bodies with some VMStype deposits in China and abroad, on the trace elements and S–Pb isotope characteristics of the sulfides reveals that the stratiform ore bodies of the Dongfengnanshan deposit belong to the VMS-type, and have closely genetic relationship with the early Permian marine volcanic sedimentary rocks.  相似文献   

4.
A Preliminary Review of Metallogenic Regularity of Gold Deposits in China   总被引:2,自引:0,他引:2  
Gold is one of the most important mineral resources in China with its rich mineral resources. In recent years,significant progress has been made on the process of gold resource exploration. Some large and giant gold deposits were newly found and some important expansions in the main mining regions were also been completed. Studies on metallogenic regularity of gold deposits in China also have made achievements with a long–term work. This review aims to conclude the achievements of research on gold metallogenic regularity in China. Based on the data of about 2000 gold deposits and other ore(mineralized) occurrences,gold deposits in China were classified into five prediction types: gold deposits genetically related to granite–greenstone formation,gold deposits related to sedimentary formation(including the Carlin type and the metamorphosed clastic rock related vein gold deposit),gold deposits genetically related to volcanic rocks(including the continental and marine types),gold deposits genetically related to intrusions(including the porphyry type and the inner intrusion and contact zone related gold deposit),gold deposits of supergenesis(including fracture zone–altered rock gold deposit,placer gold deposit,gossan type gold deposit and soil type gold deposit). Statistics on precise chronology data of gold deposits indicate that there occurred 5 main periods of gold–mineralization in geological history of China. They were Neoarchean to Paleoproterozoic,Meso–Neoproterozoic,Paleozoic,Mesozoic,and Cenozoic. Gold deposits in China mainly formed in the Mesozoic and the Cenozoic. On the studies of the spatial–temporal distribution characteristics of gold deposits,53 gold–forming belts were delineated in China. The metallogenic regularity of gold deposits was preliminarily summarized and 71 gold metallogenic series were proposed in China. This suggests that it is necceary to deepen the study on metallogenic regularity of gold deposits and to provide the theory guide for the ore–prospecting for gold resources in China.  相似文献   

5.
Laser ablation–inductively coupled plasma–mass spectrometry(LA–ICP–MS) was used to determine the trace element concentrations of magnetite from the Heifengshan, Shuangfengshan, and Shaquanzi Fe(–Cu) deposits in the Eastern Tianshan Orogenic Belt. The magnetite from these deposits typically contains detectable Mg, Al, Ti, V, Cr, Mn, Co, Ni, Zn and Ga. The trace element contents in magnetite generally vary less than one order of magnitude. The subtle variations of trace element concentrations within a magnetite grain and between the magnetite grains in the same sample probably indicate local inhomogeneity of ore–forming fluids. The variations of Co in magnetite between samples are probably due to the mineral proportion of magnetite and pyrite. Factor analysis has discriminated three types of magnetite: Ni–Mn–V–Ti(Factor 1), Mg–Al–Zn(Factor 2), and Ga– Co(Factor 3) magnetite. Magnetite from the Heifengshan and Shuangfengshan Fe deposits has similar normalized trace element spider patterns and cannot be discriminated according to these factors. However, magnetite from the Shaquanzi Fe–Cu deposit has affinity to Factor 2 with lower Mg and Al but higher Zn concentrations, indicating that the ore–forming fluids responsible for the Fe–Cu deposit are different from those for Fe deposits. Chemical composition of magnetite indicates that magnetite from these Fe(–Cu) deposits was formed by hydrothermal processes rather than magmatic differentiation. The formation of these Fe(–Cu) deposits may be related to felsic magmatism.  相似文献   

6.
The role of He and Ar isotopes in tracing the source of ore fluids has aroused great attention of the broad masses of the geological researchers. On the basis of lots of test and measurement of He and Ar isotopes in sulfides from Au, Ag polymetallic ore deposits in northern China, statistics has been made on the published He and Ar isotope data from 27 gold deposits, 13 silver polymetallic ore deposits, 8 polymetallic ore deposits, 1 rare-earth deposit, 3 oceanic incrustations, 3 volcanic springs and their wall rocks and granites. The statistical results indicate that the 3 He/ 4 Ar (×10-6 ) values of the Au, Ag polymetallic ore deposits are within the range of 0.24 9.39, with an average of 3.34×10-6 ; the He/Ar values, 0.007 6.01,with an average of 2.37; the 40 Ar/ 36 Ar values, 265.75 2361, with an average of 699.0; the 4 He/ 40 Ar values, 0.0020 643.86, with an average of 5.85, the 3 He/ 4 Ar (×10-6 ) values of gneiss and granite surrounding the mining area, 0.001 1.79, with an average of 1.00×10-6 , reflecting great differences in source. Mantle-source He in 48 Au, Ag polymetallic ore deposits accounts for 4.55% 83.06%, averaging 29.91%. It falls near the mantle-source region which can be seen in the He isotopic concentration diagram and the 3 He/ 4 He(R/Ra) 40 Ar/ 36 Ar plot. Studies suggested that the ore-forming materials for endogenic Au, Ag polymetallic ore deposits should be derived from the deep interior of the Earth, and with the multi-stage evolution of mantle plumes the deep-seated ore fluids would be transported from the deep interior of the Earth to the shallow levels. During this process the mixing of crust/mantle-source fluids would inevitably occur, therefore, the value range always lies between the mantle and the crust.  相似文献   

7.
The Linglong-Jiaojia district is one of the most important regions containing gold deposits in China. These gold deposits can be divided into: a) the pyrite-gold-quartz vein type (Linglong type), which is controlled by brittle-ductile to ductile deformation structures, and b) the alteration-zone type (Jiaojia type), characterized by small veinlets, or the disseminated type recognized in brittle shear zones. Lode gold deposits in the Jiaojia area occur in NE brittle fracture zones, formed in a dominantly simple shear deformation regime, mainly in thrust attitude with a minor sinistral strike slip component. In the Linglong area, the lode gold deposits are located at the intersection of three types of structures: NNE and NE brittle-ductile fault zones and the ENE ductile reverse shear zone in the south of the area. The structural characteristics of these brittle shear zones are consistent with a tectonic NNW-SSE principal stress field orientation. Similar stresses explain the ENE Qixia fold axes, the Potouqing and several other ENE reverse ductile shear zones elsewhere in the region, the Tancheng-Lujiang fault zone and its subsidiaries in the vicinity of the Linglong-Jiaojia district, as well as the southern ENE suture zone north of Qingdao. Therefore these structural systems occurred as part of different major tectonic events under NNW-SSE compression principal stress fields in the area. Gold deposits are hosted in smaller-scale structures within the brittle fault zones and brittle-ductile shear zones. Although ore bodies and, on a smaller scale, quartz ore veins often seem to be randomly oriented, it is possible to explain their distribution and orientation in terms of the simple shear deformation process under which they were developed. The progressive simple shear failure is characterized by various fracture modes (tension and shear) that intervene in sequence. The tension and shear fractures are influenced by the stress level (depth of burial beneath the paleosurface) in their structural behavior, show variable dilatancy (void openings) and extend on all scales. By making use of these characteristics, a progressive failure analysis can be applied to predicting the shape and extent of ore bodies as well as the styles of mineralization at any given location.  相似文献   

8.
Gold deposits hosted in the Gezhen shear zone at Qingxi, Hainan Island occur in the Preeambrian metamorphic rock series and are regionally developed in the N-E direction along the tectonic zone. From northeast to southwest are distributed the Tuwaishan-Baoban gold mining district, the Erjia gold mining district and the Bumo gold mining district, making up the most industrially important gold metallogenesis zone on the Hainan Island. Isotope geochemical studies of the typical gold deposits in this metallogenesis zone indicate that their ore-forming materials stemmed largely from the Baoban Group migmatite series, though the involvement of some plutonic materials could not be ruled out. The ore fluids are the mixture of migrnatitized hydrothermal solutions and meteoric waters in addition to the involvement of local magmatic hydrothermal solutions. The superimposition of plutonie materials and magmatic hydrothermal solutions is controlled by the deformation environment of the shear zone and later magrnatic activities. Obvious variations are noticed in isotopic composition in the region studied, probably related to tectonic deformation, metamorphism and other evolutionary characteristics. This study is of great significance in understanding the relationship between the shear zone and gold metallogenesis,the rules of gold metallogenesis and gold ore prognosis.  相似文献   

9.
Cu and Fe skarns are the world’s most abundant and largest skarn type deposits, especially in China, and Au-rich skarn deposits have received much attention in the past two decades and yet there are few papers focused on schematic mineral deposit models of Cu–Fe–Au skarn systems. Three types of Au-rich deposits are recognized in the Edongnan region, Middle–Lower Yangtze River metallogenic belt: ~140 Ma Cu–Au and Au–Cu skarn deposits and distal Au–Tl deposits; 137–148 Ma Cu–Fe; and 130–133 Ma Fe skarn deposits. The Cu–Fe skarn deposits have a greater contribution of mantle components than the Fe skarn deposits, and the hydrothermal fluids responsible for formation of the Fe skarn deposits involved a greater contribution from evaporitic sedimentary rocks compared to Cu–Fe skarn deposits. The carbonate-hosted Au–Tl deposits in the Edongnan region are interpreted as distal products of Cu–Au skarn mineralization. A new schematic mineral deposit model of the Cu–Fe–Au skarn system is proposed to illustrate the relationship between the Cu–Fe–Au skarn mineralization, the evaporitic sedimentary rocks, and distal Au–Tl deposits. This model has important implications for the exploration for carbonate–hosted Au–Tl deposits in the more distal parts of Cu–Au skarn systems, and Fe skarn deposits with the occurrence of gypsum-bearing host sedimentary rocks in the MLYRB, and possibly elsewhere.  相似文献   

10.
The Nordic countries, including Greenland, have a long tradition in mining. Documented mining dates back to the 8th century AD. Today this region is the most important metallic mining district of the European Union. Metals are produced from active mines in all countries except Iceland and related industries are thriving in all countries.
Important ore deposit types include: volcanogenic massive sulphide deposits (Cu, Zn, Pb, Au, Ag), orogenic gold deposits (Au), layered intrusions (Ni, PGE, Ti±V), intrusive hosted Cu-Au, apatite-Fe deposits, Cr- and anorthosite hosted Ti deposits. Besides these well- documented deposits, new kinds of deposits are being explored, e.g., iron oxide-copper-gold (IOCG), shale-hosted Ni-Zn-Cu and different types of uranium deposits.  相似文献   

11.
Abstract: The Fengshan porphyry-skarn copper–molybdenum (Cu–Mo) deposit is located in the south-eastern Hubei Province in east China. Cu–Mo mineralization is hosted in the Fengshan granodiorite porphyry stock that intruded the Triassic Daye Formation carbonate rocks in the early Cretaceous (~140 Ma), as well as the contact zone between granodiorite porphyry stock and carbonate rocks, forming the porphyry-type and skarn-type association. The Fengshan granodiorite stock and the immediate country rocks are strongly fractured and intensely altered by hydrothermal fluids. In addition to intense skarn alteration, the prominent alteration types are potassic, phyllic, and propylitic, whereas argillation is less common. Mineralization occurs as veins, stock works, and disseminations, and the main ore minerals are chalcopyrite, pyrite, molybdenite, bornite, and magnetite. The contents of palladium, platinum and gold (Pd, Pt and Au) are determined in nine samples from fresh and mineralized granodiorite and different types of altered rocks. The results show that the Pd content is systematically higher than Pt, which is typical for porphyry ore deposits worldwide. The Pt content ranges from 0.037 to1.765 ppb, and the Pd content ranges between 0.165 and 17.979 ppb. Pd and Pt are more concentrated in porphyry mineralization than skarn mineralization, and have negative correlations with Au. The reconnaissance study presented here confirms the existence of Pd and Pt in the Fengshan porphyry-skarn Cu–Mo deposit. When compared with intracontinent and island arc geotectonic settings, the Pd, Pt, and Au contents in the Fengshan porphyry Cu–Mo deposit in the intracontinent is lower than the continental margin types and island are types. A combination of available data indicates that Pd and Pt were derived from oxidized alkaline magmas generated by the partial melting of an enriched mantle source.  相似文献   

12.
The large Gacun silver–lead–zinc–copper deposit in Sichuan Province is one of the largest volcanogenic massive sulfide(VMS) deposits in China. The deposit consists of western and central ore bodies, which form a vein–stockwork mineralization system corresponding to hydrothermal channels, and eastern ore bodies, which form an exhalative chemical sedimentary system derived from a brine pool in a submarine basin. The Youre lead–zinc deposit, which is currently under exploration and lies adjacent to the southern part of the Gacun deposit, is characterized by intense silicification and vein–stockwork structures and consists of massive silicified rhyolitic volcanics, banded rhyolitic tuff, and phyllitic sericite tuff. From a comparison of their ore-bearing horizons, the Gacun and Youre deposits have a continuous and stable hanging wall(calcareous slate and overlying andesite) and foot wall(rhyolite–dacite breccia and agglomerate), and the lithologic sequence includes lower intermediate to felsic rocks and upper felsic rocks. Thus, the Youre deposit, which comprises relatively thinly layered low–grade ore, is regarded as forming a southward extension of the Gacun deposit. A further comparison of the structures of the ore-bearing belts between the two deposits suggests that the Youre ore bodies are similar to the western ore bodies of the Gacun deposit. Moreover, the characteristics of fluid inclusions and stable isotopes in the Youre deposit are also similar to those of the western ore bodies of the Gacun deposit. Genetic models of the deposits are proposed for the Gacun–Youre ore district, and massive concealed ore bodies may occcur in the Youre deposit at depths that are similar to those of the eastern ore bodies of the Gacun deposit.  相似文献   

13.
Magnetite, as a genetic indicator of ores, has been studied in various deposits in the world. In this paper, we present textural and compositional data of magnetite from the Qimantag metallogenic belt of the Kunlun Orogenic Belt in China, to provide a better understanding of the formation mechanism and genesis of the metallogenic belt and to shed light on analytical protocols for the in situ chemical analysis of magnetite. Magnetite samples from various occurrences, including the ore–related granitoid pluton, mineralised endoskarn and vein–type iron ores hosted in marine carbonate intruded by the pluton, were examined using scanning electron microscopy and analysed for major and trace elements using electron microprobe and laser ablation–inductively coupled plasma–mass spectrometry. The field and microscope observation reveals that early–stage magnetite from the Hutouya and Kendekeke deposits occurs as massive or banded assemblages, whereas late–stage magnetite is disseminated or scattered in the ores. Early–stage magnetite contains high contents of Ti, V, Ga, Al and low in Mg and Mn. In contrast, late–stage magnetite is high in Mg, Mn and low in Ti, V, Ga, Al. Most magnetite grains from the Qimantag metallogenic belt deposits except the Kendekeke deposit plot in the " Skarn " field in the Ca+Al+Mn vs Ti+V diagram, far from typical magmatic Fe deposits such as the Damiao and Panzhihua deposits. According to the(Mg O+Mn O)–Ti O2–Al2O3 diagram, magnetite grains from the Kaerqueka and Galingge deposits and the No.7 ore body of the Hutouya deposit show typical characteristics of skarn magnetite, whereas magnetite grains from the Kendekeke deposit and the No.2 ore body of the Hutouya deposit show continuous elemental variation from magmatic type to skarn type. This compositional contrast indicates that chemical composition of magnetite is largely controlled by the compositions of magmatic fluids and host rocks of the ores that have reacted with the fluids. Moreover, a combination of petrography and magnetite geochemistry indicates that the formation of those ore deposits in the Qimantag metallogenic belt involved a magmatic–hydrothermal process.  相似文献   

14.
The Dajing Cu-Sn-polymetallic ore deposit is famous for its large scale, abundant associated elements, narrow and closely-spaced development of ore veins and high grade, but exploration within the mining district and its deeper parts has revealed no Yanshanian rockbody. Therefore, there have been proposed a diversity of hypotheses on the genesis of the deposit. The authors, from the angle of mantle-branch structure, provided evidence showing that the mining district is located in the core of the Da Hinggan Ling mantle-branch structure, the multi-stage evolution of mantle plume paved the way for the ascending of deep-source ore fluids and these fluids extracted part of the ore-forming materials. Then, these ore-forming materials were concentrated in the favorable structural loci (e.g. structural fissures) to form ores. The orientation of ore-forming and ore-controlling fissures is closely related to the regionally structural stress field at the metallogenic stage. The zonation of Sn, Cu, Au, Ag, Pb, and Zn within the mining district appears to be related to metallogenesis and the crystallization temperature of ore-forming materials. Mineralization of Sn, Cu, Au, etc. which require relatively high crystallization temperature and pressure is in most cases recognized in the central part of the mining district, while that of Ag, Pb, Zn, etc. which require relatively low crystallization temperature and pressure is, for the most part, produced in the periphery of the mining district.  相似文献   

15.
With the continuous development of gold ore prospecting and exploration in recent years a new type of micro-disseminated gold deposits have been found in the regions of Southwest Guizhou Province and Northwest Guangxi Zhuang Autonomous Region,with the orebodies directly occurring in diabase or in the contact zone between diabase and strata.The orebodies are strictly controlled by fault structures.The discovery of this type of gold deposits has brought about new prospects for gold ore prospecting in the Yunnan-Guizhou-Guangxi Golden Triangle region.From the preliminary analysis of the geological characteristics of the Qiaoxiang gold deposit in Wangmo County,in combination with the results of research work in the adjacent areas in recent years,this paper roughly described the geological characteristics and metallogenic conditions of this type of gold ore deposits with an attempt to make more and more geologists pay enough attention to this type of gold ore deposits,so as to promote gold ore prospecting in Guizhou Province to develop toward a variety of types of gold deposits in all round way.  相似文献   

16.
The Katelixi Cu-Zn deposit is a marine volcanic rock-type copper deposit discovered for the first time in the Tokuzidaban Group in eastern Kunlun Mountains area. It is hosted in the Lower Carboniferous Tokuzidaban Group volcanic strata. The orebodies are obviously controlled by the strata and their ore-bearing rocks are a suite of greyish-green mafic tuffs, generally parallel-stratiform, stratoid and lenticular in form, occurring in limestone as well as in the contact between limestone and carbon-bearing siltstone. This ore deposit possesses distinct characteristics of marine volcanic rock sedimentaion. The geological, petrochemical and REE characteristics of its occurrence pro-vide strong evidence suggesting that this deposit is of marine volcanic rock sedimention origin, basically identical to those of some typical marine volcanic rock-type copper deposits in Xinjiang and other parts of China. Marine vol-canic rocks are well developed in the Lower Carboniferous Tokuzidaban strata in eastern Kunlun Mountains area. In addition to this deposit, we have also found a number of copper polymetallic ore deposits or occurrences in associa-tion with marine volcanc activities in many places where there is a good metallogenic prospect. A breakthrough in the understanding of ore prospecting and genesis has not only filled up the gap in prospecting this type of ore depos-its in this area, but also is of great significance in directing exploration of this type of ore deposits in this area.  相似文献   

17.
The Yindongzi-Daxigou strata-bound barite-siderite,silver-polymetallic deposits discovered in the Qinling orogen are hosted within flysch facies in a deep-water fault-controlled basin on the passive northern margin of the Qinling microplate.The orebodies occur in a series of hydrothermal depositonal rocks.Mineralization zoning is characterized by Fe-Ba←Ba-Cu←Pb-Ab→Cu-Ag→Pb→Au.This is obviously a gradational transition mineralization from ventproximal mineralization to more distal mineralization.In this gradational transition between Chefanggou and Yindongzi,vent-proximal mineralization consists of silver-polymetallic orebodies(Pb-Ag),which is the center of hydrothermal mineralization.The Chefanggou Ba-Cu ore district in the west and the Yindongzi Cu-Ag ore district in the east represent vent lateral mineralization.Distal mineralization in the west is represented by the Daxigou Fe-Ba ore district while distal mineralization in te east is represented by the Pb ore district.Thick massive,laminated barren albite chert and jasperite,sometimes with minor silver-ploymetallic mineralization of commercial importance,and pyritization in rocks feature more distal mineralization.Geochemical anomalies of Au-As associations are found in ankerite phyllite and muddy sandstone.Actually,Au deposits are dominantly controlled by the late brittle-ductile shear zone.  相似文献   

18.
Based on Pb-Pb isochron data of more than 40 Precambrian polymetallic deposits, the authors consider that there are four mineralization periods for the Precambrian copper deposits in China, and the major copper deposits were formed at about 1800 Ma; there are three mineralization periods for gold deposits formed from Archaean to Proterozoic. By studying hundreds of lead isotope data from some Mesozoic continental subvolcanic Cu and Ag polymetallic deposits and fine-disseminated gold deposits, the authors found that the calculation based on the lead single-stage evolution model or two-stage evolution model cannot give the true ore-forming ages but can provide more information about mineralization and material sources of the deposits.  相似文献   

19.
Geochemical characteristics of the Upper Archean-Lower Proterozoic Jiaodong Group-the host rocks of the famous Jiaodong gold deposit are described in this paper.It is shown that the Jiaodong Group is an important Au-bearing formation containing 19.5 ppb Au on average, about 5 times as much the abun-dance in the crust.It is also found that the distribution of gold in the strata is uneven and that plagioclase amphibolite is the prospective Au -bearing rock.In the processes of regional metamorphism, migmatization and fault -remelting ,gold in the source bed was remobilized and concentrated to from various types ofgold deposits in this province.  相似文献   

20.
A lot of new gold deposits have been found on the eastern margin of the Qinghai-Tibet Plateau during the past two decades. Among them, three main types of gold deposits have been recognized, including quartz-vein-type, shearzone-type and porphyry-type. The former two types of gold deposits are mainly hosted within metamorphic rocks, while the latter is related to Cenozoic magmatism. Although all of these gold deposits are believed to have been formed during the uplift process of the Qinghai-Tibet Plateau in the Cenozoic era (Wang et al., 2002b), precise isotopic age constraints have still been lacking until quite recently. This paper presents new ^40Ar/^39Ar data of some gold deposits on the eastern margin of the Qinghai-Tibet Plateau, which indicate that gold mineralization in the region occurred in response to the episodic stages of the orogenies. Recently obtained ^40Ar/^39Ar data on quartz and feldspars from several gold deposits, such as the Sandiao deposit, the Baijintaizi deposit, the Pusagang deposits, provide new constraints on gold mineralization on the eastern margin of the Qinghai-Tibet Plateau. Geochronological studies of gold deposits along the Daduhe River indicate that there are three stages of gold mineralization. The early two stages occurred as early as 65.1 Ma in the Shuibaiyang deposit and 58.95 Ma in the Ruoji deposit, while the latter stage occurred as late as 25.35 Ma in Baijintaizi and 24.70 Ma in Sandiao. Isotopic dating of three plagioclases from the Beiya deposit, Zhifanggou deposit and Luobodi deposit and a K-feldspar from the Jinchangqing deposit in Yunnan Province indicates that these deposits were formed at two stages. The Zhifanggou and Jinchangqing deposits have early stage records as old as 58.82 Ma in Zhifanggou and 55.49 Ma in Jinchangqing, but all of the above four deposits in Yunnan have late stage records of 23.18 Ma in Jinchangqing, 24.54 Ma in Zhifanggou, 24.60 Ma in Luobodi and 24.56 Ma in Hongnitang. The above results suggest that the gold deposits on the eastern margin of the Qinghai-Tibet Plateau were formed concentratedly at two main episodes, i.e. the end of the Paleocene (about 58 Ma) and the boundary between the Paleogene and the Neogene (about 25 Ma). The later episode appears to be looks like more important and was coupled with the Sichuan movement, which was extensively activated at that period. The beginning of the Cenozoic Era (about 65 Ma) might be another episode of gold mineralization, but only one deposit (Shuibaiyang) in this study has been proved to have been be formed at this stage and might be earlier than the initial collision between the Indian Plate and the Eurasia Plate. In view of geology, the above three episodes of gold mineralization are associated with three events of tectonicmagmatism and/or fluid events. Even though the gold deposits (for example, the Shuibaiyang deposit, Ruoji deposit and Pusagang deposit) were formed at different episodes, all of them are genetically related to tectonic movements in largescale shear zones. It looks like theat tectonic events (including large-scale strike-slip) between Paleogene and Neogene had a wide influence upon gold mineralization, with new deposits formed and old deposits enriched or superimposed to be a higher grade by new stage of mineralization. The above data suggest that gold deposits were not only concentrated in some areas, but also formed mainly at different boundaries of geological times, indicating that there existed some peak stages of gold mineralization (metallogenic episodes), and that the gold deposits were formed mainly by episodic mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号