共查询到20条相似文献,搜索用时 13 毫秒
1.
Viscoelastic dampers are now among some of the preferred energy dissipation devices used for passive seismic response control.
To evaluate the performance of structures installed with viscoelastic dampers, different analytical models have been used
to characterize their dynamic force deformation characteristics. The fractional derivative models have received favorable
attention as they can capture the frequency dependence of the material stiffness and damping properties observed in the tests
very well. However, accurate analytical procedures are needed to calculate the response of structures with such damper models.
This paper presents a modal analysis approach, similar to that used for the analysis of linear systems, for solving the equations
of motion with fractional derivative terms for arbitrary forcing functions such as those caused by earthquake induced ground
motions. The uncoupled modal equations still have fractional derivatives, but can be solved by numerical or analytical procedures.
Both numerical and analytical procedures are formulated. These procedures are then used to calculate the dynamic response
of a multi-degree of freedom shear beam structure excited by ground motions. Numerical results demonstrating the response
reducing effect of viscoelastic dampers are also presented. 相似文献
2.
考虑支撑变形时安装非线性粘滞消能器结构的抗震设计方法 总被引:5,自引:0,他引:5
通过理论分析和大量数值模拟,揭示了线性和非线性粘滞消能器两端的相对水平位移幅值与所在层的层间位移幅值之间的关系,总结提出了考虑支撑变形时安装非线性粘滞消能器结构的实用抗震设计步骤。上述研究结果拓展了现行《建筑抗震设计规范》中有关粘滞消能器部分的设计规定。 相似文献
3.
Design formulas for supplemental viscous dampers to building structures are readily available in FEMA provisions and MCEER research reports. However, for the design of supplemental viscous dampers corresponding to a desired system damping ratio of highway bridges, there exist, if any, few design guidelines. This is particularly true if the bridge components such as elastomeric bearings, piers and abutment possess different damping ratios, stiffnesses, and lumped masses. In this paper, the design formulas for supplemental viscous dampers to highway bridges have been derived based on the concept of ‘composite damping ratio’. The design formulas can be used to determine the damping coefficients of the dampers corresponding to a desired system damping ratio of the bridge in which different component damping ratios may be assumed for the elastomeric bearings, piers and abutments. The proposed design formulas are numerically validated by comparing the seismic responses of a three‐span bridge equipped with viscous dampers with those of the same bridge without viscous dampers but with an assigned inherent system damping ratio equal to the target system damping ratio. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
4.
安装粘滞阻尼器结构的抗震设计方法研究 总被引:10,自引:1,他引:10
本文研究了安装粘滞阻尼器结构在常遇地震作用下层间最大剪力的分配情况,建立了层间最大构件力与层间最大剪力的关系以及层间最大附加力与层间最大剪力的关系,提出了该类结构在罕遇地震作用下层间弹塑性变形的简化计算方法,最后建议了安装滞阻尼器结构的抗震设计步骤。 相似文献
5.
Viscoelastic dampers, as supplementary energy dissipation devices, have been used in building structures under seismic excitation
or wind loads. Different analytical models have been proposed to describe their dynamic force deformation characteristics.
Among these analytical models, the fractional derivative models have attracted more attention as they can capture the frequency
dependence of the material stiffness and damping properties observed from tests very well. In this paper, a Fourier-transform-based
technique is presented to obtain the fractional unit impulse function and the response of structures with added viscoelastic
dampers whose force-deformation relationship is described by a fractional derivative model. Then, a Duhamel integral-type
expression is suggested for the response analysis of a fractional damped dynamic system subjected to deterministic or random
excitation. Through numerical verification, it is shown that viscoelastic dampers are effective in reducing structural responses
over a wide frequency range, and the proposed schemes can be used to accurately predict the stochastic seismic response of
structures with added viscoelastic dampers described by a Kelvin model with fractional derivative. 相似文献
6.
The implementation of viscous dampers to microelectronics factories has been previously proved not to affect the micro‐vibration of the factories in operation so that the vibration‐sensitive manufacturing process will not be interfered. Therefore, a seismic retrofit strategy which employs the viscous dampers installed in between the exterior and interior structures of the ‘fab’ structure is proposed in the study. The design formulas corresponding to the proposed retrofit method are derived using the non‐proportional damping theory. Based on the study, it is found that the added damping ratio to the fab structure depends greatly on the frequency ratio of the two structures in addition to the damping coefficients of the added dampers. Outside the bandwidth of the frequency ratio in which the added damping ratio is very sensitive to the variation of the frequency ratio, the added damping ratio can be well captured using the classical damping theory. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
7.
Buildings are continually subject to dynamic loads, such as wind load, seismic ground motion, and even the load from internal utility machines. The recent trend of constructing more flexible high‐rise buildings underscores the importance of including viscoelastic dampers in building designs. Viscoelastic dampers are used to control the dynamic response of a building. If the seismic design is based only on the linear response spectrum, considerable error may occur when calculating the seismic response of a building; rubber viscoelastic dampers show non‐linear hysteretic damping that is quite different from viscous damping. This study generated a non‐linear response spectrum using a non‐linear oscillator model to simulate a building with viscoelastic dampers installed. The parameters used in the non‐linear damper model were obtained experimentally from dynamic loading tests. The results show that viscoelastic dampers effectively reduce the seismic displacement response of a structure, but transmit more seismic force to the structure, which essentially increases its seismic acceleration response. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
8.
Seismic fragility assessment of RC frame structure designed according to modern Chinese code for seismic design of buildings 总被引:1,自引:0,他引:1
Following several damaging earthquakes in China,research has been devoted to find the causes of the collapse of reinforced concrete(RC) building sand studying the vulnerability of existing buildings.The Chinese Code for Seismic Design of Buildings(CCSDB) has evolved over time,however,there is still reported earthquake induced damage of newly designed RC buildings.Thus,to investigate modern Chinese seismic design code,three low-,mid-and high-rise RC frames were designed according to the 2010 CCSDB and the corresponding vulnerability curves were derived by computing a probabilistic seismic demand model(PSDM).The PSDM was computed by carrying out nonlinear time history analysis using thirty ground motions obtained from the Pacific Earthquake Engineering Research Center.Finally,the PSDM was used to generate fragility curves for immediate occupancy,significant damage,and collapse prevention damage levels.Results of the vulnerability assessment indicate that the seismic demands on the three different frames designed according to the 2010 CCSDB meet the seismic requirements and are almost in the same safety level. 相似文献
9.
10.
阻尼器参数的确定是利用阻尼器连接相邻结构进行减震设计的关键.根据随机地震反应理论,以相邻结构的频率比和质量比为参数,推导了结构位移反应均方差与连接阻尼比的关系式,得到了相邻结构的地震反应与频率比、质量比以及连接阻尼比的影响规律,从而得到了连接阻尼器的优化设计参数.根据自振频率相等的原则,探讨了将多自由度体系简化为单自由度体系的分析方法.最后在El Centro波、Taft 波及人工波激励下,对比分析了某相邻10层建筑结构有连接和无连接时的地震反应,表明黏滞阻尼器连接相邻结构具有较好的减震效果.本分析方法可供相邻结构减震设计参考. 相似文献
11.
Yi‐Jer Yu Keh‐Chyuan Tsai Chao‐Hsien Li Yuan‐Tao Weng Ching‐Yi Tsai 《地震工程与结构动力学》2013,42(9):1301-1320
The seismic performance tests of a full‐scale five‐story passively controlled steel building were conducted on the E‐Defense shaking table in Japan in March 2009. Before the tests, a blind prediction contest was held to allow researchers and practitioners from all over the world to construct analytical models and predict the dynamic responses of the steel frame specimen equipped with buckling‐restrained braces (BRBs) or viscous dampers (VDs). This paper presents the details of two refined prediction models made and results obtained before the tests. When the proposed analytical modeling techniques are adopted as in the two refined prediction models, the overall prediction accuracy is about 90%. Sensitivity studies conducted after the tests are also presented in this paper. The effects of varying each modeling feature on the response simulation accuracy have been investigated. The analytical results suggest that considering concrete full‐composite actions for beam members could improve prediction accuracy by about 20% against using the simplified bare steel beam model. Adopting refined BRB stiffness computed from incorporating finite‐element gusset stiffness only improves the overall prediction accuracy by 0.9%. Considering the BRB dynamic loading test results for analytical BRB strength reduces the error by 1.9%. For the VD frame, incorporating the brace and VD stiffness could improve the overall prediction accuracy by about 15%. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
12.
Seismic performance and probabilistic collapse resistance assessment of steel moment resisting frames with fluid viscous dampers 总被引:1,自引:0,他引:1 下载免费PDF全文
Choung‐Yeol Seo Theodore L. Karavasilis James M. Ricles Richard Sause 《地震工程与结构动力学》2014,43(14):2135-2154
This paper evaluates the seismic resistance of steel moment resisting frames (MRFs) with supplemental fluid viscous dampers against collapse. A simplified design procedure is used to design four different steel MRFs with fluid viscous dampers where the strength of the steel MRF and supplemental damping are varied. The combined systems are designed to achieve performance that is similar to or higher than that of conventional steel MRFs designed according to current seismic design codes. Based on the results of nonlinear time history analyses and incremental dynamic analyses, statistics of structural and non‐structural response as well as probabilities of collapse of the steel MRFs with dampers are determined and compared with those of conventional steel MRFs. The analytical frame models used in this study are reliably capable to simulate global frame collapse by considering full geometric nonlinearities as well as the cyclic strength and stiffness deterioration in the plastic hinge regions of structural steel members. The results show that, with the aid of supplemental damping, the performance of a steel MRF with reduced design base shear can be improved and become similar to that of a conventional steel MRF with full design base shear. Incremental dynamic analyses show that supplemental damping reduces the probability of collapse of a steel MRF with a given strength. However, the paper highlights that a design base shear equal to 75% of the minimum design base shear along with supplemental damping to control story drift at 2% (i.e., design drift of a conventional steel MRF) would not guarantee a higher collapse resistance than that of a conventional MRF. At 75% design base shear, a tighter design drift (e.g., 1.5% as shown in this study) is needed to guarantee a higher collapse resistance than that of a conventional MRF. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
13.
Unreinforced Masonry(URM) is the most common partitioning material in framed buildings in India and many other countries.Although it is well-known that under lateral loading the behavior and modes of failure of the frame buildings change significantly due to infill-frame interaction,the general design practice is to treat infills as nonstructural elements and their stiffness,strength and interaction with the frame is often ignored,primarily because of difficulties in simulation and lack of modeling guidelines in design codes.The Indian Standard,like many other national codes,does not provide explicit insight into the anticipated performance and associated vulnerability of infilled frames.This paper presents an analytical study on the seismic performance and fragility analysis of Indian code-designed RC frame buildings with and without URM infills.Infills are modeled as diagonal struts as per ASCE 41 guidelines and various modes of failure are considered.HAZUS methodology along with nonlinear static analysis is used to compare the seismic vulnerability of bare and infilled frames.The comparative study suggests that URM infills result in a significant increase in the seismic vulnerability of RC frames and their effect needs to be properly incorporated in design codes. 相似文献
14.
针对工程中的实际需要,提出一些新型的粘弹性消能支撑型式,分析了它们的受力特点,推导了消能支撑变形的表达式,并给出了其控制力的计算公式;最后,研究了影响结构消能效果的设计参数,给出了设计参数合理的取值范围。 相似文献
15.
安装形状记忆合金阻尼器的剪力墙结构抗震性能分析 总被引:1,自引:0,他引:1
为减轻钢筋混凝土剪力墙连梁的地震后永久性损伤,同时保持连梁的耗能机制,本文提出在剪力墙连梁中安装新型形状记忆合金(Shape Memory Alloy,简称SMA)阻尼器,并研究该阻尼器对剪力墙结构地震响应的减震效果。通过一幢12层剪力墙结构地震反应的时程分析,研究了SMA阻尼器的附加刚度比和屈服位移比两项特征参数对结构地震反应控制效果的影响规律。计算分析结果表明,当附加刚度比为0.04~0.05,屈服位移比为0.4~0.5时,可以获得较好的减震效果。 相似文献
16.
性态抗震设计已成为结构抗震设计的发展趋势,本文以约束混凝土砌块结构为对象,在提出约束混凝土砌块墙承载力计算公式的基础上,建立了砌块墙片的恢复力模型。对3座不同层数的典型约束混凝土砌块结构,在代表不同场地类别、不同地震动强度的输入下分别进行了动力非线性时程分析和静力非线性分析。通过计算结果的对比,讨论了2种分析方法中场地类别、地震动强度、静力非线性分析中侧力分布模式等影响,所得结论可以为用静力非线性分析估计砌块结构的抗震性能提供有益的参考依据。 相似文献
17.
为研究节能房屋的抗震能力,本文基于墙体试验研究成果,建立了墙体的恢复力模型及其抗震抗剪强度公式,并对内砖外加气混凝土砌块墙体节能房屋进行了地震反应分析.本项研究为节能住宅的推广应用提供了抗震设计依据. 相似文献
18.
Vibration control systems are being used increasingly worldwide to provide enhanced seismic protection for new and retrofitted buildings. This paper presents a new vibration control system on the basis of a seesaw mechanism with viscoelastic dampers. The proposed vibration control system comprises three parts: brace, seesaw member, and viscoelastic dampers. In this system, only tensile force appears in bracing members. Consequently, the brace buckling problem is negligible, which enables the use of steel rods for bracing members. By introducing pre‐tension in rods, long steel rods are applicable as bracing between the seesaw members and the moment frame connections over some stories. Seesaw mechanisms can magnify the damper deformation according to the damper system configuration. In this paper, first, the magnification factor, that is, the ratio of the damper deformation to the story drift, is delivered, which includes the rod deformation. Results of a case study demonstrate that the magnification factor of the proposed system is greater than unity for some cases. Seismic response analysis is conducted for steel moment frames with the proposed vibration control system. Energy dissipation characteristics are examined using the time‐history response results of energy. The maximum story drift angle distributions and time‐history response results of displacement show that the proposed system can reduce the seismic response of the frames effectively. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
19.
根据黏弹性阻尼器的特点和抗震规范的要求,分别提出了用于黏弹性阻尼器减震结构抗震分析的弹性及弹塑性需求谱,前者是基于黏弹性阻尼器减震结构等效阻尼比的简化计算公式及规范规定的反应谱;后者是基于修正的V id icRμ-μ-T关系。在此基础上,借助模态推覆分析,提出了可以考虑高阶振型影响的黏弹性阻尼器消能减震结构体系的能力谱分析方法,并对一8层钢筋混凝土消能减震框架结构进行了"中震不坏,大震可修"性能水准下的抗震分析。算例结果表明,采用该方法分析黏弹性阻尼器减震结构体系是可行的、有效的。 相似文献
20.
Comparison of DSHA-based response spectrum with design response spectrum of building code of Pakistan (BCP-SP-2007) for a site in Muzaffargarh area,Pakistan 下载免费PDF全文
The building code of any country is considered to be a basic technical guidance document for the seismic design of structures. However, building codes are typically developed for the whole country, without considering site specific models that incorporate detailed site-specific data. Therefore, the adequacy of the design spectrum for building codes may sometimes be questionable. To study the sufficiency of the building codes of Pakistan (BCP-SP-2007), a deterministic seismic hazard analysis (DSHA) based spectrum was developed for a site in the Muzaffargarh area, Pakistan, using an updated earthquake catalogue, seismic source model, and a next generation attenuation model (NGA-WEST-2). Further, an International Building Code (IBC-2000) spectrum was developed for the study area to compare the results. The DSHA-based response spectrum resulted in a peak ground acceleration (PGA) value of 0.21 g for the Chaudwan fault. The evaluation of BCP-SP-2007 and IBC-2000 spectra provided a critical assessment for analyzing the associated margins. A comparison with the DSHA-based response spectrum showed that the BCP-SP-2007 design spectrum mostly overlapped with the DSHA spectrum unlike IBC-2000. However, special attention is needed for designing buildings in the study area when considering earthquake periods longer than 1 s, and the BCP-SP-2007 spectrum can be enhanced when considering a period range of 0.12–0.64 s. Finally, BCP-SP-2007 is based on a probabilistic approach and its comparison with deterministic results showed the significance of both methods in terms of design. 相似文献