首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To characterize a runoff pattern of non-point pollutants in relation with different land uses in a watershed, a monitoring activity and field measurements were carried out and data points were recorded during the rainfall events for 2 years. The study area includes industrial, urban, and rural sectors, which can represent a model case for the runoff study. Each sector was monitored with methodology and parameters including partial event mean concentration, first flush effect, mass first flush ratios, and correlation analysis. The Banwol Industrial Outfall No. 4 (4TG), an industrial area, showed a strong first flush effect, indicating that pollutants such as suspended solids, chemical oxygen demand, total nitrogen, and total phosphorus, were discharged at the early stage of a storm. An MFF30 analysis of the runoff revealed a mean pollutant load was over 50 %. In the Ansan Stream, an urban area, a strong first flush effect did not appear; however, the concentrations of pollutants reached a peak some time later during a storm event. Then, the concentrations of pollutants quickly reduced. On the other hand, Jangjunbo and Munsan Stream, rural areas, did not exhibit the first flush effects, and when considering the value of MFF30, 30 % or fewer pollutants on average were discharged at the initial stage of a storm. This means most of pollutants were streamed out at the later time of a storm event. The monitoring results found that the runoff characteristics of non-point pollutants in industrial, urban, and rural areas were distinctly different and site-specific. Therefore, each watershed management plan should be prepared to meet its own characteristics. Also, this kind of data can be an important base in designing and sizing a regional wastewater treatment facility to treat pollutants from a contaminated watershed.  相似文献   

2.
In this study, the treatability of marble processing wastewater by electrocoagulation using aluminum and iron electrodes was investigated. The sample used was from the marble-processing plant in Sivas and its turbidity, suspended solids, chemical oxygen demand and total solids concentrations were about 1,914?NTU, 2,904, 150 and 4,750?mg/L, respectively. The effects of various operating parameters such as initial pH, current density and electrolysis time on turbidity, suspended solids, chemical oxygen demand and total solids removal efficiencies were investigated. The settling characteristics of waste sludge produced and energy and electrode consumption were also determined. The optimum values of initial pH, current density and electrolysis time in electrocoagulation studies carried out using aluminum electrode were found to be 7.8, 30?A/m2 and 5?min, respectively. Under these conditions, the removal efficiencies obtained for turbidity, suspended solids, chemical oxygen demand and total solids were 98.5, 99.2, 55.2 and 92.4?%, respectively. Corresponding energy and electrode consumptions were 0.143?kWh/kg SS and 0.010?kg Al/kg SS. For iron electrode, the optimum parameter values were found to be 7.8 pH, 20?A/m2 and 5?min, respectively. Under these conditions, removal efficiencies for turbidity, suspended solids, chemical oxygen demand and total solids were determined as 94.3, 99.1, 54.2, and 96.1?%, respectively. Energy and electrode consumptions were 0.0571?kWh/kg SS and 0.0206?kg Fe/kg SS, respectively. Settling characteristics of sludge produced during experiments carried out using both aluminum and iron electrodes were fairly good. The results showed that electrocoagulation method can be used efficiently for the treatment of marble processing wastewater under proper operating conditions.  相似文献   

3.
In this study, a naturally available crab shell chitosan of low molecular weight (20?kDa) has been used as adsorbent to evaluate the pollution load in vegetable oil mill effluent. A series of batch experiment was conducted by varying chitosan dosage (100?C400?mg), pH (2?C9), stirring time (15?C90)?min and agitation speed (25?C150?rpm) to study their effects on adsorption and flocculation processes. The parameters considered for adsorption study are chemical oxygen demand, total suspended solids, electrical conductivity and turbidity. The maximum reduction in chemical oxygen demand, total suspended solids, electrical conductivity and turbidity is 74, 70, 56 and 92?% , respectively. The observed experimental result showed that crab shell chitosan could able to reduce significantly the chemical oxygen demand, turbidity, electrical conductivity and suspended matter. The optimum conditions were estimated as 400?mg/l chitosan, pH 4 and 45?min of mixing time with mixing speed of 50?rpm. Chitosan showed very good pollution removal efficiency and can be used for the effective treatment of vegetable oil mill effluent.  相似文献   

4.
In this study, the characteristics of sewage of small community were determined for 6 months to ascertain the type of treatment required in subtropical conditions. The results demarcated sewage of this community as a medium-strength wastewater (chemical oxygen demand: 475 mg/L, biochemical oxygen demand: 240 mg/L and total suspended solids: 434 mg/L). Chemical oxygen demand to sulphate ratio of the sewage (11.6) established that it was amenable to anaerobic digestion. The temperature, strength, biodegradability and components of sewage were suitable for anaerobic digestion, and thus, upflow anaerobic sludge blanket reactor (UASB) was selected for its treatment. These reactors are often shutdown in small communities due to environmental and/or socio-economic factors. The ability of two UASB reactors, seeded with cow dung (UASBCD) and activated sludge of a dairy treatment plant (UASBASDIT) to restart after a long idle period of 12 months, was investigated along with sludge analysis by scanning electron microscope. Biomass in both reactors reactivated rapidly after shutdown period and within 30 days after substrate feeding achieved uniform removal efficiencies for chemical oxygen demand, total suspended solids, total dissolved solids, chloride and oil and grease. Chemical oxygen demand removal efficiency of both reactors became uniform and remained close to 80% after 30 days through reactivation of microbes in sludge bed due to adequate food and temperature conditions. During restart-up, at an average organic loading rate of 0.902 kg COD/m3 per day, methane yields of 0.091 and 0.084 m3/kg COD removed were achieved for UASBCD and UASBASDIT reactors, respectively.  相似文献   

5.
Transport of hydrophobic organic pollutants in rivers is mainly coupled to transport of suspended particles. Turbidity measurements are often used to assess the amount of suspended solids in water. In this study, a monitoring campaign is presented where the total concentration of polycyclic aromatic hydrocarbons (PAHs), the amount of total suspended solids (TSS), and turbidity was measured in water samples from five neighboring catchments in southwest Germany. Linear correlations of turbidity and TSS were obtained which were in close agreement to the literature data. From linear regressions of turbidity versus total PAH concentrations in water, mean concentrations of PAH on suspended particles could be calculated and these varied by catchment. These values furthermore comprise a robust measure of the average sediment quality in a given catchment. Since in the catchments investigated in this study, PAH concentrations on suspended particles were stable over a large turbidity range (1–114 Nephelometric Turbidity Units), turbidity could be used as a proxy for total PAHs and likely other highly hydrophobic organic pollutants in river water if the associated correlations are established. Based on that, online monitoring of turbidity (e.g., by optical backscattering sensors) seems very promising to determine annual pollutant fluxes.  相似文献   

6.
The disposal of wastewater sludge generated during the treatment of the various municipal and industrial wastewaters is a major environmental problem. In this study the thermophilic bacterium Bacillus licheniformis, which enhances the efficiency of sludge reduction, was isolated from waste activated sludge acclimated to 55 °C. The resulting suspended solids’ degradation was 12 % and chemical oxygen demand solubilization was 18 %. To further enhance the sludge reduction potential, extra polymeric substances, which play a major role in the formation of flocs, were removed. A chemical extractant, ethylenediaminetetraacetate that is also a cation binding agent, was used to remove the extra polymeric substances. After the removal of extra polymeric substances, the suspended solids’ degradation increased from 12 to 23 % and the chemical oxygen demand solubilization increased from 18 to 25 %. These observations confirm that Bacillus licheniformis enhanced sludge reduction in non-flocculated sludge (with the removal of extra polymeric substances) as compared to flocculated sludge (without the removal of extra polymeric substances).  相似文献   

7.
Monitoring of estuarine condition depends on water quality parameters that have significant and interpretable ecological effects and can be assessed either in situ or via rapid laboratory techniques. Two commonly measured parameters are water column turbidity (NTU) and total suspended solids (TSS). Under certain conditions, either of these measures could represent a proxy for runoff and provide rapid, in situ measures to improve protection of the public by decreasing the time required to detect and monitor associated effects (e.g., reduced water clarity and eutrophication). The Neuse River Estuary (NRE) has experienced a decline in water quality due to anthropogenic inputs, including stormwater containing nutrient and particle loads. Water samples were collected from the NRE during both dry weather and storm events over 16 mo across the entire estuarine gradient. Particle size distributions, ratio of particulate organic carbon to nitrogen, chlorophylla (chla), TSS, and NTU were measured in each of these samples, with the data separated into regions based on salinity and depth of sample collection. Particle analyses were directed at identifying suspensions dominated by phytoplankton, runoff particles, or resuspended sediments. Particle size distributions for suspensions in Region I (all samples with salinity less than 2) varied little during sampling, resulting in a robust NTU-TSS relationship. This relationship confirmed the usefulness of turbidity as a measure of runoff and resuspension of recently deposited runoff in the upper NRE. Phytoplankton cells represented a majority of the particles in Region II (surface samples with salinity greater than 2), based on the close relationship between chla and total particle volume in these samples. Suspensions of large, nearly uniform diameter particles, which are likely aggregates and resuspended sediment, were observed in Region III (bottom samples with salinity greater than 2). Using these techniques as part of routine monitoring, particle suspension measures in different hydrographic regions of an estuary provide evidence useful for identifying the source and water quality consequences of particle suspensions (e.g., microbial contamination and algal blooms).  相似文献   

8.
River Vrishabhavathy, a tributary of Cauvery River was studied for 12 physico-chemical parameters at four sites over a distance of 50 km for a period of 2 years (1999–2001) at monthly intervals. Water was faintly alkaline, with pH showing negative correlation with temperature. The dissolved oxygen content increased downstream with negative correlation to biological oxygen demand (BOD), chemical oxygen demand (COD) and turbidity. Bicarbonate alkalinity was very low compared with carbonate alkalinity. Carbonate alkalinity, total hardness, total dissolved solids, total suspended solids, electrical conductivity, BOD and COD decreased downstream, with an upward trend in the middle reaches due to the introduction of raw sewage. The seasonal and yearly trends are also discussed. The river is a sewer collector undergoing self-purification.  相似文献   

9.
This study focuses on the characterization of leachate generated from Gohagoda dumpsite in Kandy, Sri Lanka, assessment of its spatial and temporal variations, and identification of subsurface canals and perched water bodies in the wetland system affected by the leachate flow. Leachate samples were collected monthly throughout dry and rainy seasons from different points of the leachate drainage channel over a period of 1 year and they were tested for quality parameters: pH, temperature, electrical conductivity, total dissolved soils, alkalinity, hardness, total solids, volatile solids, total suspended solids, volatile suspended solids, biochemical oxygen demand (BOD5), chemical oxygen demand, nitrate-nitrogen, nitrite-nitrogen, phosphates, ammonium-nitrogen, chloride, dissolved organic carbon, total organic carbon and heavy metals. Sequential soil extraction procedures were performed for the characterization of leachate-affected local soil. A geophysical survey using direct current resistivity technique was conducted at locations downstream of the dumpsite. Leachate characteristics indicated that the leachate is in the methanogenic phase and the results strongly suggest that the leachate may be polluting the river where the leachate is discharged directly. Leachate exceeds the allowable limits of Sri Lankan wastewater discharge standards for many of the parameters. Significant difference (P < 0.05) was observed for most of organic and inorganic parameters among all sampling locations. Many parameters showed a negative correlation with pH. The affected soils showed high heavy metal concentrations. Resistivity study confirmed a confined leachate flow at the near surface with few subsurface canals. However, no separate subsurface plume movement was observed. The results of this research can effectively be used for the establishment of an efficient and effective treatment method for the Gohagoda landfill leachate.  相似文献   

10.
Spatiotemporal variations of ten physicochemical parameters in the water quality of Atoyac River basin, Central Mexico, were obtained from 22 sampling sites (66 samples in total) located all along the basin for three different seasons (dry, rainy and winter). Multivariate statistical techniques such as correlation matrix, factor analysis (FA) and cluster analysis (CA) were used as a tool to understand the process. Physicochemical parameters such as temperature (T), pH, conductivity (λ), dissolved oxygen (DO), spectral absorption coefficient (SAC), oxidation–reduction potential (ORP), turbidity, 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and total suspended solids (TSS) were analyzed. Extremely high values of pH (10.24), conductivity (1870 µS/cm) and reduced redox potential (?370.1 mV) were observed in the dry season, whereas elevated TSS of 2996 mg/L was detected during the rainy season. The results elucidated high influence from the adjoining industrial, agricultural and urban zones, making the river unsuitable for life. FA generated varifactors, which accounted for cumulative % of 75.04 (dry), 76.22 (rainy) and 79.96 (winter) clearly grouping the external factors responsible for these significant values indicating the source of contamination. Cluster analysis facilitated the ease of classifying the sampling sites based on the similarities of physicochemical parameters. This study carried out in different seasons using multivariate statistical techniques would definitely prove to be an efficient tool for the restoration and establishing the real-time monitoring stations along this important river basin of Mexico.  相似文献   

11.
The treatment of egg processing effluent was investigated in a batch electrocoagulation reactor using aluminum as sacrificial electrodes. The influence of operating parameters such as electrode distance, stirring speed, electrolyte concentration, pH, current density and electrolysis time on percentage turbidity, chemical oxygen demand and biochemical oxygen demand removal were analyzed. From the experimental results, 3-cm electrode distance, 150 rpm, 1.5 g/l sodium chloride, pH of 6, 20 mA/cm2 current density, and 30-min electrolysis time were found to be optimum for maximum removal of turbidity, chemical oxygen demand and biochemical oxygen demand. The removal of turbidity, chemical oxygen demand and biochemical oxygen demand under the optimum condition was found to be 96, 89 and 84 %, respectively. The energy consumption was varied from 7.91 to 27.16 kWh/m3, and operating cost was varied from 1.36 to 4.25 US $/m3 depending on the operating conditions. Response surface methodology has been employed to evaluate the individual and interactive effects of four independent parameters such as electrolyte concentration (0.5–2.5 g/l), initial pH (4–8), current density (10–30 mA/cm2) and electrolysis time (10–50 min) on turbidity, chemical oxygen demand and biochemical oxygen demand removal. The results have been analyzed using Pareto analysis of variance to predict the responses. Based on the analysis, second-order polynomial mathematical models were developed and found to be good fit with the experimental data.  相似文献   

12.
This study was conducted to evaluate the chemical parameters and the cytotoxic and genotoxic potential of raw domestic sewage and effluents from treatment with activated sludge and a floating emergent-macrophyte filter from a domestic wastewater treatment plant in the city of Novo Hamburgo, Rio Grande do Sul, Brazil. The physicochemical analysis revealed that both treatment systems achieved the legal emission pattern for biochemical oxygen demand, chemical oxygen demand, and suspended solids, but ammoniacal nitrogen and E. coli values were above the limits in the macrophyte treatment effluent. Phosphorous values were above the maximum permitted for both treatments. The results obtained from the Allium cepa test and the micronuclei test in fish did not demonstrate any significant differences in both cytotoxicity (mitotic index) and genotoxicity (chromosome aberration and micronucleus) endpoints between the negative control group and the exposed groups. However, the comet assay in fish revealed a DNA damage increase in animals exposed to the 30 % concentration of the macrophyte effluent and two concentrations of the activated sludge treatment effluent (10 and 75 %), which suggests that these two treatment systems may increase wastewater genotoxicity.  相似文献   

13.
This paper reports the results of the treatment of a yarn dyeing effluent using an integrated biological–chemical oxidation process. In particular, the biological unit was based on a sequencing batch biofilter granular sludge reactor (SBBGR), while the chemical treatment consisted of an ozonation step. Biological treatment alone was first performed as a reference for comparison. While biological treatment did not produce an effluent for direct discharge, the integrated process assured good treatment results, with satisfactory removal of chemical oxygen demand (up to 89.8 %), total nitrogen (up to 88.2 %), surfactants (up to 90.7 %) and colour (up to 99 %), with an ozone dose of 110 mg of ozone per litre of wastewater. Biomass characterization by fluorescence in situ hybridization has revealed that filamentous bacteria represented about 20 % of biomass (coherently with high sludge volume index values); thanks to its special design, SBBGR guaranteed, however, stable treatment performances and low effluent suspended solids concentrations, while conventional activated sludge systems suffer from sludge bulking and even treatment failure in such a condition. Furthermore, biomass characterization has evidenced the presence of a shortcut nitrification–denitrification process.  相似文献   

14.
The physicochemical qualities of a typical rural-based river were assessed over a 12-month period from August 2010 to July 2011 spanning the spring, summer, autumn and winter seasons. Water samples were collected from six sampling sites along Tyume River and analysed for total nitrogen, orthophosphate, biochemical oxygen demand (BOD), temperature, pH, dissolved oxygen (DO), electrical conductivity (EC), total dissolved solids (TDS) and turbidity. BOD regimes did not differ significantly between seasons and between sampling points and ranged from 0.78 to 2.76 mg/L across seasons and sampling points, while temperature ranged significantly (P < 0.05) between 6 and 28 °C. Turbidity varied significantly (P < 0.05) from 6 to 281 nephelometric turbidity units while TDS (range 24–209 ppm) and conductivity (range 47.6–408 mg/L) also varied significantly (P < 0.05) across sampling points with a remarkable similarity in their trends. Orthophosphate concentrations varied from 0.06 to 2.72 mg/L across seasons and sampling points. Negative correlations were noted between temperature and the nutrients, DO and temperature (r = ?0.56), and TDS and DO (r = ?0.33). Positive correlations were noted between TDS and temperature (r = 0.41), EC and temperature (r = 0.15), and DO and pH (r = 0.55). All nutrients were positively correlated to each other. Most measured parameters were within prescribed safety guidelines. However, the general trend was that water quality tended to deteriorate as the river flows through settlements, moreso in rainy seasons.  相似文献   

15.
Undiluted reject water from the dewatering of anaerobic sludge with an average total nitrogen content of 718 ± 117 mg L?1 (n = 63) was used to start-up autotrophic nitrogen removal in three different pilot-scale (3 m3) deammonification configurations: (1) biofilm; (2) activated sludge sequence batch; and (3) two-staged (nitritation–anammox). Time- and concentration-based aeration control with alternating aerobic/anaerobic phases was applied for all reactor configurations. All reactors were initiated without anammox-specific inoculum, and biofilm was grown onto blank carriers. During the initial start-up period, biological nitrogen removal was found to be inhibited by an excessive free ammonia content (>10 mg-N L?1), resulting from the use of high-strength reject water as the process feed. After implementation of free ammonia control by pH adjustment to 6.5–7.5, propagation of the deammonification process was observed with increased nitrogen removal with slight accumulation of NO3 ?–N. The highest total nitrogen removal rates were achieved with the single-reactor biofilm- and sludge-based deammonification processes (1.04 and 0.30 kg-N m?3 day?1, respectively). The critical factors for successful start-up and stable operation of deammonification reactors turned out to be control of pH below 7.5, dissolved oxygen at 0.3–0.8 mg-O2 L?1 and influent solids values below 1000 nephelometric turbidity units. Microbial analysis demonstrated that highest anammox enrichment was achieved in the biofilm reactor (9.40 × 108 copies g?1 total suspended solids). These data demonstrate the potential of an in-situ grown sludge- or biofilm-based concept for the development and propagation of deammonification process.  相似文献   

16.
The present paper undertakes a study of the physico-chemical properties and toxic heavy metals content in the untreated and treated pharmaceutical effluents in order to evaluate the working efficiency of industrial effluent treatment plants. The treatment efficiency achieved for various parameters was conductivity (79.94%), alkalinity (93.91%), hardness (87.70%), chloride (89.24%), cyanide (79.66%), phosphate (99.19%), total dissolved solids (85.89%), total suspended solids (96.87%), salinity (52.41%), dissolved oxygen (27.32%), biochemical oxygen demand (83.39%) and chemical oxygen demand (72.21%). The removal efficiency achieved for different heavy metals was Cu2+ (79.66%), Ni2+ (69.22%), Cr6+ (80.15%), Pb2+ (72.14%), Fe3+ (92.59%) and Zn2+ (90.61%). The level of biochemical oxygen demand (64 mg L?1) in the treated effluents was above the limit of 30.0 mg L?1, chemical oxygen demand level (208 mg L?1) was close to a limit of 250 mg L?1, while average Pb2+ concentration (0.10 mg L?1) was on the borderline of maximum permissible limit of 0.10 mg L?1 set by Central Pollution Control Board for safe discharge of industrial effluent in inland surface water. The average concentration of cyanide (0.01 mg L?1) in the treated industrial effluent of our study is of great concern to the fisheries of freshwater ecosystem in which the effluents finally get discharged. Based on the results of the present study, it is concluded that the pollution level in the discharged pharmaceutical effluent is of the great concern requiring proper treatment and regular scientific monitoring so as to protect the environmental degradation of water resources and facilitate the propagation of the aquatic life.  相似文献   

17.
This study aimed at investigating the first flush phenomenon from residential, commercial and industrial catchments. Stormwater was grab sampled and the flow rate was measured during 52 storm events. The dimensionless cumulative pollutant mass and runoff volume were used to determine the runoff volume needed to transport 50 and 80 % of total pollutant mass. Almost all the constituents did not satisfy this first flush definition except for total suspended solids (TSS) in the commercial catchment. The averages first runoff volume required to remove 50 and 80 % of the total pollutant mass were 37 and 67, 35 and 65, and 36 and 64 % for the residential, commercial and industrial catchments, respectively. It seemed that less runoff is required to transport the same amount of pollutant loadings in tropical urban catchments than in temperate regions. BOD, COD, NH3-N, SRP and TP consistently showed strong first flush effects in all catchments. The first flush strengths of TSS, BOD, COD, NH3-N and TP in the commercial catchment were strongly correlated with total rainfall, rainfall duration, max 5 min intensity, runoff volume and peak flow, but not with antecedent dry days. Management of the first 10 mm runoff depth would be able to capture about half of the total pollutant mass in stormwater runoff that would otherwise goes to drains.  相似文献   

18.
The laboratory tests for the use of sapogenic amphiphilic glycosides as a coagulation–flocculation aid are presented in this paper. These amphiphilic glycosides were obtained, through a natural fermentation process, of the juice, of fique (Furcraea sp.) leaves. Decantation allows for the separation of a supernatant denominated “supernatant fique juice” and a decanted fraction denominated “decanted fique juice.” The latter contains most of the sapogenic amphiphilic glycosides and was mixed with the chemical coagulant ferric chloride hexahydrate, at varying doses. Ferric chloride hexahydrate was also used as a control to ascertain the removal efficiency of persistent contaminants from samples of a textile industry effluent. The parameters of interest were typical indicators of water quality such as color, turbidity, chemical oxygen demand, pH and conductivity. The results indicate that the decanted fique juice, when used as a coagulation–flocculation aid, and upon comparison with the chemical coagulant alone, causes an additional color and turbidity reduction of 31 and 17 %, respectively. No significant differences were noted in the chemical oxygen demand values (α = 0.05; P < 0.001). Thus, there is a scope for further research about the commercial feasibility of DFJ as an industrial water treatment agent, which reduces the toxicity of raw fique juice and its detrimental environmental effects.  相似文献   

19.
通过2013年6-9月对唐古拉山冬克玛底冰川流域河水的逐日定时样品采集,并结合流域水文与气象资料,对径流的总溶解固体(TDS)和悬移质的变化特征进行分析。结果表明:2013年消融期的平均气温为3.7℃,消融期降水量为546 mm,7月和8月两个月径流量占消融期总径流量的63%。消融期逐日的TDS变化范围为31~140 mg·L-1,平均值为60 mg·L-1,TDS随径流变化显著,表现为消融强烈时(7-8月) TDS浓度较低,消融初期(6月)和末期(9月)时TDS浓度较高;径流中TDS与悬移质浓度(SSC)变化表现出相反变化趋势,即消融强烈时悬移质浓度较高,而消融初期与末期悬移质浓度较低,消融期平均悬移质浓度为122.8 mg·L-1,流量-SSC时序关系表现为以顺时针滞后事件为主。2013年冬克玛底冰川流域消融期的化学侵蚀总量和物理侵蚀总量分别为2.214×103 t和6.722×103 t,化学侵蚀与物理侵蚀率的比值为0.33。  相似文献   

20.
The objective of this study was to evaluate the treatment efficiency of a gravel contact oxidation treatment system which was newly constructed under the riverbed of Nan-men Stream located at the Shin Chu City of Taiwan. The influent and effluent water samples were taken periodically for the analyses of pH, temperature, dissolved oxygen, total suspended solids, five-day biological oxygen demand, NH4 +-N. The results showed that the average removal rates of five-day biological oxygen demand, total suspended solids and NH4 +-N were 33.6% (between ?6.7% and 82.1%), 56.3% (between ?83.0% and 93.4%) and 10.7% (between ?13.0% and 83.3%), respectively. The calculated mean first order reaction rate constant for five-day biological oxygen demand was 4.58/day with a standard deviation of 4.07/day and for NH4 +-N was 2.15/day with a standard deviation of 5.68/day. Therefore, it could be said that this gravel-contact-oxidation system could effectively remove biological oxygen demand, total suspended solids, and NH4 +-N in river water at a relatively short hydraulic retention time, although its pollutant treatment efficiency was not quite stable. However, to reach better or more stable treatment efficiency, aeration might sometimes be necessary to increase the dissolved oxygen in influent river water. And, longer hydraulic retention time of the system might also be required to increase NH4 +-N removal efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号