首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different approaches are used in estimating the global production of NOx by lightning flashes, including field measurements carried out during thunderstorm conditions, theoretical studies combining the physics and chemistry of the electrical discharges, and measurements of NOx yield in laboratory sparks with subsequent extrapolation to lightning. In the latter procedure, laboratory data are extrapolated to lightning using the energy as the scaling quantity. Further, in these studies only the return strokes are considered assuming that contributions from other processes such as leaders, continuing currents, M components, and K processes are negligible. In this paper, we argue that the use of energy as the scaling quantity and omission of all lightning processes other than return strokes are not justified. First, a theory which can be used to evaluate the NOx production by electrical discharges, if the current flowing in the discharge is known, is presented. The results obtained from theory are compared with the available experimental data and a reasonable agreement is found. Numerical experiments suggest that the NOx production efficiency of electrical discharges depends not only on the energy dissipated in the discharge, but also on the shape of current waveform. Thus, the current signature, can influence extrapolation of laboratory data to lightning flashes. Second, an estimation of the NOx yield per lightning flash is made by treating the lightning flash as a composite event consisting of several discharge processes. We show that the NOx production takes place mainly in slow discharge processes such as leaders, M components, and continuing currents, with return strokes contributing only a small fraction of the total NOx. The results also show that cloud flashes are as efficient as ground flashes in NOx generation. In estimating the global NOx production by lightning flashes the most influencing parameter is the length of the lightning discharge channel inside the cloud. For the total length of channels inside the cloud of a typical ground flash of about 45 km, we estimate that the global annual production of NOx is about 4 Tg(N).  相似文献   

2.
对观测资料的分析表明,甘肃地区和海南岛的地闪特征具有很大差异。海南岛负地闪(P型)首次回击前的电场变化波形与国外的报道类似,而甘肃地区仅有30%左右的负地闪属P型,约70%的负地闪首次回击前的电场变化波形具有明显的云闪特征(C型负地闪)。海南岛没有发现正地闪,甘肃地区有正地闪。该两地区存在两类电结构不同的雷暴,两类雷暴中地闪放电过程及特征的很大差异,说明我国的防雷规范及措施很可能需要考虑雷暴的地区差异性。  相似文献   

3.
The characteristics (annual and diurnal cycle, polarity, multiplicity and first stroke peak current) of ∼4.3×106 cloud-to-ground flashes recorded in the Iberian Peninsula during the first decade of measurements of the lightning detection network installed in Spain are analyzed. The mean monthly variation shows maximum lightning activity between May and September, while minimum values are observed in January and February. The mean diurnal cycle shows maximum values at 1700 LT and minimum values at around 1000 LT. The average maximum flash density (not corrected for detection efficiency) is 2.1 flashes km−2 year−1. Maximum lightning activity is associated with mountainous areas. The effect of the Mediterranean Sea is also seen. The percentage of positive flashes is 9%, although this changes over the year from 6.5% in June to 22.6% in January. The average multiplicity is found to be 2.0 for the negative flashes and 1.1 for the positive flashes, and the percentages of single-stroke flashes are 53.6% and 89%, respectively. The monthly distribution of multiplicity for negative flashes peaks in the summer and minimum values are found in the winter. The multiplicity of the positive flashes does not seem to be function of the month. The median (mean) first stroke peak currents are found to be 23.5 kA (27.3 kA) for the negative flashes and 35.3 kA (47.1 kA) for the positive flashes. For both polarities, the peak current is higher in the summer than in the winter. The percentage of positive flashes and the mean peak currents for negative flashes are higher over the sea areas than over land.  相似文献   

4.
Since the summer of 1996, scientists from China and Japan have conducted a joint observation of natural cloud-to-ground lightning discharges in the Zhongchuan area that is located close to Qinghai-Xizang (Tibet) Plateau, China. It has been found that the long-duration of intracloud discharge processes, just before the first return stroke, lasted more than 120 ms for 85% of cloud-to-ground flashes in this area, with a mean duration of 189.7 ms and a maximum of 300 ms. We present the results of charge sources neutralized by four ground flashes and two intracloud discharge processes, just before the first return stroke, by using the data from a 5-site slow antenna network synchronized by GPS with 1 s time resolution. The result shows that the altitudes of the neutralized negative charge for three negative ground flashes were between 2.7 to 5.4 km above the ground, while that of neutralized positive charges for one positive ground flash and one continuing current process were at about 2.0 km above the ground. The comparison with radar echo showed that the negative discharges initiated in the region greater than 20 dBZ or near the edge of the region with intense echoes greater than 40 dBZ, while positive discharge initiated in the weak echo region.  相似文献   

5.
We demonstrate that narrowband measurements can be used for rudimentary ranging of cloud-to-ground lightning flashes. The system at present responds to both intra-cloud and cloud-to-ground lightning; ranging is demonstrated for a subset of flashes known to be cloud-to-ground lightning. The system uses a ferrite-core antenna with a length of about 4 cm and diameter 4 mm, and operates on a narrow band at about 1 MHz, close to the HF band (3–30 MHz). It downmixes the signal to audio frequencies and operates in a manner which is very similar to an AM radio. The system triggers on all impulses which exceed a given adjustable threshold above the ambient noise level, and records 1 s of data. Such a system was used to collect lightning-caused electromagnetic disturbances during summer 2006 in Finland. The output is compared to two scientifically verified references: a flat-plate broadband antenna measuring the vertical electric field and a commercial lightning location network giving flash location. A key aim of the system is to reduce the information to as few parameters as possible. Peak intensity and full-flash energy were used as simple parameters. It is shown that accurate flash-by-flash ranging is not possible with this method; however, it is shown that the method can be used to track clusters of ground flashes within a range of about 50–100 km with an accuracy of about 10 km.  相似文献   

6.
The lightning-induced-damages in the mid-latitude regions are usually caused during severe thunder-storms. But the discharge parameters of natural lightning are difficult to be measured. Five lightning flashes have been artificially triggered with the rocket-wire technique during the passage of two severe thunderstorms. The discharge current and close electric field of return stroke in artificially triggered lightning have been obtained in microsecond time resolution by using current measuring systems and electric field change sensors. The results show that the five triggered lightning flashes include 1 to 10 return strokes, and the average return stroke current is 11.9 kA with a maximum of 21.0 kA and a mini-mum of 6.6 kA, similar to the subsequent return strokes in natural lightning. The half peak width of the current waveform is 39 μs, which is much larger than the usual result. The peak current of stroke Ip (kA) and the neutralized charge Q(C) has a relationship of Ip = 18.5Q0.65. The radiation field of return stroke is 5.9 kV·m-1 and 0.39 kV·m-1 at 60 m and 550 m, respectively. The radiation field decreases as r -1.119 with increase of horizontal distance r from the discharge channel. Based on the well-accepted transmission line model, the speed of return stroke is estimated to be about 1.4×108 m·s-1, with a variation range of (1.1―1.6)×108 m·s-1. Because of the similarities of the triggered lightning and natural lightning, the results in this article can be used in the protection design of natural lightning.  相似文献   

7.
Using the optical images of a cloud-to-ground lightning flash with multiple grounding points obtained by a highspeed video system in the Qinghai Province of China along with synchronous radiated electric field information, the propagation characteristic and the electric field change features of the leaders and the grounding behavior of discharge channels are analyzed.In addition, the two-dimensional velocity of the leader was estimated and its correlation with the time interval of the corresponding subsequent return stroke, and that with the peak current of return stroke are investigated. The results show that the average distance between the three obvious grounded points of the first return stroke channel is about 512.7 m, and the average time interval between the pulses of the corresponding electric field fast changes is 3.8 μs. Further, the average time interval between electric field pulses from the stepped leader is smaller than that of normal single grounding lightning. The observed lightning in our study has two main channels, namely the left and right channels. Based on our observations, it is clear that the dart leader comes close to the ground in case of the left channel after the first return stroke, but it fails to form a return stroke.However, the right channel exhibits a relatively rare phenomenon in that the subsequent return stroke R2 occurred about 2.1 ms after the dart leader arrived at the ground, which was unusually long; this phenomenon might be attributed to the strong discharge of the first return stroke and insufficient charge accumulation near the grounded point in a timely manner. The two-dimensional velocities for the stepped leader of the two main channels are about 1.23×105 and 1.16×105 m s-1, respectively. A sub-branch of stepped leader for the left channel fails to reach the ground and develops into an attempt leader eventually; this might be attributed to the fact that the main branch connects considerably many sub-branches, which leads to the instantaneous decline of the potential difference between the sub-branch and ground. Furthermore, it might also be because the propagation direction of this sub-branch is almost perpendicular to the atmospheric electric field direction, which is not conducive to charge transfer. The two-dimensional velocities for the dart leaders of five subsequent return strokes are all in the normal range, and they positively correlate with the peak current of the subsequent return stroke.  相似文献   

8.
Radio frequency observations of cloud-to-ground lightning (CG) were made in 1999 in Guangdong Province with the broadband lightning interferometer. In this paper, radiation source locations and electric field waveforms are analyzed for different types of breakdown events, including the preliminary breakdown of in-cloud activities, the stepped leaders of initial strokes to ground and activities during and following return strokes. It is shown that the structure and development of lightning discharges and associated breakdown processes can be reconstructed by using this new type of lightning radiation source location system. The detectable radiation of lightning was primarily produced by the negative breakdown process. The channel was concentrated with few branches during the preliminary breakdown stage of CG lightning flashes. The radiation sources appeared generally at the tip of the channel. During the late period of the stepped leader, the radiation sources were dispersed with branches extended away from the main channel. The radiation sources were in a certain length segment of the channel and the altitude of the segment descended along with the propagation of the leader to the ground. During the preliminary breakdown and the stepped leader of initial strokes to the ground, a sequence of fast negative streamers were observed to start continually from or farther away the lightning-initiated region and propagate along the developed leader channel, which may supply negative charge that assisted the leader’s development. The progression speed of fast negative streamers was about ten times faster than the average speed of lightning channel.  相似文献   

9.
A narrowband radio interferometer has been developed and used to locate the entire sources of VHF radiations from a negative cloud-to-ground (CG) lightning discharge which contains 19 strokes. This system uses five antennas to form an array consisting of short- and long-baselines along two or- thogonal directions. The system error which comes from frequency conversion is reduced by phase detection through direct high frequency amplifying. An interactive graphic analysis procedure is used to remove the fringe ambiguities which exist inherently in interferometry and to determine the direction of lightning radiation sources in two dimensions (azimuth and elevation) as a function of time at a time resolution of microsecond orders. With the developed system, the whole progression process in time and space of a lightning flash can be reconstructed. In this paper, combining the synchronous data of electric filed change and VHF radiation, the whole processes of an example negative CG flash have been studied in detail. It is found that the preliminary breakdown event of the CG flash started from negative charge region and exhibited firstly a downward pregression and then an upward propagation. There were very intense and continuous radiations during stepped leaders which became much stronger when the first return stroke began. In contrast, there were less and only discrete radiations during dart leaders. Stepped leader and dart leader may transform to each other depending on the state of the ionization of the path. The progression speed of initial stepped leaders was about 105 ms?1, while that was about 4.1×106 and 6.0×106 ms?1 for dart leaders and dart-stepped leaders, respectively. M events produced hook-shaped field changes accompanied by active burst of radiations at their begin- nings. Followed these active radiation processes, M events appeared to contact finally into conducting main discharge channels. The mean progression speed of M events was about 7×107 ms?1, greater than that of the dart leaders and dart-step leaders. K events and attempted leaders were essentially the same as dart leaders except that they could not reach the ground and initiate return strokes.  相似文献   

10.
Based on the Weather Research Forecasting (WRF) model that features charging and discharging parameterization, relationships between tornado, hail and lightning were investigated for a tornado-producing (EF4 intensity) supercell thunderstorm over Yancheng City in Jiangsu Province, China, on 23 June 2016. Based on a sounding at 0800, there was a low lifting condensation level, substantial convective available potential energy (CAPE), and strong vertical wind shear near Yancheng City, which promote supercell development. At 1400, observations revealed that hail production and a dramatic increase of positive cloud-to-ground flash rates occurred simultaneously, maximizing five minutes later. The tornado occurred 30 min after the hail production. The time of minimum positive cloud-to-ground flash rates was 15 min later. The simulation indicated that the tornadic supercell moved eastward and that positive cloud-to-ground flash rates increased dramatically at 1400, the same as observed, but their maximum was 5 min later than observed. The simulated updraft volume peaked at 1425 and the simulated downdraft volume maximized 5 min later, when the mesocyclone formed. Simulated reflectivities showed no hook echo and horizontal winds for different height at mid-low levels had a different cyclonic shear at 1430, favorable to mesocyclone formation. Based on the simulated results, the region of positively charged graupel ascended resulting from the region of high liquid water content was lifted by the strong updraft, forming a mid-level strong positive charge region. A lower negative charge region formed by the inductive charging mechanism of collisions between graupel and droplets at the bottom of the cloud, conducive to positive cloud-to-ground flashes.  相似文献   

11.
The negative CG lightning discharges neutralizing negative charges in cloud usually dominate for most of thunderstorms. However, a lot of positive CG light-ning discharges often occur in the disappearing stage of thunderstorms, in the stratiform region of mesoscale convective systems and some supercells producing hail and tornado. Because the positive CG lightning discharges produce larger current of the return stroke and neutralize more charges due to the continuing currents with longer las…  相似文献   

12.
Lightning discharges monitored by the SAFIR network system in Poland have been additionally identified over the 100×100 km area near Warsaw by single-point independent recordings of electric field and Maxwell current rapid changes. The data collected in summer thunderstorm days of 2002 showed some untypical properties of the lightning discharges which are rarely observed. Especially remarkable was a number of ground multi-stroke flashes with the return strokes (RS) which transported to the earth charges of opposite signs. Bipolar flashes (BF) of this kind were mostly involved in the events in which the nearby intracloud (ic) and cloud-to-ground (c-g) discharges were very closely associated in time. Events of such a close collocation of two different types of lightning discharges, previously called the complex lightning discharge events (CLDE), were quite often observed during summer thunderstorms in Poland. The events of this kind, i.e. 8 flashes, identified by the SAFIR detection system as BF’s present the multiple stroke flashes of the mean horizontal separation distance between striking points of particular RS equal to (2.8 ± 2.1) km and of the mean time interval between strokes of (46.8 ± 74.4) ms. The time separation between the observed BF and the adjacent ic flashes was from 0.1 to 335 ms, and horizontal separation distance between them ranged from 1.8 to 14.5 km. The multiplicity of the recorded BF’s ranged from 2 to 4 strokes. Four of these BF’s followed the ic discharge, but the other three preceded the ic and one was alone with no close ic.  相似文献   

13.
Lightning activity and precipitation structure of hailstorms   总被引:1,自引:0,他引:1  
By using the cloud-to-ground (CG) lightning location data from the lightning detection network of He- nan Province, surface Doppler radar data and standard orbit data of PR, TMI and LIS on TRMM satellite, the spatial and temporal characteristics of CG lightning flashes in 10 severe hailstorms are analyzed. The results show that the percentage of CG lightning in these hailstorms is high with an average value of 45.5%. There is a distinct increase in CG flash rate during the rapid development stage of hailstorms. The hailstone falling corresponds to an active positive flash period, and the increase of CG flash rate is generally accompanied with a decrease of –CG flash rate. The flash rate declines rapidly during the dissipating stage of hailstorms. The precipitation structure and lightning activity in two typical hail- storms are studied in detail. It is found that strong convective cells with reflectivity greater than 30dBZ mainly are situated in the front region of hailstorms, whereas the trailing stratiform region is in the rear part of the hailstorms. The maximum heights of echo top are higher than 14 km. Convective rain con- tributes much more rainfall to the total than stratiform rain, and the convective rain takes about 85% and 97% of the total in the two cases, respectively. Total lightning in the hailstorms is very active with the flash rate up to 183 fl/min and 55 fl/min, respectively. The results also indicate that most lightning flashes occurred in the echo region greater than 30 dBZ and its immediate periphery. The probability of lightning occurrence is 20 times higher in the convective region than in the stratiform region. The result suggests that the lightning information is helpful to the identification of convective rain region. The linear relationship between flash rate and ice water content is disclosed primarily.  相似文献   

14.
ELF magnetic field measurements from 10 to 135 Hz at Arrival Heights, Antarctica, are used as a proxy measure of global cloud-to-ground lightning activity. Simultaneous hourly recordings of the atmospheric electric field on the surface of the Earth at South Pole during December 1992 make possible a detailed comparison between global cloud-to-ground lightning activity and the atmospheric electric field. Although the mean diurnal variation of the ELF magnetic field and the atmospheric electric field exhibit a remarkable similarity in shape and phase, the hourly departures from their mean diurnal variations are poorly correlated. We quantify the variability of the atmospheric electric field which can be explained by global cloud-to-ground lightning activity through linear regression analysis. To estimate an accuracy of this method, it is applied to simultaneous measurements of the ELF magnetic field at Søndrestrømfjord, Greenland, for comparison. The resulting hourly contribution of global cloud-to-ground lightning activity to the atmospheric electric field in the Antarctic during December 1992 is ∼40±10%, and the contribution of global cloud-to-ground lightning activity to hourly departures from the mean diurnal variation of the atmospheric electric field is ∼25±10%.  相似文献   

15.
Lightning flashes are usually preceded by preliminary breakdown processes (PBPs) before a stepped leader is initiated. These breakdown processes are not well understood. An early model, the so-called BIL model, has been called into question in later studies. However, we have found that the BIL model is quite successful in describing initial processes at least in high-latitude Scandinavian lightning. We present results from one summer of measurements in Finland, during which the vertical electric field was measured with a standard broadband plate antenna system. Lightning flash locations were provided by a lightning detection network and magnetic fields were measured with an experimental narrowband detection system. The relationship between the preliminary breakdown and the first return stroke (RS) is studied for 193 flashes at distances of 5–70 km. We can identify a preliminary breakdown in at least 90% of the flashes. The peak electric field of the RS is on average four times as intensive as the highest peak of the PBP. However, in 25% of the cases the PBP peak is more intensive. On the other hand, we show that this method of comparing intensities is physically arbitrary, since the PBP is continuous and the RS is impulsive. The narrowband measurement allows a physically consistent definition for intensities as the root-mean-square (RMS) sum of the most intense parts of signals. The PBP and RS are shown to have almost equal intensities at small distances. At larger distances, the PBP weakens more rapidly. This is suggested to be due to different propagation regimes, with the PBP signal changing from space-wave to ground-wave propagation with increasing distance, while the RS is predominantly ground wave at all distances. The result may have practical applications in narrowband detection of lightning. The BIL model suggests a characteristic signal in the narrowband signal, which could be used to identify the start of a lightning flash. The change in the RS–PBP ratio as a function of distance is statistically significant, but is too weak to significantly improve ranging methods.  相似文献   

16.
The 0.5°×0.5°grid resolution distribution of lightning density in China and its circumjacent regions have been analyzed by using the satellite-borne OTD (Apr 1995-Mar 2000) and LIS (Dec 1997-Mar 2003) databases. It is shown that: (i) Firstly, the variability of the lightning density (LD) is particularly pronounced over the different subareas, 9 times greater over the south than the north side of Himalayas Mountains, 2.5 times greater over the eastern than the western area of China. While the maximum and minimum LD are respectively 31.4fl/km2/a (in Guangzhou region) and less than 0.2fl/km2/a (in the desert of western China). Secondly, the LD of China's continent regularly varies with latitude and distance off coast, which is consistent with annual mean precipitation in varying trend. In conclusion, the Qinghai-Tibet Plateau, the China's three-step staircase topography and the latitude are three important factors affecting macro-scale characteristics of the LD distribution, (ii) The regional differences  相似文献   

17.
Combined with the existing stochastic lightning parameterization scheme, a classic tripole charge structure in thunderstorms is assumed in the paper, and then 2-dimensional fine-resolution lighting discharge simulations are performed to quantitatively investigate the effect of lower positive charge (LPC) on different types of lightning. The results show: (1) The LPC plays a key role in generating negative cloud-to-ground (CG) flashes and inverted intra-cloud (IC) lightning, and with the increase of charge density or distribution range of LPC region, lightning type changes from positive polarity IC lightning to negative CG flashes and then to inverted IC lightning. (2) Relative to distribution range of charge regions, the magnitude of charge density of the LPC region plays a dominant role in lightning type. Only when the maximal charge density value of LPC region is within a certain range, can negative CG flashes occur, and the occurrence probability is relatively fixed. (3) In this range, the charge density and distribution range of LPC region jointly determine the occurrence of negative CG flashes, which has a linear boundary with the trigger condition of IC lightning. (4) The common effect of charge density and distribution range of the LPC region is to change the distribution of positive potential well of bottom part of thunderstorms, and inverted IC lightning occurs when the initial reference potential is close to 0 MV, and negative CG flashes occur when the initial reference potential is far less than 0 MV.  相似文献   

18.
19.
The Physics of Lightning   总被引:1,自引:0,他引:1  
An overview of the physics of cloud-to-ground lightning is given, including its initiation, propagation, and attachment to ground. Discharges artificially initiated (triggered) from natural thunderclouds using the rocket-and-wire technique are discussed with a view toward studying properties of natural lightning. Both conventional and runaway breakdown mechanisms of lightning initiation in thunderclouds are reviewed, as is the role of the lower positive charge region in facilitating different types of lightning. New observations of negative-leader stepping and its attachment to ground are compared to similar processes in long laboratory sparks. The mechanism and parameters of compact intracloud lightning discharges that are thought to be the most intense natural producers of HF-VHF (3–300 MHz) radiation on Earth are reviewed. The M-component mode of charge transfer to ground and its difference from the leader/return-stroke mode are discussed. Lightning interaction with the ionosphere and the production of energetic radiation (X-rays and gamma radiation) by cloud-to-ground leaders are considered.  相似文献   

20.
气溶胶对雷暴云电过程影响的数值模拟研究   总被引:3,自引:0,他引:3       下载免费PDF全文
本文在已有的三维雷暴云起、放电模式中加入了一种经典的气溶胶活化参数化方案,结合一次长春雷暴个例,进行了雷暴云起放电数值模拟试验.研究显示气溶胶浓度改变对雷暴云微物理、起电及放电过程都有重要影响.结果表明:(1)污染型雷暴云中气溶胶浓度增加时,云滴数目增多,上升风速加强;云中冰晶与霰粒子数浓度增加但尺度减小;(2)相对于清洁型雷暴云,污染型雷暴云非感应起电过程弱,感应起电过程强,起电持续时间长;(3)污染型雷暴云中首次放电时间延迟,闪电持续发生的时间长,总闪电频次增加,正地闪频次增加明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号