共查询到20条相似文献,搜索用时 15 毫秒
1.
Subway tunnels and their surrounding geotechnical media are taken as an entirety, namely, tunnel-geomaterial system (TGS), and the stability and durability of the subway tunnels are subjected to the responses of the TGS to the thermal (T), hydraulic (H) and mechanical (M) loadings and their coupled effects. Modeling of the coupled THM processes that occur in the TGS are important for reliably assessing and predicting the performance of subway tunnels. Therefore, a numerical model of coupling the THM processes in the TGS is developed incorporating the equilibrium, motion, constitutive and compatibility equations. The proposed model considers full coupling between the thermal (temperature variation), hydraulic (water seepage), mechanical (subsidence) processes and changes in the material properties, such as stress-strain relation, viscosity, thermal conductivity, and hydraulic conductivity. The developed model is validated through comparisons of field tests, laboratory experiments and numerical simulations. Favorable agreement between the modeling results and the compared data verifies the capability of the developed model to well describe the THM behavior of subway tunnels in the TGS and their evolutions. 相似文献
2.
In this paper, preliminary support design of Kaletepe tunnel, located on Bilecik-Istanbul highway, Turkey, was analyzed by empirical and numerical methods. The rock mass rating (RMR) and rock mass quality (Q) systems were employed for empirical rock mass quality determination. Numerical analysis for the stress–strain distribution of the tunnel excavation and support systems was also carried out. The applied support performance was investigated at different sections of the tunnel route. It was seen that empirical and numerical approaches showed similar results. This indicates that when the empirical method is supported by numerical method, the preliminary support design will be more reliable. 相似文献
3.
Engineering classification of rock masses for the design of tunnel support 总被引:63,自引:10,他引:63
SummaryEngineering Classification of Rock Masses for the Design of Tunnel Support An analysis of some 200 tunnel case records has revealed a useful correlation between the amount and type of permanent support and the rock mass qualityQ, with respect to tunnel stability. The numerical value ofQ ranges from 0.001 (for exceptionally poor quality squeezing-ground) up to 1000 (for exceptionally good quality rock which is practically unjointed). The rock mass qualityQ is a function of six parameters, each of which has a rating of importance, which can be estimated from surface mapping and can be updated during subsequent excavation. The six parameters are as follows; theRQD index, the number of joint sets, the roughness of the weakest joints, the degree of alteration or filling along the weakest joints, and two further parameters which account for the rock load and water inflow. In combination these parameters represent the rock block-size, the interblock shear strength, and the active stress. The proposed classification is illustrated by means of field examples and selected case records.Detailed analysis of the rock mass quality and corresponding support practice has shown that suitable permanent support can be estimated for the whole spectrum of rock qualities. This estimate is based on the rock mass quality Q, the support pressure, and the dimensions and purpose of the excavation. The support pressure appears to be a function ofQ, the joint roughness, and the number of joint sets. The latter two determine the dilatency and the degree of freedom of the rock mass.Detailed recommendations for support measures include various combinations of shotcrete, bolting, and cast concrete arches together with the appropriate bolt spacings and lengths, and the requisite thickness of shotcrete or concrete. The boundary between self supporting tunnels and those requiring some form of permanent support can be determined from the rock mass qualityQ.
With 8 Figures 相似文献
4.
青藏高原东缘广泛发育着深大活动断裂带,强烈控制着高原东缘区域应力场。本文基于收集的178个点位1181组原位应力数据,通过数值模拟反演得出青藏高原东缘活动断裂影响下青藏高原东缘地应力场,结果表明,青藏高原地应力场呈现出明显的非均匀性特征,应力量值由西向东逐渐减小。然后,利用ArcGIS分析青藏高原东缘埋深100~2000 m岩爆及大变形趋势,岩爆集中产生于次级板块内部,岩爆范围基本不随深度变化;而大变形产生于次级板块边界,并随深度增加面积逐渐向板块内部扩大;岩爆及大变形风险等级随埋深呈现规律性变化。最后,通过二郎山隧道隧址区以及双江口水电站两个工程实例探讨了本研究在工程建设中对岩爆及大变形趋势预测的适用性,结果表明,本文给出的青藏高原东缘地下工程灾害趋势与基于强度应力比方法获得的岩爆倾向性以及工程实例中岩爆现象基本一致。 相似文献
5.
黄土隧洞支护结构设计方法探讨 总被引:5,自引:0,他引:5
采用ANSYS软件,对宝兰铁路二线码头隧道的双层模筑复合式衬砌试验断面进行建模分析,应用有限元强度折减法,求得隧洞的围岩的安全系数,应用有限元法按土体与结构共同作用原理求衬砌的安全系数。黄土隧洞设计须满足的两个要求:初步建议初期支护后土体围岩的安全系数不小于1.15~1.2,初期支护安全系数不小于1.3;二次支护后衬砌结构的安全系数大于2.0~2.4,确保工程施工与运行安全。对求得的围岩和衬砌安全系数进行评价分析,形成黄土隧洞支护结构设计的定量方法。 相似文献
6.
为了建立公路隧道在各围岩亚级条件下的支护体系,指导隧道的安全施工,在亚级分级方法、分级标准、物理力学参数等研究基础上,结合双车道公路隧道特点,通过理论分析、实例统计、数值分析等方法,研究了各亚级围岩下隧道开挖方法、预加固参数、支护类型、结构型式和初期支护参数。结果表明,Ⅲ1级围岩可采用全断面法、轻型承载型支护,Ⅲ2级采用台阶法、中型承载型支护;Ⅳ1、Ⅳ2、Ⅳ3级采用台阶法、重型承载型支护,但Ⅳ2、Ⅳ3级需通过预加固措施使加固区围岩强度提高到相当于Ⅳ1水平;Ⅴ1级采用台阶法和使加固区围岩强度提高到相当于Ⅳ1水平的预加固措施,Ⅴ2级采用CRD法和使加固区围岩强度提高到相当于Ⅳ3水平的预加固措施,Ⅴ1、Ⅴ2级也都可采用CD法和使加固区围岩强度提高到相当于Ⅳ1水平的预加固措施,且都采用特殊承载型支护;Ⅳ1、Ⅳ2、Ⅳ3、Ⅴ1、Ⅴ2级均需设置仰拱。 相似文献
7.
8.
深部软岩巷道锚网索耦合支护非线性设计方法研究 总被引:30,自引:0,他引:30
由于深部软岩巷道工程岩体介质已进入到塑性大变形阶段,其破坏主要是由于支护体与围岩之间的不耦合造成的,因此提出了锚网索耦合支护非线性设计方法。与传统的线性参数设计不同,该方法在变形设计的基础上,针对最佳耦合过程进行强度设计,提出锚网索耦合支护参数,并在施工过程中通过反馈设计进行修正。与新奥法不同,采用该设计方法进行锚网索耦合支护既能充分发挥锚网主动支护浅部围岩的能力,又能通过锚索调动深部围岩强度的支护能力,从而可以实现软岩巷道支护体与围岩在强度上、刚度上和结构上的耦合,保证软岩巷道围岩的稳定性。 相似文献
9.
Considering the high population growth rate of Ankara, it is inevitable that landfill(s) will be required in the area in the near future to sustain the sanitary waste disposal needs of the city. The main scope of this study is to select alternative landfill sites for Ankara based on the growing trends of Ankara toward the northwest, particularly toward the Sincan municipality, and to eventually select the best alternative through utilizing multi-criteria decision making. Landfill site selection was carried out utilizing Geographic Information System (GIS) and Multi-Criteria Decision Analysis. A number of criteria, namely, settlement, slope, proximity to roads, geology, availability and proximity of landfill containment material (i.e., clay for composite lining system), suitability for agriculture, erosion, vegetation cover and lineament system were gathered in a GIS environment. Each criterion was assigned a weight value by applying the Pairwise Comparison Method and the Analytical Hierarchy Method. In order to choose the best alternative, the Technique for Order Preference by Similarity to the Ideal Solution, which is regarded as an ideal point method, was applied and a landfill site was selected. The geotechnical properties of the so-called “Ankara clay” that shows widespread distribution in Ankara were reviewed and assessed for its suitability as a compacted clay liner. 相似文献
10.
基于优化设计的目标函数法,以控制点水位为首要约束条件,总排水量最小为目标函数,采用Excel软件"规划求解"模块对地铁隧道管井井群降水设计进行优化分析,获得降水影响范围、降水井合理布置方案及单井排水量等指标,实现了满足施工要求的总排水量最小的目标。采用该优化方法分析沈阳地铁张沈区间的工程降水实例,优化方案总排水量为18552.6m3/d,比采用潜水完整井公式计算结果减少约5%,经现场水位监测获得降水水位曲线,证明优化方案能满足施工要求,经济合理。 相似文献
11.
地铁已成为城市地下空间结构和轨道交通网络的重要组成部分。为预估和降低地震灾害的影响,以西安盾构地铁区间隧道为例,建立了地铁隧道区间三维计算模型,进行三维抗震时程响应分析。采用粘弹性局部人工边界模拟地基结构的半无限性,利用不同超越概率水平下的地震动参数作为参考,考虑相位随机性影响,拟合地震动时程样本,建立了地基与结构相互作用的三维有限元模型。计算结果表明,地震发生时,顶部、底面、侧面、以及联络通道处虽产生变形影响,但均在规范规定范围内;位移时程曲线、位移分布云图、拉压应力云图清楚显示区间结构在地震持续时的抗震情况,数据表明结构最不利位置在联络通道处,而内力和变形均满足规范安全要求。 相似文献
12.
为了评估南京地铁区间隧道内爆炸破坏效应,利用有限元分析软件LS-DYNA3D软件,计算了10kgTNT距隧道底部距离为1.1m的内爆炸工况。该软件中的化学爆炸空气冲击波模拟关键字避开了复杂烦琐的欧拉计算和ALE耦合分析过程,使得模型构建大大简化。计算得到了结构中不同关键节点的位移与速度时程曲线与不同单元的加速度时程曲线和最大主应变。结果表明地铁区间隧道在10kgTNT内爆作用下是安全的。 相似文献
13.
Engineering geological studies and tunnel support design at Sulakyurt dam site, Turkey 总被引:2,自引:0,他引:2
H. Basarir 《Engineering Geology》2006,86(4):225-237
This paper presents the results of engineering geological investigations and tunnel support design studies, carried out at the Sulakyurt dam site, northeast of Ankara, Turkey. The Sulakyurt dam will be used for flow control and water storage for irrigation projects. Studies were carried out both in the field and the laboratory. Field studies include engineering geological mapping, intensive discontinuity surveying, core drilling and sampling for laboratory testing. The diversion tunnel will be driven in rock mass, consisting of granite and diorite. Empirical, analytical and numerical methods were combined for safe tunnel design. Rock mass rating (RMR), Rock mass quality (Q) and Geological strength index (GSI) systems were used for empirical rock mass quality determination, site characterization and support design. The convergence–confinement method was used as analytical method and software called Phase2, a 2D finite element program, was utilized as numerical method. According to the results acquired from the empirical, analytical and numerical methods, tunnel stability problems were expected in both granite and diorite rock masses. The support system, suggested by empirical methods, was applied and the performance of suggested support system was evaluated by means of numerical modelling. It was concluded that the suggested support systems were adequate, since after applying the suggested support system to granite and diorite, tunnel deformation and the yielded elements around the tunnel decreased significantly. Thus, it is suggested that for more reliable support design empirical, numerical and analytical methods should be combined. 相似文献
14.
15.
Composite landfill liner design with Ankara clay, Turkey 总被引:1,自引:0,他引:1
This study presents an overview of the geotechnical properties of the clayey soils, referred to as Ankara clay, at two sites of the Ankara region in an attempt to design a landfill profile composed of a high density polyethylene (HDPE) geomembrane/clay composite liner through the Hydrologic Evaluation of Landfill Performance (HELP) model and the Water Balance Method. The geotechnical properties of the landfill layers along with the water balance factors (i.e., evapotranspiration, precipitation, temperature, etc.) were assessed to determine the height of the water-saturated zone in the refuse above the composite liner for landfill design. The cumulative expected leakage rates through the composite liner constructed with compacted Ankara clay were related quantitatively to the cumulative average leachate head. The results of this investigation show that the leakage rates through the composite liner are within tolerable limits. 相似文献
16.
针对地表超载导致的隧道竖向土压力问题,参照室内模型试验的隧道结构变形与土压力实测结果,建立了有限元模型。在地表超载作用下,分析了隧道穿越土层与隧道上覆土层的压缩性能对隧道周围土压力与结构变形的影响。结果表明:隧道穿越土层的压缩模量越小,地表超载作用导致的隧道竖向土压力越大,且对应的隧道水平土压力越小,隧道结构越容易发生横椭圆变形;隧道上覆土层的压缩模量越小,地表超载作用导致的竖向土压力越小,隧道结构发生的变形也越小;在软土地区地表堆土(超载)导致的隧道竖向土压力要大于按土柱理论计算所得的隧道竖向土压力。研究结果可为软土地区地铁盾构隧道设计与运营期管控提供参考依据。 相似文献
17.
地铁行车速度对盾构隧道运营沉降的影响分析 总被引:1,自引:0,他引:1
地铁行车荷载经轨道-道床-隧道结构传至地基,在土体内部产生循环动应力以及超孔隙水压力是引起盾构隧道沉降的重要原因。通过车-轨-隧道-地基竖向耦合动力模型分析隧道差异沉降对列车运行荷载的影响,以上海地铁一号线体育馆站附近区间隧道为工程背景建立三维数值模型,结合塑性累积应变及累积孔压经验公式进行计算,对比分析软土盾构隧道下卧土层有、无纵向差异沉降两种情况下,地铁行车速度对隧道运营沉降的影响。结果表明:列车运行速度越快,下卧土体波动越大,但衰减越快。地基差异沉降对其长期运营存在明显不利影响,随着列车速度增大,这种影响也愈加明显。当地基差异沉降小,轨道平顺条件好时,隧道长期沉降随地铁行车速度的增大而减小;当地基差异沉降突出,轨道存在明显不平顺时,隧道运营沉降随行车速度增大而显著增加。 相似文献
18.
搅拌桩加固挤土效应及在地铁隧道保护中的应用 总被引:1,自引:0,他引:1
在减小地基变形进行的深层搅拌桩加固时,加固本身的挤土效应对隧道变形产生了影响。为此,模拟了搅拌桩(DCM)侧向挤土效应的4种荷载模式,结合实测资料并采用数值试验验证了侧向挤土荷载模式的合理性。进一步应用该模式,通过有限元模拟了搅拌桩的加固挤土效应,分析讨论了不同加固顺序对地面变形,隧道变形以及长期蠕变变形的影响,结论表明,搅拌桩加固对地面环境影响是不可忽略,隧道周围搅拌桩施工顺序对隧道变形影响较大,搅拌桩加固后长期蠕变效应相对加固过程的变形很小。 相似文献
19.
Nowadays, the issue of predicting soil settlement has gradually become an important research area. The theory of predicting soil settlement under static load is comparatively mature, while the method of predicting soil settlement under dynamic loading is still at the exploratory stage. This paper aimed to find a suitable model to satisfy the prediction of long-term settlements of subway tunnel. The settlement monitoring data of Subway Line 1 in Shanghai were taken as the case. In this paper, current nonlinear prediction methods of settlement were summarized. The fitting method was introduced and applied in the settlement data of Shanghai subway tunnel; correlation coefficient r of the fitting results can keep a high level in most cases, illustrating the validity of segmentation simulation. Two kinds of prediction methods and its utilizing methods were introduced in this paper, i.e., Grey Model (1, 1) and Auto-Regressive and Moving Average Model (n, m). The settlement trend of Subway Line 1 in Shanghai was predicted by GM (1, 1) and ARMA (n, m) model. The results show that ARMA (n, m) model is more precise than the GM (1, 1). As a new method in settlement prediction field, ARMA (n, m) model is prospective in the future. 相似文献
20.
针对含初始缺陷的既有地铁隧道受邻近穿越隧道施工影响的首都地铁隧道工程背景,基于有限差分方法,通过对既有地铁车站结构受邻近隧道穿越后的抗震性能研究,揭示其抗震动力响应机理。结果表明,在邻近隧道穿越影响下,含初始缺陷的既有隧道各薄弱控制点在地震作用下位移和应力动力时程的波动趋势具有相似性,说明衬砌结构是整体运动的,其位移、应力较穿越前均有所增加,边墙和仰拱在穿越后抗震性能影响最大,剪切破坏主要以车站结构周边土体为主,新线穿越后其剪切破坏分布范围有所增大,应进行注浆加固处理,与自身结构刚度相匹配,提高抗震能力。 相似文献