首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the temporal variation of subsurface flows of 788 active regions and 978 quiet regions. The vertical-velocity component used in this study is derived from the divergence of the measured horizontal flows using mass conservation. The horizontal flows cover a range of depths from the surface to about 16 Mm and are determined by analyzing about five years of GONG high-resolution Doppler data with ring-diagram analysis. We determine the change in unsigned magnetic flux during the disk passage of each active region using MDI magnetograms binned to the ring-diagram grid. We then sort the data by their flux change from decaying to emerging flux and divide the data into five subsets of equal size. The average vertical flows of the emerging-flux subset are systematically shifted toward upflows compared to the grand average values of the complete data set, whereas the average flows of the decaying-flux subset show comparably more pronounced downflows especially near 8 Mm. For flux emergence, upflows become stronger with time with increasing flux at depths greater than about 10 Mm. At layers shallower than about 4 Mm, the flows might start to change from downflows to upflows, when flux emerges, and then back to downflows after the active regions are established. The flows in the layers between these two depth ranges show no response to the emerging flux. In the case of decaying flux, the flows change from strong upflows to downflows at depths greater than about 10 Mm, whereas the flows do not change systematically at other depths. A cross-correlation analysis shows that the flows in the near-surface and the deeper layers might change about one day before flux emerges. The flows associated with the quiet regions fluctuate with time but do not show any systematic variation.  相似文献   

2.
We present results of the study of chromospheric and photospheric line-of-sight velocity fields in the young active region NOAA 11024. Multi-layer, multi-wavelength observational data were used for the analysis of the emerging flux in this active region. Spectropolarimetric observations were carried out with the telescope THEMIS on Tenerife (Canary Islands) on 4 July 2009. In addition, space-borne data from SOHO/MDI, STEREO and GOES were also considered. The combination of data from ground- and space-based telescopes allowed us to study the dynamics of the lower atmosphere of the active region with high spatial, spectral, and temporal resolutions. THEMIS spectra show strong temporal variations of the velocity in the chromosphere and photosphere for various activity features: two pores, active and quiet plage regions, and two surges. The range of variations of the chromospheric line-of-sight velocity at the heights of the formation of the Hα core was extremely large. Both upward and downward motions were observed in these layers. In particular, a surge with upward velocities up to ?73 km?s?1 was detected. In the photosphere, predominantly upward motions were found, varying from ?3.1 km?s?1 upflows to 1.4 km?s?1 downflows in different structures. The velocity variations at different levels in the lower atmosphere are compatible with the emergence of magnetic flux.  相似文献   

3.
R. Komm  R. Howe  F. Hill 《Solar physics》2011,268(2):407-428
We study the temporal variation of subsurface flows of 828 active regions and 977 quiet regions. The horizontal flows cover a range of depths from the surface to about 16 Mm and are determined by analyzing Global Oscillation Network Group high-resolution Doppler data with ring-diagram analyses. The vertical velocity component is derived from the divergence of the measured horizontal flows using mass conservation. For comparison, we analyze Michelson Doppler Imager (MDI) Dynamics Run data covering 68 active regions common to both data sets. We determine the change in unsigned magnetic flux during the disk passage of each active region using MDI magnetograms binned to the ring-diagram grid. We then sort the data by their flux change from decaying to emerging flux and divide the data into five subsets of equal size. We find that emerging flux has a faster rotation than the ambient fluid and pushes it up, as indicated by enhanced vertical velocity and faster-than-average zonal flow. After active regions are formed, downflows are established within two days of emergence in shallow layers between about 4 and 10 Mm. Emerging flux in existing active regions shows a similar scenario, where the upflows at depths greater than about 10 Mm are enhanced and the already established downflows at shallower depths are weakened. When active regions decay, the corresponding flow pattern disappears as well; the zonal flow slows down to values comparable to that of quiet regions and the upflows become weaker at deeper layers. The residual meridional velocity is mainly poleward and shows no obvious variation. The magnitude of the residual velocity, defined as the sum of the squares of the residual velocity components, increases with increasing magnetic flux and decreases with decreasing flux.  相似文献   

4.
J. J. Brants 《Solar physics》1985,98(2):197-217
Scatter plots of various pairs of spectral-line parameters that describe the magnetic field and the line-of-sight velocity are discussed in order to relate magnetic structures and the line-of-sight velocity field with characteristic areas of an emerging flux region (EFR).Strong magnetic fields, occurring over about 20% of the resolution elements in the EFR, are either slightly to moderately inclined or transverse. Slightly to moderately inclined strong fields occur in patches near the border of the EFR; the filling factors per resolution element are large, and field strengths are between 800 and 2000 G, and up to 2500 G in pores. There are only a few faculae in the EFR; most of these are located near rapidly growing pores of following polarity.The strongly inclined strong magnetic fields, with field strengths exceeding 1000 G, are located in slightly darkened resolution elements near the line B = 0 separating the magnetic polarities, near large-scale and small-scale upflows. In the central region of the EFR there are some small elements with strongly inclined field of low average field strength of about 500 G, and a tendency for a small-scale upward velocity. These elements may correspond to tops of flux loops during emergence.In 80% of the resolution elements within the EFR the magnetic flux density (averaged over the resolution element) is low, less than 120 G.There is a persistent large-scale velocity field, with upflows near the line B = 0 separating the magnetic polarities and with downflows near rapidly growing pores of following polarity. Some examples of strong small-scale upflows are found in the central region of the EFR, and strong small-scale downflows near rapidly growing following pores. Within the pores and faculae there are no significant small-scale line-of-sight velocities.Based on observations obtained at the Sacramento Peak Observatory (operated by the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation).  相似文献   

5.
A. Anđić 《Solar physics》2007,243(2):131-141
High-frequency velocity oscillations were observed in the spectral lines Fe i 543.45 nm and 543.29 nm, by using 2D spectroscopy with a Fabry – Perot and speckle reconstruction, at the Vacuum Tower Telescope in Tenerife. We investigate the radial component of waves with frequencies in the range 8 – 22 mHz in the internetwork, network, and a pore. We find that the occurrence of waves does not show any location preference and that they are equally distributed over downflows and upflows, regardless of the activity of the observed area in the line of Fe i 543.45 nm. The waves observed in the lower formed line of Fe i 543.29 nm seem to appear preferentially over downflows.  相似文献   

6.
The evolution of the velocity and magnetic fields associated with supergranulation has been investigated using the Sacramento Peak Observatory Diode Array Magnetograph. The observations consist of time sequences of simultaneous velocity, magnetic field, and chromospheric network measurements. From these data it appears that the supergranular velocity cells may have lifetimes in excess of the accepted value of 24 hours. Magnetic field motions associated with supergranulation were infrequent and seem to be accompanied by changes in the velocity field. More prevalent were the slow dissipation and diffusion of stationary flux points. Vertical velocity fields of 200 m s–1 appear to be confined to downflows in magnetic field regions at supergranular boundaries. These downflows are only observed using certain absorption lines. Corresponding upflows in the center of supergranules of less than 50 m s–1 may be present but cannot be confirmed.  相似文献   

7.
The results of analyzing variations in the line-of-sight (LOS) velocities in the solar loop at photospheric and chromospheric levels in the region of emerging magnetic flux for the evolving active region NOAA 11024 are reported. The analysis combines the data of multiwave spectropolarimetric observations that were carried out on July 4, 2009, (Tenerife, Spain) using THEMIS solar telescope and the data obtained with GOES, SOHO, and STEREO cosmic satellites. A complex sequence of active events has been studied: formation of the Ellerman bomb, B1 X-ray microflare, and four chromospheric surges that were formed as a result of magnetic reconnection caused by new emerging magnetic flux. The Ellerman bomb was formed in the vicinity of a growing pore. Variations in the velocity V LOS of the EB had an oscillation character for chromosphere and photosphere. Before the microflare, the average velocities of the upward and downward plasma fluxes in one leg of the magnetic loop were nearly the same—26 km/s. During the microflare, the velocity V LOS of the ascending and descending flows increased up to ?33 and 50 km/s, respectively. Variations in line-of-sight velocity of a plasma in the second leg of the magnetic loop correlated well with variations of V LOS in the region of microflare, but they occurred 1.5 minutes later. During the time of observations, four chromospheric ejections of matter were formed and three of them occurred in the region of Ellerman’s bomb formation. Sharp variations in the soft X-ray intensity occurred during these ejections. At photospheric level, variations in the line-of-sight velocity of plasma in the legs of the loop occurred in the opposite direction. In the region of the first leg, velocity V LOS diminished from ?1.8 to ?0.4 km/s, while the velocity increased from ?0.6 to ?2.6 km/s in the region of the second leg.  相似文献   

8.
NOAA 10486 produced several powerful flares, including the 4B/X17.2 superflare of October 28, 2003/11:10 UT. This flare was extensively covered by theH α and GONG instruments operated at the Udaipur Solar Observatory (USO). The central location of the active region on October 28,2003 was well-suited for the ring diagram analysis to obtain the 3-D power spectra and search for helioseismic response of this large flare on the amplitude, frequency and width of the p-modes. Further, using USO observations, we have identified the sites of new flux emergences, large proper motions and line-of-sight velocity flows in the active region and their relationship with the flare.  相似文献   

9.
The results of the analysis of the full Stokes profiles of the photospheric lines Fe I λ 630.15 nm and Fe I λ 630.25 nm in a region of chromospheric dual flows appearance in the vicinity of a small pore are presented. The analysis is based on the spectropolarimetric observations of the active region NOAA 11024 with the THEMIS French–Italian telescope (Tenerife Island, Spain). The temporal variations in the high-resolution Stokes parameters I, Q, U, and V were considered for each pixel. It was found that the dual chromospheric flows appeared in the region of the abnormal Stokes profiles of the photospheric lines. Most of the Stokes profiles Q, U, and V have a complex shape and vary greatly from pixel to pixel, which indicates strong inhomogeneities in the structure of the magnetic field in that region. The amplitude and shape of the Stokes profiles were rapidly changing during the observations. A change in the polarity of the photospheric magnetic field took place during the observations in the region of a bright chromospheric point. The evidence of the emergence of a new small-scale magnetic flux of the opposite polarity is obtained; this could lead to magnetic reconnections, appearance of dual chromospheric flows, and occurrence of a microflare.  相似文献   

10.
Two years of data from the University of Colorado ultraviolet spectrometer aboard OSO-8 were searched for steady line-of-sight flows in the chromosphere and transition-zone above active regions. The most conspicuous pattern that emerges from this data set is that many sunspots show persistent blueshifts of transition-zone lines indicating velocities of about 20 km s–1 with respect to the surrounding plage areas. The data show much smaller shifts in ultraviolet emission lines arising from the chromosphere: the shifts are frequently to the blue, but sometimes redshifts do occur. Plage areas often show a redshift of the transition-zone lines relative to the surrounding quiet areas, and a strong gradient of the vertical component of the velocity is evident in many plages. One area of persistent blueshift was observed in the transition-zone above an active region filament. The energy requirement of these steady flows over sunspots is discussed.  相似文献   

11.
In this paper we analyse the flux emergence that occurred in the following polarity area of an active region on 1 – 2 December 2006. Observations have revealed the existence of fast outflows at the edge of the emerging flux region. We have performed 3-D numerical simulations to study the mechanisms responsible for these flows. The results indicate that these outflows are reconnection jets or pressure-driven outflows, depending on the relative orientation of the magnetic fields in contact (i.e. the emerging flux and the active region’s field which is favourable for reconnection on the west side and nearly parallel with the pre-existing field on the east side of the emerging flux). In the observations, the flows are larger on the west side until late in the flux emergence, when the reverse is true. The simulations show that the flows are faster on the west side, but do not show the east flows increasing with time. There is an asymmetry in the expansion of the emerging flux region, which is also seen in the observations. The west side of the emerging flux region expands faster into the corona than the other side. In the simulations, efficient magnetic reconnection occurs on the west side, with new loops being created containing strong downflows that are clearly seen in the observations. On the other side, the simulations show strong compression as the dominant mechanism for the generation of flows. There is evidence of these flows in the observations, but the flows are stronger than the simulations predict at the later stages. There could be additional small-angle reconnection that adds to the flows from the compression, as well as reconnection occurring in larger loops that lie across the whole active region.  相似文献   

12.
Maltby  P.  Brynildsen  N.  Fredvik  T.  Kjeldseth-Moe  O.  Wilhelm  K. 《Solar physics》1999,190(1-2):437-458

The EUV line emission and relative line-of-sight velocity in the transition region between the chromosphere and corona of 36 sunspot regions are investigated, based on observations with the Coronal Diagnostic Spectrometer – CDS and the Solar Ultraviolet Measurements of Emitted Radiation – SUMER on the Solar and Heliospheric Observatory – SOHO. The most prominent features in the transition-region intensity maps are the sunspot plumes. In the temperature range between log T=5.2 and log T=5.6 we find that 29 of the 36 sunspots contain one or two sunspot plumes. The relative line-of-sight velocity in sunspot plumes is high and directed into the Sun in the transition region, for 19 of the sunspots the maximum velocity exceeds 25 km s?1. The velocity increases with increasing temperature, reaches a maximum close to log T=5.5 and then decreases abruptly.

Attention is given to the properties of oscillations with a period of 3 min in the sunspot transition region, based on observations of six sunspots. Comparing loci with the same phase we find that the 3-min oscillations affect the entire umbral transition region and part of the penumbral transition region. Above the umbra the observed relation between the oscillations in peak line intensity and line-of-sight velocity is compatible with the hypothesis that the oscillations are caused by upward-propagating acoustic waves. Information about intensity oscillations in the low corona is obtained from observations of one sunspot in the 171 Å channel with the Transition Region And Coronal Explorer – TRACE. We conclude that we observe the 3-min sunspot oscillations in the chromosphere, the transition region and the low corona. The oscillations are observable over a wider temperature range than the sunspot plumes, and show a different spatial distribution than that of the plumes.

  相似文献   

13.
Innes  D. E.  Curdt  W.  Dwivedi  B. N.  Wilhelm  K. 《Solar physics》1998,181(1):103-112
The Solar Ultraviolet Measurements of Emitted Radiation instrument (SUMER) observations show high Doppler shifts and temporal variations in profiles of ultraviolet lines from low temperature gas in the corona above the active region NOAA 7974. The profiles indicate 100 km s-1 flows coming from an almost stationary source that appears bright in the lines of N III and Si III. The variations in line-of-sight velocities and intensities suggest small knots of cooling plasma emanating from a small region high in the corona. A few arc sec sunward of the region where the cool flows are seen is an elongated region of enhanced higher temperature, low velocity Ne VI and Mg VI line emission.  相似文献   

14.
The physical state of the photosphere 1 h 50 min before a C1 solar flare on May 24, 2012, was studied. The spectropolarimetric data from the French-Italian THEMIS telescope (Tenerife Island, Spain) were used. The modeling was carried out through the inversion method using SIR [B. Ruiz Cobo and J. C. del Toro Iniesta, Astrophys. J. 398, 375–385 (1992)] code. Height distributions of temperature, magnetic field strength, and line-of-sight velocity were obtained. Nine semiempirical models of the photosphere were constructed. Each model has a two-component (a magnetic field component and nonmagnetic surroundings) structure. According to the obtained models, the magnetic field parameters and thermodynamic parameters did change significantly in the course of observations that lasted for 8 min. The models contain layers with increased and decreased temperature values. The magnetic field strength in these models varied, on average, from 0.2 T (lower photospheric layers) to 0.13 T (upper layers). The line-of-sight velocities did not exceed 2 km/s in lower and middle photospheric layers and rose to 5–6 km/s in the upper layers. The differences in the physical state and its changes occurring at different sites within the active region prior to the flare were revealed.  相似文献   

15.
We present SOHO/CDS observations taken during the gradual phase of the X17 flare that occurred on October 28, 2003. The CDS data are supplemented with TRACE and ground-based observations. The spectral observations allow us to determine velocities from the Doppler shifts measured in the flare loops and in the two ribbon kernels, one hour and a half after the flare peak. Strong downflows (>70 km s−1) are observed along the loop legs at transition-region temperatures. The velocities are close to those expected for free fall. Observations and results from a hydrodynamic simulation are consistent with the heating taking place for a short time near the top of the arcade. Slight upflows are observed in the outer edges of the ribbons (<60 km s−1) in the EUV lines formed at log T < 6.3. These flows could correspond to the so-called “gentle evaporation.” At “flare” temperatures (Fe xix, log T = 6.9), no appreciable flows are observed. The observations are consistent with the general standard reconnection models for two-ribbons flares.  相似文献   

16.
We discuss the problems connected with the measurements and evaluation of line-of-sight velocities, obtained with a scanning photoelectric magnetograph using a line-shifter with enhanced sensitivity. We bring arguments for the validity of the results of our photoelectric Doppler velocity recordings. We have found a network of cellularly shaped patterns in the distribution of photo-electrically measured line-of-sight motions, upflowing in the magnetically quiet (blue-shifted) and downflowing in magnetically active (red-shifted) areas of the photosphere, if the mean velocity level is estimated for a sufficiently large measured area. The features of both directions are mutually complementary. We demonstrate the effect of the shift of the reference zero velocity level on the topology of the line-of-sight velocity maps, and the dependence of this level on the size of the area from which it is estimated.  相似文献   

17.
Balthasar  H.  MartÍnez Pillet  V.  Schleicher  H.  Wöhl  H. 《Solar physics》1998,182(1):65-72
Time series of two-dimensional spectra were taken with the Göttingen 2D spectrometer at the VTT on Tenerife in 1996. They were investigated for Doppler velocities and velocity oscillations in small spots and pores of rapidly evolving sunspot groups. For the present measurements the magnetically insensitive lines Fe i 557.6 nm and Fe i 709.0 nm were selected. Spots with penumbrae exhibit the Evershed effect. Some pores seem to be connected with downflows, but the centres of the downflows are somewhat displaced from their associated pores. The surroundings of the pores show red shifts relative to the whole field of view. The power in the 5-min range is reduced inside the spots and pores as well as in their immediate vicinity. This reduction inside the spots is in agreement with former results. Outside the area of the spot group the 5-min power has a patchy structure with a typical size of 5 arc sec. For periods below 3.3 min, the behaviour of individual spots and pores is different. Some spots show clearly enhanced power for these periods, and it remains high down to the Nyquist period at 1.5 min. The small pores do not show enhanced three-minute oscillations compared with their vicinity. Inside one spot we find a ring of enhanced power in the period range between 8 and 20 min corresponding to the time scales of granular variations. This result could be an indication of a relation between spots and convection, but magneto-accoustic waves are also possible. The same ring exhibits also enhanced power for short periods.  相似文献   

18.
We have observed several emerging flux regions (EFRs) using the Video Spectra-Spectro-Heliograph (VSSHG) at the San Fernando Observatory (SFO). The best studied region, NOAA 7968, was near disk center when it was observed on 5–8 June 1996. This EFR showed no organized upflow between the leader and follower spots over the 4-day period covered by our observations. The main concentrations of magnetic flux in the region (leader and follower) showed a slow separation as flux emerged, but little or no upflow was seen. Two other EFRs were observed for part of a single day each and one region was observed for only one sequence. For all regions observed, no discrete features were seen between the leader and follower polarity sunpots that had upflowing material as the regions grew. In all cases, the downward velocities were smaller in area than the magnetic parts of the regions. At times there were several localized areas of greater-amplitude downflows near sunspots.  相似文献   

19.
The first 3-D non-linear hydrodynamical simulation of the inner convective envelope of a rotating low mass red giant star is presented. This simulation, computed with the ASH code, aims at understanding the redistribution of angular momentum and heat in extended convection zones. The convection patterns achieved in the simulation consist of few broad and warm upflows surrounded by a network of cool downflows. This asymmetry between up and downflows leads to a strong downward kinetic energy flux, that must be compensated by an overluminous enthalpy flux in order to carry outward the total luminosity of the star. The influence of rotation on turbulent convection results in the establishment of largescale mean flows: a strong radial differential rotation and a single cell poleward meridional circulation per hemisphere. A detailed analysis of angular momentum redistribution reveals that the meridional circulation transports angular momentum outward in the radial direction and poleward in the latitudinal direction, with the Reynolds stresses acting in the opposite direction. This simulation indicates that the classical hypothesis of mixing length theory and solid-body rotation in the envelope of red giants assumed in 1-D stellar evolution models are unlikely to be realized and thus should be reconsidered. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Brekke  P.  Kjeldseth-Moe  O.  Brynildsen  N.  Maltby  P.  Haugan  S. V. H.  Harrison  R. A.  Thompson  W. T.  Pike  C. D. 《Solar physics》1997,170(1):163-177
EUV spectra obtained with the Coronal Diagnostic Spectrometer (CDS) on the Solar and Heliospheric Observatory (SOHO) show significant flows of plasma in active region loops, both at coronal and transition region temperatures. Wavelength shifts in the coronal lines Mgix 368 Å and Mgx 624 Å corresponding to upflows in the plasma reaching velocities of 50 km s-1 have been observed in an active region. Smaller velocities are detected in the coronal lines Fexvi 360 Å and Sixii 520 Å. Flows reaching 100 km s-1 are observed in spectral lines formed at transition region temperatures, i.e., Ov 629 Å and Oiii 599 Å, demonstrating that both the transition region and the corona are clearly dynamic in nature. Some high velocity events show even higher velocities with line profiles corresponding to a velocity dispersion of 300–400 km s-1. Even in the quiet Sun there are velocity fluctuations of 20 km s-1 in transition region lines. Velocities of the magnitude presented in this paper have never previously been observed in coronal lines except in explosive events and flares. Thus, the preliminary results from the CDS spectrometer promise to put constraints on existing models of the flows and energy balance in the solar atmosphere. The present results are compared to previous attempts to observe flows in the corona.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号