首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The north Qilian high‐pressure (HP)/low‐temperature (LT) metamorphic belt is composed mainly of blueschists, eclogites and greenschist facies rocks. It formed within an Early Palaeozoic accretionary wedge associated with the subduction of the oceanic crust and is considered to be one of the best preserved HP/LT metamorphic belts in China. Here we report new lawsonite‐bearing eclogites and eclogitic rocks enclosed within epidote blueschists in the North Qilian Mountains. Five samples contain unaltered lawsonite coexisting with omphacite and phengite as inclusions in garnet, indicating eclogite facies garnet growth and lawsonite pseudomorphs were observed in garnet from an additional 11 eclogites and eclogitic rocks. Peak pressure conditions estimated from lawsonite omphacite‐phengite‐garnet assemblages were 2.1–2.4 GPa at temperatures of 420–510 °C, in or near the stability field of lawsonite eclogite, and implying formation under an apparent geothermal gradient of 6–8 °C km?1, consistent with metamorphism in a cold subduction zone. SHRIMP U‐Pb dating of zircon from two lawsonite‐bearing eclogitic metabasites yields ages of 489 ± 7 Ma and 477 ± 16 Ma, respectively. CL images and mineral inclusions in zircon grains indicate that these ages reflect an eclogite facies metamorphism. An age of 502 ± 16 Ma is recorded in igneous cores of zircon grains from one lawsonite pseudomorph‐bearing eclogite, which is in agreement with the formation age of Early Ordovician for some ophiolite sequences in the North Qilian Mountains, and may be associated with a period of oceanic crust formation. The petrological and chronological data demonstrate the existence of a cold Early Palaeozoic subduction zone in the North Qilian Mountains.  相似文献   

2.
We trace source variations of active margin granitoids which crystallised intermittently over ~300 Ma in varying kinematic regimes, by combining zircon Lu-Hf isotopic data from Early Palaeozoic to Early Jurassic igneous and metaigneous rocks in the Mérida Andes, Venezuela and the Santander Massif, Colombia, with new whole rock Rb/Sr and Sm-Nd isotopic data, and quartz O isotopic data. These new data are unique in South America because they were obtained from discrete magmatic and metamorphic zircon populations, providing a high temporal resolution dataset, and compare several isotopic systems on the same samples. Collectively, these data provide valuable insight into the evolution of the isotopic structure of the continental crust in long-lived active margins.Phanerozoic active margin-related granitoids in the Mérida Andes and the Santander Massif yield zircon Lu-Hf model ages ranging between 0.77 Ga and 1.57 Ga which clearly define temporal trends that can be correlated with changes in tectonic regimes. The oldest Lu-Hf model ages of >1.3 Ga are restricted to granitoids which formed during Barrovian metamorphism and crustal thickening between ~499 Ma and ~473 Ma. These granitoids yield high initial 87Sr/86Sr ratios, suggesting that evolved, Rb-rich middle to upper crust was the major source of melt. Granitoids and rhyolites which crystallised during subsequent extension between ~472 Ma and ~452 Ma yield younger Lu-Hf model ages of 0.80 Ga–1.3 Ga and low initial 87Sr/86Sr ratios, suggesting that they were derived from much more juvenile, Rb-poor sources such as mafic lower crust and mantle-derived melts. The rapid change in magmatic sources at ~472 Ma can be attributed either to reduced crustal assimilation during extension, or a short pulse of crustal growth by addition of juvenile material to the continental crust. Between ~472 Ma and ~196 Ma Lu-Hf model ages remain mostly constant between ~1.0 and ~1.2 Ga. The large scatter and the absence of definite trends in initial 87Sr/86Sr ratios suggest that both mafic, Rb-poor, and evolved Rb-rich sources were important precursors of active margin magmas in Colombia and Venezuela throughout the Palaeozoic to the Early Jurassic.Previous studies have shown that the genesis of arc magmas may be stimulated by heat advection to the crust during the underplating of mantle derived melt, but the absence of permanent younging trends in Lu-Hf model ages from ~472 Ma to ~196 Ma suggests that very little new crust was generated during this period in the studied region. An overwhelming majority of the analysed igneous rocks yield zircon Lu-Hf model ages of >1 Ga which may be accounted for by documented local crustal end members of 1 Ga–1.6 Ga, and do not require contributions from the depleted mantle. Therefore, recycling of ~1 Ga and older crust was a dominant process in the north-western corner of Gondwana between ~472 Ma and ~196 Ma.This study shows that whole rock Sm-Nd and zircon Lu-Hf data can be interpreted similarly regarding the age of the source regions, whereas Rb-Sr and O isotope data from the same rocks yield valuable information regarding the geochemical nature of the source.  相似文献   

3.
The formation stages of high-grade metamorphic complexes and the related granitoids of the Dzabkhan terrane basement are considered. The age data (U–Pb method, TIMS) of zircons from the trondhjemite block of the eastern part of the Dzabkhan terrane, which is directly overlain by the dolomite sequence of the Tsagaan Oloom Formation, are given. Trondhjemites yield the U–Pb zircon age of 862 ± 3 Ma. In their structural position, they are assigned to typical postmetamorphic formations that determine the formation and cratonization of rocks of the host block. The geochronological study of trondhjemites gives grounds to distinguish fragments of the continental crust in the Dzabkhan terrane basement, the formation of which occurred at different periods of time: ~860 and ~790 Ma. Geological–geochronological and Sm?Nd isotope–geochemical studies indicate that the Dzabkhan terrane basement is not a single block of the Early Precambrian continental crust, but a composite terrane, comprising Neoproterozoic ensialic and island-arc structural and compositional complexes. Correlation of Sr isotopic characteristics with the 87Sr/86Sr variation curve in the Neoproterozoic and Cambrian seawater shows that carbonate deposits accumulated at the eastern margin of the Dzabkhan terrane near the end of the Neoproterozoic, 700–550 Ma, and in the central part of the terrane in the Early Cambrian, 540–530 Ma.  相似文献   

4.
Some granites, granitoid dykes and volcanic rocks of the Southern Black Forest were dated by U–Pb techniques using zircon and monazite. An effusive rhyolite, which is interbedded in upper Visean sedimentary sequences of the Badenweiler-Lenzkirch zone, was dated at 340 ±2?Ma. This weakly metamorphic zone of supracrustal rocks borders high-grade gneiss terrains in the north and the south, which are intruded by a series of granitoid intrusions: the strongly sheared Schlächtenhaus granite is dated by monazite at 334±2?Ma and the hypothesis of a Devonian emplacement is therefore discarded. The emplacement of all other granites, crosscutting dykes and of an ignimbrite were all within analytical uncertainty: St. Blasien granite 333±2?Ma; Bärhalde granite 332±3?Ma; Albtal granite 334±3?Ma; and a porphyry dyke at Präg 332+2/-4?Ma. Deformation and thrusting of the basement units near the Badenweiler-Lenzkirch zone occurred after the emplacement of the Schlächtenhaus granite, but before the intrusion of the other granitoids, and may therefore be constrained to the time period unresolved between 334±2 and 333±2?Ma. The ignimbritic rhyolite of Scharfenstein was deposited in a caldera 333±3?Ma ago. This age coincides within error limits with published U–Pb monazite and Rb–Sr small slab ages of mimatitic gneisses, Ar–Ar hornblende ages of metabasites and Sm–Nd mineral isochron ages of eclogitic rocks in the underlying basement. This suggests that exhumation and cooling of this basement unit must have been active at rates of approximately 20?km and a few 100°C per million years. The silicic melts are interpreted to be of hybrid crust/mantle origin and their formation was most likely linked to these exhumation tectonics. A phase of mantle upwelling and heat advection into the crust is proposed to be the reason for this short-episodic magmatic pulse.  相似文献   

5.
New U–Pb zircon ages and Sr–Nd isotopic data for Triassic igneous and metamorphic rocks from northern New Guinea help constrain models of the evolution of Australia's northern and eastern margin. These data provide further evidence for an Early to Late Triassic volcanic arc in northern New Guinea, interpreted to have been part of a continuous magmatic belt along the Gondwana margin, through South America, Antarctica, New Zealand, the New England Fold Belt, New Guinea and into southeast Asia. The Early to Late Triassic volcanic arc in northern New Guinea intrudes high‐grade metamorphic rocks probably resulting from Late Permian to Early Triassic (ca 260–240 Ma) orogenesis, as recorded in the New England Fold Belt. Late Triassic magmatism in New Guinea (ca 220 Ma) is related to coeval extension and rifting as a precursor to Jurassic breakup of the Gondwana margin. In general, mantle‐like Sr–Nd isotopic compositions of mafic Palaeozoic to Tertiary granitoids appear to rule out the presence of a North Australian‐type Proterozoic basement under the New Guinea Mobile Belt. Parts of northern New Guinea may have a continental or transitional basement whereas adjacent areas are underlain by oceanic crust. It is proposed that the post‐breakup margin comprised promontories of extended Proterozoic‐Palaeozoic continental crust separated by embayments of oceanic crust, analogous to Australia's North West Shelf. Inferred movement to the south of an accretionary prism through the Triassic is consistent with subduction to the south‐southwest beneath northeast Australia generating arc‐related magmatism in New Guinea and the New England Fold Belt.  相似文献   

6.
黄长煌 《地质通报》2017,36(10):1722-1739
台湾玉里带位于台湾东部,其主体为变质砂岩、千枚状泥岩夹绿帘片岩、阳起片岩、浅变质枕状玄武岩等(原岩为海相火山-陆源沉积岩),其次为高压相的蓝闪片岩。火山岩属钙碱性系列,具低Ba、Nb、Sr和高Pb丰度,稀土元素总量普遍较低,具有轻稀土元素弱富集、Eu无亏损的稀土元素配分模式;(含火山碎屑)变质砂岩的LA-ICP-MS锆石U-Pb年龄表明,~(206)Pb/~(238)U表面年龄有6个峰值:最新年龄23.3Ma(古近纪)为火山碎屑锆石年龄,也是成岩年龄;中生代—古生代年龄有96.7Ma(晚白垩世)、124.2Ma及130.6Ma(早白垩世)、214.1~228Ma(晚三叠世)、283.7Ma和289Ma(早二叠世)等,锆石为次棱角状或次圆状,代表了源岩的岩浆年龄;~(207)Pb/~(206)Pb表面年龄出现古元古代峰值(1769~1852Ma)和新太古代峰值(2506Ma和2530Ma),均为磨圆的碎屑变质或岩浆锆石,代表了不明古元古代变质基底的年龄。玉里带变质岩原岩可能形成于古近纪(23.3Ma),与南海扩张的白云运动同时,属白云运动有关的火山作用的产物。  相似文献   

7.
Rb–Sr multimineral isochron data for metamorphic veins allow to date separate increments of the mineral reaction history of polymetamorphic terranes. Granulite facies rocks of the Lindås nappe, Bergen Arcs, Norway, were subducted and exhumed during the Caledonian orogeny. The rocks show petrographic evidence for two distinct events of local fluid infiltration and vein formation, along fractures and shear zones. The first occurred at eclogite facies (15–21 kbar, 650–750°C) and a later one at amphibolite facies conditions (8–10 kbar, 600°C). The presence of fluids enabled local metamorphic equilibration only near fluid pathways. In fluid-absent domains, preexisting assemblages were metastably preserved. This resulted in a heterogeneity of metamorphic signatures on meter to μm-scales. Well-preserved granulite facies rocks preserve their Proterozoic Rb–Sr mineral ages, as does the U–Pb system of zircon in most lithologies. Six Rb/Sr multimineral isochron ages for eclogite facies veins and their immediate wallrocks date the fluid-induced eclogitization at 429.9 ± 3.5 Ma (2σ, weighted average, MSWD = 0.39). An eclogite facies vein has yielded metamorphic zircon with concordant U–Pb ages of 429 ± 3 Ma, identical to the U–Pb age of 427.4 ± 0.9 Ma for zircon xenocrysts in an amphibolite facies vein. Seven Rb/Sr mineral isochron ages date amphibolite-facies fluid infiltration at 414.2 ± 2.8 Ma (MSWD = 1.5), an age value testifying to residence of the rocks in the deep orogenic crust at temperatures >600°C for nearly 15 Ma. The new data show that Rb–Sr mineral isochron ages effectively date fluid-induced (re)crystallization events rather than stages of cooling. The direct link between isotopic ages and distinct petrographic equilibrium assemblages aids to constrain the evolution of rocks in the P–T-reaction-time space, which is essential for understanding exhumation histories and the internal dynamics of orogens in general.  相似文献   

8.
The metamorphic belt in the Dongjiu area is located in the eastern segment of the Lhasa terrane in South Tibet. The Dongjiu metamorphic rocks are primarily composed of schist and gneiss, with minor amounts of marble, and the protoliths are sedimentary rocks with Precambrian and early Palaeozoic zircons probably deposited during the Palaeozoic or late Neoproterozoic. On the basis of petrology and phase equilibria modelling, this study shows that the Dongjiu metamorphic belt has experienced a kyanite-grade metamorphism, which is characterized by a decompressional vector with slight cooling from a peak of 9.6 kbar and 745°C to medium-pressure amphibolite-facies metamorphic overprinting at 5–6 kbar and 600–630°C. This P–T path was well recorded and recovered by garnet zoning profiles. Laser ablation inductively coupled plasma mass spectrometry in situ U–Pb analyses on metamorphic zircons and zircon rims yielded concordant 206Pb/238U ages of c. 194–192 Ma, suggesting that the Dongjiu metamorphic rocks were formed during the Early Jurassic. Therefore, the Dongjiu metamorphic belt, together with the western Nyainqentanglha, Basongco, and Zhala metamorphic belts, constitutes a nearly continuous tectonic unit with an E–W extension of at least 500 km between the northern and southern Lhasa terranes. The metamorphic ages of these belts, ranging from 230 to 192 Ma, show a younger trend from west to east, indicating that the central segment of the Lhasa terrane experienced an eastward asynchronous collisional orogeny during the Late Triassic to Early Jurassic.  相似文献   

9.
An integrated study of U–Pb ages and trace elements was carried out for titanite and zircon from ultrahigh‐pressure (UHP) metagranites in the Sulu orogen, east‐central China. The results provide constraints on the composition of metamorphic fluids during the exhumation of deeply subducted continental crust. Titanite has two domain types based on REE patterns and trace element variations, Ttn‐I and Ttn‐II respectively. These two domains show indistinguishable U–Pb ages of 232 ± 14 to 220 ± 8 Ma, in general agreement with anatectic zircon U–Pb ages of 223 ± 4 to 219 ± 2 Ma for the partial melting event during early exhumation. The Ttn‐I domains have significantly higher REE, Th, Ta and Sr, and higher Th/U ratios than the Ttn‐II domains, indicating that the two domains have grown from metamorphic fluids with different compositions. For the Ttn‐I domains, Zr‐in‐titanite thermometry yields high temperatures of 773–851 °C at 2.5 GPa, and petrographic observations reveal the presence of melt pseudomorphs. Thus, they are interpreted to have grown from hydrous melts in the early exhumation stage. In contrast, the Ttn‐II domains were texturally equilibrated with amphibolite facies minerals such as biotite and plagioclase and contain inclusions of plagioclase and quartz. The Zr‐in‐titanite thermometry yields lower temperatures of 627–685 °C at 1.0 GPa. In combination with their REE patterns, they are interpreted to have grown from aqueous solutions at amphibolite facies metamorphic conditions during further exhumation. The differences in Th and Sr contents are prominent between the Ttn‐I and Ttn‐II domains, signifying the compositional difference between the hydrous melts and aqueous solutions. Therefore, the polygenetic titanite in the UHP metamorphic rocks provides insights into the geochemical property of metamorphic fluids during the continental subduction‐zone processes.  相似文献   

10.
Basement rocks of the Magellan basin at the Atlantic margin, in extra-Andean Tierra del Fuego (Chile), are predominantly formed of orthogneisses. They have been recovered only by drilling and their ages are mostly unknown. In this study, using the U-Pb method on zircons, age data have been obtained for a granodiorite gneiss from the basement of the Magellan basin near San Sebastian Bay close to the Chile–Argentina border. Data confirm that zircons of the granodiorite gneiss from the Gaviota 6 drill hole grew primarily during magmatic processes. The Concordia intercept age of unabraded zircons, 529±7.5 Ma, denotes the most probable time of intrusion. Abraded zircons revealed initial zircon growth at 549±6 Ma, probably under primary melt conditions and subsequent closed U-Pb system behaviour. The discordance of data points related to zircon re- and/or neo-crystallization attributed to metamict(?) cloudy domains is contemporaneous with Sr and Pb isotope homogenization in apatite and K-feldspar at 161.6±4.5 Ma. The contemporaneousness of total (Sr) or partial (Pb) equilibration of radiogenic isotopes in minerals of the granodiorite gneiss and formation of the nearly 2000 m thick Jurassic volcanic series leads to discussion of a fundamental heating of the lower crust at that time, controlled by the spatially distributed influx of a fluid phase. The Early Cambrian intrusion age of the precursor rock of the dated granodiorite gneiss suggests that basement rocks of Tierra del Fuego were generated contemporaneously with the Pampean orogenic cycle. The age of 529±7.5 Ma supports the idea of considering Tierra del Fuego as the ‘missing link’ between the Early Palaeozoic orogenic cycles of central and northwestern Argentina and the Late Cambrian/Early Ordovician Ross orogeny in central Antarctica.  相似文献   

11.
Pyrite in LT–HP eclogites from the western Tianshan orogenic belt yields a Re‐Os age of 378.1 ± 8.9 Ma, which is 30–70 Ma older than ages previously obtained for the same rocks using the Rb–Sr, Sm–Nd, Ar–Ar, U–Pb, and Lu–Hf isotope systems. The Tianshan LT–HP eclogite experienced temperatures of up to ~570 °C combined with pressures of up to 2.1 GPa during metamorphism. These conditions are below the transition of pyrite to pyrrhotite, which defines both pyrite stability and possibly its closure temperature for Re‐Os. Pyrite can preserve Re‐Os signatures through eclogite facies peak metamorphic conditions, and thus allow determination of the formation age of pyrite in the protolith.  相似文献   

12.
Studies of the Pb, Sr and Nd isotopic composition of Mesozoic intrusive rocks indicate that the basement of the copper-gold metallogenic belt of the middle and lower reaches of the Yangtze River has "two-layer structure" and partly has "multi-layered structure", and is inhomogeneous and shows the distinct feature of E-W provincialism. The calculated model lead ages (t1) are mostly greater than 2600 Ma, and the model neodymium ages (TDM) vary from 953 to 2276 Ma and concentrate in two time intervals: 1800-2000 Ma and 1200-1600 Ma. It is concluded that the basement of the MBYR is composed of the Late Archaeozoic to Middle Proterozoic metamorphic series and that the crust was initiated in the Archaean and continued to grow in the Early and Middle Proterozoic, and the proportion of new crust formed by mantle differentiation during the Late Proterozoic is low.  相似文献   

13.
The southeastern Georgetown Inlier (Greenvale Province) consists of Early Palaeozoic metamorphic rocks in fault contact along the Lynd Mylonite Zone with the Palaeoproterozoic to Mesoproterozoic craton of northeastern Australia. It has a central assemblage of metamorphosed silicic volcanic and sedimentary rocks considered equivalent to the Late Cambrian to Early Ordovician Seventy Mile Range Group that developed in an extensional backarc in the Charters Towers Province to the southeast. In the western part of the Greenvale Province, the Oasis Metamorphics have a U – Pb zircon SHRIMP metamorphic age of 476 ± 5 Ma and are intruded by the granodioritic Lynwater Complex with U – Pb zircon ages of 486 ± 5 Ma and 477 ± 6 Ma. These ages are consistent with these rocks forming basement and intrusive equivalents to the extensional volcanic basin. Existing geochronological constraints on the Halls Reward domain, located at the eastern margin of the province, are consistent with it being basement to the extensional basin. Several domains are recognised in the Greenvale Province with either dominantly steep or low to moderate dips of the main foliation, and each experienced multiple deformation with locally up to four overprinting structural phases. Steepening of foliation in several of the domains is attributed to contractional deformation in the Early Silurian that is inferred to have overprinted low-angle foliation developed during extensional tectonics in the backarc setting. Contractional deformation related to the Early Silurian Benambran Orogeny is considered responsible for multiple deformation in the Greenvale Province and reactivation of domain-bounding faults.  相似文献   

14.
Exposed cross‐sections of the continental crust are a unique geological situation for crustal evolution studies, providing the possibility of deciphering the time relationships between magmatic and metamorphic events at all levels of the crust. In the cross‐section of southern and northern Calabria, U–Pb, Rb–Sr and K–Ar mineral ages of granulite facies metapelitic migmatites, peraluminous granites and amphibolite facies upper crustal gneisses provide constraints on the late‐Hercynian peak metamorphism and granitoid magmatism as well as on the post‐metamorphic cooling. Monazite from upper crustal amphibolite facies paragneisses from southern Calabria yields similar U–Pb ages (295–293±4 Ma) to those of granulite facies metamorphism in the lower crust and of intrusions of calcalkaline and metaluminous granitoids in the middle crust (300±10 Ma). Monazite and xenotime from peraluminous granites in the middle to upper crust of the same crustal section provide slightly older intrusion ages of 303–302±0.6 Ma. Zircon from a mafic to intermediate sill in the lower crust yields a lower concordia intercept age of 290±2 Ma, which may be interpreted as the minimum age for metamorphism or intrusion. U–Pb monazite ages from granulite facies migmatites and peraluminous granites of the lower and middle crust from northern Calabria (Sila) also point to a near‐synchronism of peak metamorphism and intrusion at 304–300±0.4 Ma. At the end of the granulite facies metamorphism, the lower crustal rocks were uplifted into mid‐crustal levels (10–15 km) followed by nearly isobaric slow cooling (c. 3 °C Ma?1) as indicated by muscovite and biotite K–Ar and Rb–Sr data between 210±4 and 123±1 Ma. The thermal history is therefore similar to that of the lower crust of southern Calabria. In combination with previous petrological studies addressing metamorphic textures and P–T conditions of rocks from all crustal levels, the new geochronological results are used to suggest that the thermal evolution and heat distribution in the Calabrian crust were mainly controlled by advective heat input through magmatic intrusions into all crustal levels during the late‐Hercynian orogeny.  相似文献   

15.
High-grade metamorphic Variscan basement is exposed in the Moldanubian zone of the Black Forest (BF), being the internal zone of the European Variscan belt. Zircon grains from K-rich felsic orthogneisses and an anatectic paragneiss in the Moldanubian Black Forest demonstrate a multi-stage crystallization at ~ 600 Ma, ~ 480 Ma, ~ 400 - 380 Ma, and ~350 Ma. The last three stages of crystallization probably represent metamorphic overprint during pre-Variscan and Variscan metamorphism.Using stepwise leaching procedures, garnet minerals from felsic orthogneisses as well as paragneisses in the Moldanubian Black Forest yielded Early Carboniferous Sm-Nd ages (~ 330- 340 Ma), which are consistent with the well-constrained Variscan HT metamorphic event,and Early Palaeozoic ( ~480 Ma) to Devonian ( ~400 - 370 Ma) Pb-Pb ages. The coincidence of growth time for zircon and garnet minerals at Early Palaeozoic is interpreted as dating a metamorphic event. These garnet data demonstrate that the Moldanubian BF basement underwent at least two metamorphic events during the Early Palaeozoic and Early Carboniferous.During the Variscan HT metamorphism, the Sm-Nd system of garnet was disturbed, but not the U-Pb system, implying the peak metamorphic temperature was lower than ~800℃.  相似文献   

16.
The Gangdese magmatic arc, southeastern Tibet, was built by mantle‐derived magma accretion and juvenile crustal growth during the Mesozoic to Early Cenozoic northward subduction of the Neo‐Tethyan oceanic slab beneath the Eurasian continent. The petrological and geochronological data reveal that the lower crust of the southeastern Gangdese arc experienced Oligocene reworking by metamorphism, anatexis and magmatism after the India and Asia collision. The post‐collisional metamorphic and migmatitic rocks formed at 34–26 Ma and 28–26 Ma respectively. Meta‐granitoids have protolith ages of 65–38 Ma. Inherited detrital zircon from metasedimentary rocks has highly variable ages ranging from 2708 to 37 Ma. These rocks underwent post‐collisional amphibolite facies metamorphism and coeval anatexis under P–T conditions of ~710–760 °C and ~12 kbar with geothermal gradients of 18–20 °C km ? 1, indicating a distinct crustal thickening process. Crustal shortening, thickening and possible subduction erosion due to the continental collision and ongoing convergence resulted in high‐P metamorphic and anatectic reworking of the magmatic and sedimentary rocks of the deep Gangdese arc. This study provides a typical example of the reworking of juvenile and ancient continental crust during active collisional orogeny.  相似文献   

17.
Abstract Concordant U–Pb ages of c. 530–510 Ma and c. 470–420 Ma on titanite from calcsilicate, orthogneiss and amphibolite rocks constrain the age of high‐T metamorphism in the Early Palaeozoic mobile belt at the western margin of Proterozoic Gondwana (Argentina, 26–29°S). The U–Pb ages document the time of titanite formation at high‐T conditions according to the stable mineral paragenesis and occurrence of titanite in the metamorphic fabric. The presence of migmatite at all sample sites indicates temperatures were > c. 650 °C. Titanite formed at similar metamorphic conditions at different times on the regional and on the outcrop scale. The titanite crystals preserved their U–Pb isotopic signatures and chemical composition under ongoing upper amphibolite to granulite facies temperatures. Different thermal peaks or deformations are only detected by the different U–Pb ages and not by changes in the mineral paragenesis or metamorphic fabric of the samples. The range of U–Pb ages, e.g. in the Ordovician and Silurian (c. 470, 460, 440, 430, 420 Ma), is interpreted as the effect polyphase deformation with deformation‐enhanced recrystallization of titanite and/or different thermal peaks during a long‐standing, geographically fixed, high‐T regime in the mid‐crust of a continental magmatic arc. A clear correlation of the different ages with distinct tectonic events, e.g. collision of terranes, is not possible based on the present knowledge of the region.  相似文献   

18.
Earlier geological work in the Istanbul zone, western Pontide tectonic belt, has revealed the presence of extensive basement outcrops exposed underneath Palaeozoic and Mesozoic to Tertiary cover sequences. The basement of suspected Neoproterozoic age plays an important role in understanding the crustal accretion process in NW Turkey. We report the first results of a detailed Pb-Pb and U-Pb zircon study complemented by Nd-Sr whole rock and mineral data from basement rocks exposed in the Karadere valley, Safranbolu area. Five samples were selected for this study, comprising three metagranitoids and two metasediments. Zircon geochronology indicates that the metagranitoids were formed during Late Proterozoic pan-African magmatic events between 590 and 560 Ma. The rocks are of tonalitic and granitic composition and have low Nb/Y ratios and Ti contents, consistent with those of arc rocks. A continental arc setting is supported by their Sr and Nd isotope data that indicate a contribution of a mantle source as well as crustal assimilation during magma genesis. The metasediments can clearly be distinguished from the metagranitoids by their higher 87Sr/86Sr ratios and lower )Nd-values at 580 Ma, which supports the suggestion that the arc was underlain by mature continental crust. Zircons from the metasediments yield a range of Pb-Pb ages between 1,860 and 710 Ma. Thirty per cent of them fall between 890 and 710 Ma, possibly suggesting a derivation from Gondwana (Afro-Arabian) regions. A Sm-Nd garnet-whole rock analysis obtained on a metagranite gives an age of 559NJ Ma, which either reflects pre-metamorphic magmatic growth of garnet in a felsic melt or a syntectonic high-temperature metamorphic event. Uplift and cooling of the basement is further constrained by Rb-Sr biotite ages of 548-545 Ma. These lower Cambrian mineral ages demonstrate that the Istanbul zone was not thermally reactivated during the Hercynian, Cimmerian or Alpine orogeny, in contrast to its neighbouring tectonic zones, confirming its role as a suspect terrane in the modern western Pontide tectonic belt.  相似文献   

19.
abstract

An integrated study including petrography, mineral chemistry, metamorphic P–T path modelling, and zircon U–Pb dating was conducted on a granitic gneiss and enclosed eclogite from South Dulan, North Qaidam UHP (ultrahigh-pressure) belt. The result shows that the granitic gneiss underwent a clockwise P–T path with a peak-P stage at 655–745°C, 30–34 kbar, and a subsequent peak-T stage at 815–870°C, 14–18 kbar, which is similar to the P–T estimates reported for coesite-bearing continental-type eclogites in this region. The enclosed eclogite resembles an olivine–pyroxene-rich cumulate in Qaidam block. It has a similar prograde P–T path with the country gneiss and experienced a peak-P stage of 682–748°C at 27–34 kbar. Zircon U–Pb dating yields an eclogite-facies metamorphic age of 447 ± 2 Ma for the granitic gneiss and 445 ± 6 Ma for the enclosed eclogite. These ages agree with metamorphic ages obtained from paragneisses (427–439 Ma), coesite-bearing continental-type eclogites (430–451 Ma), and UHPM (ultrahigh-pressure metamorphic) oceanic crust–mantle sequence (440–445 Ma) from South Dulan, as well as UHP eclogites, garnet peridotite, and gneisses from other units (460–420 Ma) within this belt reported by others. Similar metamorphic ages as well as P–T evolution documented in gneisses and intercalated eclogites imply that both rocks experienced a coeval UHP event. Summarizing all the published geochronology data, we argue that the North Qaidam UHP belt was mainly formed by continental deep subduction at ~460 to ~420 Ma. The UHPM oceanic crust-mantle sequence in South Dulan may represent oceanic lithosphere in the transition zone between oceanic and continental crust, which was dragged upward by the exhumed continental rocks after break-off of the dense oceanic crust.  相似文献   

20.
The Great Xing’an Range in Northeast China is located in the eastern part of the Central Asian Orogenic Belt. From north to south, the Great Xing’an Range is divided into the Erguna, Xing’an, and Songliao blocks. Previous U–Pb zircon geochronology results have revealed that some ‘Precambrian metamorphic rocks’ in the Xing’an block have Phanerozoic protolith ages, questioning whether Precambrian basement exists in the Xing’an block. We present laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) U–Pb dating results for zircons from suspected Precambrian metamorphic rocks in the Xing’an block. Meta-rhyolites of the Xinkailing Group in Nenjiang yield magmatic ages of 355.8 Ma. Detrital zircons from phyllites of the Xinkailing Group in Duobaoshan yield populations of ca. 1505, ca. 810, and ca. 485 Ma, with the youngest peak constraining its depositional age to be <485 Ma. Zircons from amphibolitic gneisses of the Xinkailing Group in Nenjiang have magmatic ages of 308.6 Ma. Mylonitic granites of the Xinkailing Group in Nenjiang have zircon magmatic ages of 164 Ma. Detrital zircons from two-mica quartz schists of the Luomahu Group in the Galashan Forest yield ca. 2419, ca. 1789, ca. 801, ca. 536, ca. 480, and ca. 420 Ma, with the youngest peak indicating its depositional age as <420 Ma. Detrital zircons from mylonitized sericite–chlorite schist of the Ergunhe Formation in Taerqi yield populations of 982–948, ca. 519, and ca. 410 Ma, with the youngest peak demonstrating that its depositional age is <410 Ma. These zircon ages for a range of lithologies show that the Great Xing’an Range metamorphic rocks formed during the Phanerozoic (164–485 Ma) and that this crust is mostly Palaeozoic. Based on these results and published data, we conclude that there is no evidence of Precambrian metamorphic basement in the Xing’an block. In summary, the age data indicate that Precambrian metamorphic basement may not exist in the Xing’an region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号