首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Tidal and wind-driven surface currents in the German Bight between shallow mudflats of the North Frisian islands and the island of Helgoland are studied using coastal high-frequency radar (HFR) observations and hindcasts from a primitive equation numerical model. The setup of the observational system is described, and estimates of expected measurement errors are given. A quantitative comparison of numerical model results and observations is performed. The dominant tidal components are extracted from the two data sources using tidal harmonic analysis and the corresponding tidal ellipses are defined. Results show that the spatial patterns of different tidal ellipse parameters are consistent in the two data sets. Model sensitivity studies with constant and variable salinity and temperature distributions are used to study density-related mechanisms of circulation. Furthermore, the role of the surface wind field in driving the German Bight circulation is investigated using the complex correlation between wind and surface current vectors. The observed change of the respective correlation patterns from the coastal to open ocean is shown to be due to a combination of density effects, the coastline and topography. The overall conclusion is that HFR observations resolve the small-scale and rapidly evolving characteristics of coastal currents well in the studied area and could present an important component for regional operational oceanography when combined with numerical modelling. Some unresolved issues associated with the complex circulation and large instability of circulation in front of the Elbe River Estuary justify further considerations of this area using dedicated surveys and modelling efforts.  相似文献   

2.
Using a three-dimensional non-linear shelf model, the elliptical properties (ellipticity, inclination of the ellipse, major and minor semi-axis and phase) of the M2 tide in the German Bight were calculated and compared with CODAR measurements. A series of barotropic and baroclinic calculations were carried out to investigate the influence of geometry, stratification and particularly inputs of freshwater on these parameters. The elliptical properties undergo stronger changes in zones of influence of embayments and in the deepening of the old Elbe Valley. Friction effects in the shallow areas are responsible for robust vertical variations of the ellipticity. The island of Helgoland induces wakes on its western and eastern sides. The discharge of freshwater of the rivers Elbe, Weser and Ems induced in general negative ellipticity. Although primarily determined by geography, baroclinic effects significantly modified the inclination of the ellipses. The calculated ellipses pattern of anticlockwise and clockwise tidal current rotation agrees quite well with CODAR measurements. The elliptical properties give a general idea of the interaction of tidal waves with coastal geometries.Responsible Editor: Hans Burchard  相似文献   

3.
The morphologic changes in estuaries and coastal lagoons are very complex and constitute a challenging task in coastal research. The bathymetric changes result from the combined action of tides, waves, rivers discharge and wind stress in the area of interest. Additionally, an accurate knowledge of the sediment transport is essential to achieve a good morphological characterization. This work establishes the influence of the wave climate on the morphodynamics of the Ria de Aveiro lagoon inlet by analysing the numerical results of the morphodynamic modelling system MORSYS2D. The numerical simulations considered a realistic coupled forcing of tidal currents and waves. The computed sediment fluxes and bathymetric changes are analysed and compared with the erosion and accretion trends obtained from the numerical simulations forced only by tidal currents, in order to establish the wave climate influence. The final bathymetry and the corresponding changes are compared with bathymetric data collected through surveys. It is concluded that: (a) the morphodynamics of the study area is dominated by the wave regime in the lagoon inlet and nearshore areas, while in the inner areas is tidally dominated; and (b) the inclusion of the wave regime forcing constitutes an improvement in order to accurately reproduce the local morphodynamics.  相似文献   

4.
5.
 In this paper we use a combination of numerical modeling and data analysis to gain a better understanding of the major characteristics of the circulation in the East Frisian Wadden Sea. In particular, we concentrate on the asymmetry of the tidal wave and its modulation in the coastal area, which results in a complex pattern of responses to the sea-level forcing from the North Sea. The numerical simulations are based on the 3-D primitive equation General Estuarine Transport Model (GETM) with a horizontal resolution of 200 m and terrain-following vertical coordinates. The model is forced at its open boundaries with sea-level data from an operational model for the German Bight (German Hydrographic Office). The validation data for our model simulations include time series of tidal gauge data and surface currents measured at a pile in the back-barrier basin of the Island Langeoog, as well as several ADCP transects in the Accumer Ee tidal inlet. Circulation and turbulence characteristics are investigated for typical situations driven by spring and neap tides, and the analysis is focused on dominating temporal and spatial patterns. By investigating the response of five back-barrier basins with rather different morphologies to external forcing, an attempt is made to elucidate the dominating physical balances controlling the circulation in the individual sub-basins. It is demonstrated that the friction at the seabed tends to slow down the tidal signal in the shallow water. This leads to the establishment of flood dominance in the shallow sea north of the barrier islands. South of the islands, where the water volume of the channels at low tide is smaller than the tidal prism, the asymmetry of the tidal signal is shifted towards ebb dominance, a feature which is particularly pronounced at spring tide. At the northern open boundary, the tidal wave propagating from west to east generates a sea-level difference of ∼1 m along the boundary, and thereby triggers vigorous alongshore currents. The frictional control in the model is located in the inlets, as well as along the northern boundary. The correlation between velocity and turbulent kinetic energy tends to the establishment of a net southward transport, giving theoretical support to the observed accumulation of sediments on the intertidal flats. Weak turbulence along the northern shores of the barrier islands and the small magnitude of the residual currents there promote accumulation of suspended matter in these areas, although wave action will generally counteract this effect. Received: 29 May 2002 / Accepted: 26 September 2002 Responsible Editor: Jean-Marie Beckers Acknowledgements We are indebted to S. Dick for providing the data from the operational model of BSH and to B. Flemming for the useful discussions. The topography data and Fig. 1 have been prepared in cooperation with F. Meyer. Figure 2 has been prepared by G. Brink-Spalink. We also thank for the comments from an anonymous reviewer which helped to improve our paper.  相似文献   

6.
Observations at 8 sites in the outer central Great Barrier Reef show M2, S2, K1, and O1 tidal currents flow directly off-shelf (northeast), when the corresponding tide at Townsville is at zero height and falling, with typical amplitudes of 12, 6, 3, and 2 cm s?1. On the slope (at 300 m depth), the vertically averaged long-shelf component was small. On the shelf, the eccentricity of the tidal ellipses decreases shoreward and the tidal ellipses rotate anticlockwise. The major axes of the tidal ellipses tilt left of cross-shelf, especially for the diurnal constituents. There is satisfactory agreement between the observed and modelled cross-shelf currents. The long-shelf velocity is sensitive to the long-shelf changes in amplitude and phase of the tide heights and high quality tidal data for open boundary conditions will be required if numerical models are to model these currents satisfactorily.  相似文献   

7.
The relation between tidal flow asymmetry and net transport of sediment in the semidiurnal regime has been extensively described. This study reveals that in the diurnal regime, the direction of long-term net bed-load transport and resulting morphologic changes is partly determined by the phase-angle relationship of O1, K1, and M2. Simple analytical formulations of time-averaged bed-load transport were derived which separate the relative contributions of tidal asymmetry from that of residual flow with tidal stirring. In this particular case, the Red River Delta in Vietnam, transports related to tidal asymmetry are larger than those induced by the monsoon currents, and are an order of magnitude larger than those associated with topographic residual flow around the delta. Tide-induced morphologic changes dominate at water depths between 10 and 25 m, of which the patterns of erosion and deposition overlap with observed bathymetric changes. Additional observed changes that occur in more shallow water cannot be explained by tidal asymmetry and are probably related to wave action and to deposition from the buoyant river plume.Responsible Editor: Jens Kappenberg  相似文献   

8.
Tidal propagation in estuaries is affected by friction and fresh water discharge, besides changes in the depth and morphology of the channel. Main distortions imply variations in the mean water level and asymmetry. Tidal asymmetry can be important as a mechanism for sediment accumulation and turbidity maximum formation in estuaries, while mean water level changes can affect navigation depths. Data from several gauges stations from the Amazon estuary and the adjacent coast were analyzed and a 2DH hydrodynamic model was configured in a domain covering the continental shelf up to the last section of the river where the tidal signature is observed. Based on data, theoretical and numerical results, the various influences in the generation of estuarine harmonics are presented, including that of fresh water discharge. It is shown that the main overtide, M4, derived from the most important astronomic component in the Amazon estuary, M2, is responsible for the tidal wave asymmetry. This harmonic has its maximum amplitude at the mouth, where minimum depths are found, and then decreases while tide propagates inside the estuary. Also, the numerical results show that the discharge does not affect water level asymmetry; however, the Amazon river discharge plays an important role in the behavior of the horizontal tide. The main compound tide in Amazon estuary, Msf, generated from the combination of the M2 and S2, can be strong enough to provoke neap low waters lower than spring ones. The results show this component increasing while going upstream in the estuary, reaching a maximum and then slightly decaying.  相似文献   

9.
Temporal and spatial circulation patterns in the East Frisian Wadden Sea   总被引:2,自引:1,他引:1  
This work deals with the analysis of simulations carried out with a primitive equation numerical model for the region of the East Frisian Wadden Sea. The model, with 200-m resolution, is forced by wind, air–sea heat, and water fluxes and river runoff and is nested in a German Bight 1-km-resolution numerical model, the latter providing tidal forcing for the fine resolution model. The analysis of numerical simulations is focused both on responses due to moderate conditions, as well as to extreme events, such as the storm surge Britta, for which the model demonstrates very good skills. The question addressed in this paper is how well the model output can be compressed with the help of empirical orthogonal function analysis. It is demonstrated that, for the short-time periods of the order of a spring–neap cycle, only a few modes are necessary to almost fully represent the circulation. This is just an illustration that the circulation in this region is subject to the dominating tidal forcing, creating clear and relatively simple response patterns. However, for longer periods of about several months, wind forcing is also very important, and correspondingly, the circulation patterns become much more complex. Possible applications of the results in hindcasting and forecasting of hydrodynamics and sediment dynamics in the coastal zone are considered.  相似文献   

10.
11.
A non-linear three-dimensional unstructured grid model of the M2 tide in the shelf edge area off the west coast of Scotland is used to examine the spatial distribution of the M2 internal tide and its higher harmonics in the region. In addition, the spatial variability of the tidally induced turbulent kinetic energy and associated mixing in the area are considered. Initial calculations involve only tidal forcing, although subsequent calculations are performed with up-welling and down-welling favourable winds to examine how these influence the tidal distribution (particularly the higher harmonics) and mixing in the region. Both short- and long-duration winds are used in these calculations. Tidal calculations show that there is significant small-scale spatial variability particularly in the higher harmonics of the internal tide in the region. In addition, turbulence energy and mixing exhibit appreciable spatial variability in regions of rapidly changing topography, with increased mixing occurring above seamounts. Wind effects significantly change the distribution of the M2 internal tide and its higher harmonics, with appreciable differences found between up- and down-welling winds and long- and short-duration winds because of differences in mixing and the presence of wind-induced flows. The implications for model validation, particularly in terms of energy transfer to higher harmonics, and mixing are briefly discussed.  相似文献   

12.
《Continental Shelf Research》2005,25(9):1115-1131
Tidal inlet characteristics are controlled by wave energy, tidal range, tidal prism, sediment supply and direction and rates of sand delivered to the inlet. This paper deals with the relations between inlet and lagoon evolutions, linked by the tidal prism. Our study is focused on the Maumusson Inlet and the Marennes-Oléron Bay (first oyster farming area in Europe), located on the western coast of France. The tidal range (2–6 m) and wave climate (mean height: 1.5 m) place this tidal inlet system in the mixed energy (tide, waves), tide-dominated category. The availability of high-resolution bathymetric data since 1824 permits to characterise and quantify accurately morphological changes of both the inlet and the tidal bay. Since 1824, sediment filling of the tidal bay has led to a 20% decrease in its water volume, and a 35% reduction of the inlet throat section. Furthermore, the bay is subjected to a very high anthropic pressure, mainly related to oyster farming. Thus, both natural and human-related processes seem relevant to explain high sedimentation rates. Current measurements, hydrodynamic modelling and cross-sectional area of the inlet throat are used in order to quantify tidal prism changes since 1824. Both flood and ebb tidal prism decreased by 35%. Decrease in the Marennes-Oléron Bay water volume is inferred to be responsible for a part of tidal prism decrease at the inlet. Tidal prisms decrease may also be explained by an increase in frictional resistance to tidal wave propagation, due to a general shoaling and oyster farms in the bay. A conceptual model is proposed, taking into account natural and human-related sedimentation processes, and explaining tidal inlet response to tidal bay evolutions.  相似文献   

13.
This study focuses on the medium scale morphodynamics of the tidal flat and channel system Fedderwarder Priel, located in the Outer Weser estuary (Wadden Sea, Germany). Tidal channels and adjacent flats are highly dynamic systems whose morphologic evolution are driven by tidal, wind, and wave forcings. These coastal environments are an important ecosystem and react to changes in hydrodynamic conditions in various spatial and temporal scales. Based on annual medium-resolution digital elevation models from 1998 to 2016, we describe changes in the surface area over depth with hypsometries and use vertical dynamic trends in order to analyze and visualize the morphologic evolution of the Fedderwarder Priel and adjacent tidal channels. It is shown that several intertidal flats rise in the order of 1.3 to 5.6 cm/year. The findings indicate that the Outer Weser estuary was not in an equilibrium state for the investigated period, and tidal flats accreted with a rate exceeding mean sea level rise.  相似文献   

14.
The response of the tidal system in the southern North Sea to morphodynamic changes was investigated in a modelling study using fine resolution bathymetric observations available for 1982–2011. The Semi-implicit Cross-scale Hydroscience Integrated System Model (SCHISM) was set up for the different sets of bathymetries. One set of bathymetry was compiled from a large number of bathymetric measurements over many years, while the other two reflected bathymetry state in the area of Wadden Sea during 2000 and 2011, respectively. The temporal and spatial evolution of bathymetry was dominated by migration of tidal channels. The M4 tide showed larger sensitivity to bathymetric change in the Wadden Sea than the M2 tide, whereas the structure of the latter remained rather robust. The largest change of the tidal wave due to the differences in bathymetries was located off the North Frisian Wadden Sea. Traces of changes were also found far away from the regions of their origin because the tidal waves in the North Sea propagate the local disturbances basin-wide. This illustrated an efficient physical mechanism of teleconnectivity, i.e. effecting the local responses to the larger-scale or remote change of ocean bottom caused by erosion and deposition. The tidal distortion resulting from the relatively small bathymetric changes was substantial, particularly in the coastal zone. This is a manifestation of the nonlinear tidal transformation in shallow oceans and is crucial for the sediment transport and the morphodynamic feedback, because of the altered tidal asymmetry.  相似文献   

15.
The impact of the gustiness on surface waves under storm conditions is investigated with focus on the appearance of wave groups with extreme high amplitude and wavelength in the North Sea. During many storms characterized by extremely high individual waves measured near the German coast, especially in cold air outbreaks, the moving atmospheric open cells are observed by optical and radar satellites. According to measurements, the footprint of the cell produces a local increase in the wind field at sea surface, moving as a consistent system with a propagation speed near to swell wave-traveling speed. The optical and microwave satellite data are used to connect mesoscale atmospheric turbulences and the extreme waves measured. The parameters of open cells observed are used for numerical spectral wave modeling. The North Sea with horizontal resolution of 2.5?km and with focus on the German Bight was simulated. The wind field “storm in storm,” including moving organized mesoscale eddies with increased wind speed, was generated. To take into account the rapid moving gust structure, the input wind field was updated each 5?min. The test cases idealized with one, two, and four open individual cells and, respectively, with groups of open cells, with and without preexisting sea state, as well the real storm conditions, are simulated. The model results confirm that an individual-moving open cell can cause the local significant wave height increase in order of meters within the cell area and especially in a narrow area of 1–2?km at the footprint center of a cell (the cell's diameter is 40–90?km). In a case of a traveling individual open cell with 15?m·s?1 over a sea surface with a preexisting wind sea of and swell, a local significant wave height increase of 3.5?m is produced. A group of cells for a real storm condition produces a local increase of significant wave height of more than 6?m during a short time window of 10–20?min (cell passing). The sea surface simulation from modeled wave spectra points out the appearance of wave groups including extreme individual waves with a period of about 25?s and a wavelength of more than 350?m under the cell's footprint. This corresponds well with measurement of a rogue wave group with length of about 400?m and a period of near 25?s. This has been registered at FiNO-1 research platform in the North Sea during Britta storm on November 1, 2006 at 04:00 UTC. The results can explain the appearance of rogue waves in the German Bight and can be used for ship safety and coastal protection. Presently, the considered mesoscale gustiness cannot be incorporated in present operational wave forecasting systems, since it needs an update of the wind field at spatial and temporal scales, which is still not available for such applications. However, the scenario simulations for cell structures with appropriate travel speed, observed by optical and radar satellites, can be done and applied for warning messages.  相似文献   

16.
This work deals with analysis of hydrographic observations and results of numerical simulations. The data base includes acoustic Doppler current profilers (ADCP) observations, continuous measurements on data stations and satellite data originating from the medium resolution imaging spectrometer (MERIS) onboard the European Space Agency (ESA) satellite ENVISAT with a spatial resolution of 300 m. Numerical simulations use nested models with horizontal resolutions ranging from 1 km in the German Bight to 200 m in the East Frisian Wadden Sea coupled with a suspended matter transport model. Modern satellite observations have now a comparable horizontal resolution with high-resolution numerical model of the entire area of the East Frisian Wadden Sea allowing to describe and validate new and so far unknown patterns of sediment distribution. The two data sets are consistent and reveal an oscillatory behaviour of sediment pools to the north of the back-barrier basins and clear propagation patterns of tidally driven suspended particulate matter outflow into the North Sea. The good agreement between observations and simulations is convincing evidence that the model simulates the basic dynamics and sediment transport processes, which motivates its further use in hindcasting, as well as in the initial steps towards forecasting circulation and sediment dynamics in the coastal zone.  相似文献   

17.
Tidal inlets interrupt longshore sediment transport, thereby exerting an influence on adjacent beach morphology. To investigate the details and spatial extent of an inlet's influence, we examine beach topographic change along a 1.5 km coastal reach adjacent to Matanzas Inlet, on the Florida Atlantic coast. Analyses of beach morphology reveal a behavioral change between 0.64 and 0.86 km from the inlet channel centerline, interpreted to represent the spatial extent of inlet influence. Beyond this boundary, the beach is narrow, exhibits a statistically significant inverse correlation of shoreline position with offshore wave conditions, and has a uniform alongshore pattern in temporal behavior, as determined from empirical orthogonal function (EOF) analysis. On the inlet side of the boundary, the beach experiences monotonic widening (with proximity to the inlet), lacks spatial consistency in correlation between shoreline position and wave conditions, and exhibits an irregular pattern in spatial EOF modes. We augment the field observations with numerical modeling that provides calculations of wave setup and nearshore current patterns near the inlet, highlighting the effects of the ebb‐tidal delta on the assailing waves. The modeling results are verified by a natural experiment that occurred during May 2009, when a storm‐produced sedimentary mass accreted to the lower beach, then subsequently split into two oppositely directed waves of sediment that migrated away from the initial accretion site in the subsequent months. Our results suggest that the ebb‐tidal delta produces a pattern of wave setup that creates a pressure gradient driving an alongshore flow that opposes the longshore currents derived from breaking of obliquely oriented incident waves. The resulting recirculation pattern on the margin of the ebb‐tidal delta provides a mechanism through which the inlet influences adjacent barrier island beach morphology. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The spatial and temporal distributions of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) was studied in the East-Frisian Wadden Sea (Southern North Sea) during several cruises between 2002 and 2005. The spatial distribution of CDOM in the German Bight shows a strong gradient towards the coast. Tidal and seasonal variations of dissolved organic matter (DOM) identify freshwater discharge via flood-gates at the coastline and pore water efflux from tidal flat sediments as the most important CDOM sources within the backbarrier area of the Island of Spiekeroog. However, the amount and pattern of CDOM and DOC is strongly affected by various parameters, e.g. changes in the amount of terrestrial run-off, precipitation, evaporation, biological activity and photooxidation. A decoupling of CDOM and DOC, especially during periods of pronounced biological activity (algae blooms and microbial activity), is observed in spring and especially in summer. Mixing of the endmembers freshwater, pore water, and open sea water results in the formation of a coastal transition zone. Whilst an almost conservative behaviour during mixing is observed in winter, summer data point towards non-conservative mixing.  相似文献   

19.
Wind-driven wave heights in the German Bight   总被引:1,自引:0,他引:1  
Wind speed, friction velocity and significant wave height data from the FINO1 platform in the southern German Bight 45 km off the coast for the years 2004 to 2006 have been evaluated and related to each other. The data show a clear dependence of the hourly mean wave height to the hourly mean friction velocity and wind speed. Wave heights increase with decreasing stratification and increasing fetch. Synoptic weather patterns for the highest wave heights in the southern German Bight are determined. The analysis is made separately for four wind direction sectors. The two strongest storms in the evaluated period, “Britta” and “Erwin”, are analysed in more detail. Finally, the 50-year extreme significant wave height has been estimated to be about 11 m most probably coming from northerly directions.  相似文献   

20.
An idealized numerical study of the influence of a tidal flow around an island has been undertaken with ROMS. The study focusses on coastal island wakes which are mainly controlled by elliptical tidal current flows on shallow shelves. This model is typical of some isolated continental shelf islands. The model is forced by a semi-diurnal barotropic inertia gravity wave imposed on the four open boundaries of a rectangular domain and its propagation results in an elliptical tidal flow within the domain in which the circular island lies. The influence of the surrounding island bathymetry and of the ellipse shape has been studied both in two and three dimensions. In the island vicinity, the residual circulation patterns over a tidal period show alongshore flow divergence along the major axis and convergence along the minor axis. A thin tidal ellipse (i.e. with a large ratio between major and minor axes) leads to strong eddy activity periods in the lee of the island during the flood and ebb phases, with eddy dissipation phases in between. By contrast, an almost round ellipse (axis ratio nearly 1) leads to vorticity filaments which continuously progress around the island without eddy shedding. The presence of a topographic slope in the vicinity of the island strengthens the eddy activity. This study suggests that the tidal current rotation favors the development of the eddy rotating in the same direction and weakens the development of the second eddy. In three dimensions with a surrounding bathymetry, an intense upwelling occurs in a large area in the lee of the island and the vertical velocities are stronger with thinner ellipses. With a flat bottom the vertical motions are almost fully generated by convergence and divergence of the secondary flow. With a varying bottom topography, the vertical motions come from a combination of this mechanism with convergence and divergence of the depth averaged flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号