首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metasomatic tremolite-rich mylonites are widespread in imbricate thrust slices of ultramafic rocks of the ophiolitic Ingalls Complex in Washington State. Protoliths for these amphibolite-facies mylonites were peridotite and serpentinite. Abundant syntectonic tremolite veins in the ultramafites record narrowly channelized flow of infiltrating fluids, whereas metasomatic mylonite zones record more pervasive flow. Fluids were probably released mainly by prograde devolatization reactions within serpentinite and mafic ophiolitic rocks that experienced earlier hydrothermal metamorphism.Olivine apparently deformed by dislocation creep in the mylonites. In the tremolite-rich rocks, locally preserved amphibole porphyroclasts deformed mainly by microfracturing. Acicular tremolites, which dominate the mylonites, form syntectonic overgrowths on porphyroclasts and probably record diffusive mass transfer which may have accompanied cataclasis. Acicular tremolites subsequently were folded and define both post-crystalline crenulations and polygonal arcs.Fluid flow, deformation and metamorphism were apparently complexly interrelated in the imbricate zone. Thrusts juxtaposed contrasting rock types that were sources and sinks for fluids, and shear zones focused fluid flow. Metamorphism probably facilitated deformation through the release of fluids during dehydration reactions. High fluid pressure may have led to hydraulic fracturing and may have controlled strain softening in the tremolitic mylonite zones as it favored microcracking and diffusive mass transfer over dislocation creep. Infiltrating metasomatic fluids probably play an important role in the evolution of shear zones in many ultramafic bodies during medium-grade metamorphism.  相似文献   

2.
In the Dharwar Craton, southern India, gold deposits are found mostly along the six arcuate shear zones passing through late Archaean greenstone belts (2.7 Ga). One such shear zone complex extends for about 400 km within and along the Ramagiri–Hungund schist belt. The Penakacherla sector of this shear zone is excellently exposed, enabling a detailed investigation of synorogenic gold mineralisation and its relationship to associated hydrothermal alteration.Metamorphism and deformation under NE–SW compression associated with Archaean subduction processes converted mafic volcanic rocks into amphibolites and intermediate to felsic volcanic rocks into quartz mica schists. Continued compression generated a 50–100-m-wide shear zone complex consisting of mafic phyllonites. Advection of hydrothermal fluids through this shear zone and reaction between fluids and the mafic phyllonites resulted in a silicified, K-metasomatic assemblage mainly consisting of chlorite, amphibole, K-mica, plagioclase, ankerite, quartz, Fe-oxides, pyrite, chalcopyrite and arsenopyrite. Networks of quartz and carbonate veinlets, a few millimeters to a few centimeters thick, formed along the foliation planes giving rise to microscopic alteration envelope, in which individual veinlet systems are merged into one another to form a composite alteration system. Gold is found within these quartz veinlets, mafic phyllonites and at their mutual contacts.Hydrothermal fluids have modified the primary major, minor, trace and LREE compositions of host rocks such that their mutual behaviour became non-systematic. Some HFSE and HREE also show minor mobility but the overall REE pattern generally resembles that of the precursor mafic volcanic rocks. Mass and volume loss/gain by Si and Ca has made significant impact on Al, Ti and Zr abundances, which are generally immobile during hydrothermal alteration. However, element pairs such as Zr–Hf, V–Sc and Nb–Ta maintain primary inter-element ratios, although their absolute abundances are drastically diluted. Similarly, ΣREE in highly silicified and carbonatised samples are reduced, but patterns remain similar to those of relatively least altered mafic phyllonites with (LaN/Yb)N between 1 and 3. In some samples, LREE enrichment is observed elevating in (LaN/Yb)N from 3 to 11. Pathfinder elements and base metals such as As, Cd, Cu, Pb, Zn and Sb have been added along with the Au and Ag.δ13C of carbon varies from −16‰ to −21‰ suggesting a biogenic origin, whereas coexisting pyrite δ34S ranges from 1‰ to 3‰, pointing towards the involvement of magmatic or average crustal sulphur. Overall concentrations of K, Rb, Sr, Ba, Nb, Ta, Ti, Cs, Cr, Co, V, Y and Sc and many of the ratios such as K/Rb, La/Sc, La/Yb indicate that metamorphism, devolatilisation and dehydration of an oceanic subducting slab might have partially contributed the mineralising fluids and generated the alteration assemblage observed in the host rocks. Fluid sources were mantle and greenstone belt dehydration and devolatilisation generating observed compositional and alteration diversity.  相似文献   

3.
The effects of high-strain deformation and fluid infiltration during Alpine eclogite facies metamorphism have been studied across ductile shear zones in relatively undeformed metagranitoids at Monte Mucrone (Sesia Zone, Western Alps, Italy). Microfabrics together with bulk rock and stable isotope data indicate that the mineralogical and chemical variations are related to the degree of deformation, rather than to changes in P-T conditions or tectonic position. Transformation of meta-quartz diorite to recrystallized eclogitic mylonites involved the breakdown of biotite and plagioclase and required the influx of H2O. Bulk-rock geochemical data show that ductile deformation to form eclogitic mylonites involved an increase in volume with a weight percent gain in H2O and Si and variable loss of K, Na, Ca and Al. δ18O changes systematically across ductile shear zones into the undeformed country rocks. Constant values in shear zone centres indicate advection parallel to the shear zone and within 10 cm of the mylonites. A dominant component of diffusive oxygen exchange perpendicular to the shear zones produced isotopic fronts, evident from a gradual increase in δ18O values to the reference values of the country rocks. The degree of isotopic shift within the shear zones reflects increasing deformation and degree of reaction progress. Multiple phases of Alpine deformation and mineral growth are recognized in the Monte Mucrone metagranitoids, and in some cases, eclogite facies shear zones were reactivated under greenschist facies conditions. The results of this study suggest that high-strain deformation provided pathways for both synkinematic and post-kinematic metamorphic fluids which were necessary for complete reactions. Relict igneous fabrics, as well as the presence of corona textures around biotite and pseudomorphs after primary igneous plagioclase in the least deformed rocks, indicate a paucity of hydrous fluids and support the conclusion that fluid movement was channelled rather than pervasive.  相似文献   

4.
中天山基底岩系的韧性-脆韧性改造作用   总被引:1,自引:0,他引:1       下载免费PDF全文
车自成  刘良 《地质科学》1996,31(4):391-396
造山带核部往往都存在一些古老的中深变质岩系,后期都受到多次构造作用的叠加,从而呈现出一种极其复杂的面貌。夹于中东阿尔卑斯造山带中的门德雷斯、克谢希尔、尼德、阿拉尼亚和比特利斯等变质地块(阿达米亚等,1976),以及我国大别群(陈江峰等,1993)、秦岭群(游振东等,1994)等都是如此。中天山地区存在类似情况,这里存在两类基底岩系,一类基本未变质,另一类则由中深变质岩系所组成。前一类以伊犁地块的基底为代表(车自成等,1994),出露地层由中晚元古界浅海碎屑岩、叠层石碳酸岩和上覆的冰债层组成,构成区内稳定型基底;另一类以巴伦台群为代表(车自成等,1994),由各类结晶片岩、片麻岩、混合岩和不同时代的岩体组成活动型基底。后者形成于中晚元古代,并受到多期构造热事件的改造,除明显的多期变形外,其同位素年龄也从元古代直至中生代呈现连续演化的趋势。  相似文献   

5.
Deformation fabrics in Proterozoic/Cambrian granitic rocks of the Çine nappe, and mid-Triassic granites of the Bozdag nappe constrain aspects of the tectonometamorphic evolution of the Menderes nappes of southwest Turkey. Based on intrusive contacts and structural criteria, the Proterozoic/Cambrian granitic rocks of the Çine nappe are subdivided into older orthogneisses and younger metagranites. The deformation history of the granitic rocks documents two major deformation events. An early, pre-Alpine deformation event (DPA) during amphibolite-facies metamorphism affected only the orthogneisses and produced predominantly top-to-NE shear-sense indicators associated with a NE-trending stretching lineation. The younger metagranites are deformed both by isolated shear zones, and by a major shear zone along the southern boundary of the Çine submassif. We refer to this Alpine deformation event as DA3. DA3 shear zones are associated with a N-trending stretching lineation, which formed during greenschist-facies metamorphism. Kinematic indicators associated with this stretching lineation reveal a top-to-south sense of shear. The greenschist-facies shear zones cut the amphibolite-facies structures in the orthogneisses. 207Pb/206Pb dating of magmatic zircons from a metagranite, which crosscuts orthogneiss containing amphibolite-facies top-to-NE shear-sense indicators, shows that DPA occurred before 547.2ǃ.0 Ma. Such an age is corroborated by the observation that mid-Triassic granites of the Çine and Bozdag nappes lack DPA structures. The younger, top-to-south fabrics formed most likely as a result of top-to-south Alpine nappe stacking during the collision of the Sakarya continent with Anatolia in the Eocene.  相似文献   

6.
There is a coupling of thermal, mechanical, chemical and fluidal processes in a continental shear zone. Both Xincheng-Xishui and Hetai shear zones are typical continental crust shear zones of greenschist facies environment. The representative mylonite zones of the shear zones are studied with whole rock major and trace element analyses. The chemical compositional variation tendencies in both shear zones are very similar and the gain-loss ratios of various components in the mylonitic rocks are reflected in the mass balance equations. The enrichment of those immobile high-field-strengh elements is considered to he related to the volume loss of the myionitic rocks in a shear zone. Based on the volume loss expression C_s/C_o=1/(1-V),the fractional volume losses (V)are 37.5% and 36.5%-42.3% respectively for mylonites and ultramylonites in the Xincheng-Xishui shear zone and 11% and 28% respectively for mylonites and phyllonites in the Hetai shear zone. The high volume loss and large removal of SiO_2 from  相似文献   

7.
Abstract P–T conditions, mineral isograds, the relation of the latter to foliation planes and kinematic indicators are used to elucidate the tectonic nature and evolution of a shear zone in an orogen exhumed from mid‐crustal depths in western Turkey. Furthermore, we discuss whether simple monometamorphic fabrics of rock units from different nappes result from one single orogeny or are related to different orogenies. Metasedimentary rocks from the Çine and Selimiye nappes at the southern rim of the Anatolide belt of western Turkey record different metamorphic evolutions. The Eocene Selimiye shear zone separates both nappes. Metasedimentary rocks from the Çine nappe underneath the Selimiye shear zone record maximum P–T conditions of about 7 kbar and >550 °C. Metasedimentary rocks from the overlying Selimiye nappe have maximum P–T conditions of 4 kbar and c. 525 °C near the base of the nappe. Kinematic indicators in both nappes are related to movement on the Selimiye shear zone and consistently show a top‐S shear sense. Metamorphic grade in the Selimiye nappe decreases structurally upwards as indicated by mineral isograds defining the garnet‐chlorite zone at the base, the chloritoid‐biotite zone and the biotite‐chlorite zone at the top of the nappe. The mineral isograds in the Selimiye nappe run parallel to the regional SR foliation, parallel the Selimiye shear zone and indicate that the Selimiye shear zone formed during this prograde greenschist to lower amphibolite facies metamorphic event but remained active after the peak of metamorphism. 40Ar/39Ar mica ages and the tectonometamorphic relationship with the Eocene Cyclades–Menderes thrust, which occurs above the Selimiye nappe in the study area, suggests an Eocene age of metamorphism in the Selimiye nappe. Metasedimentary rocks of the Çine nappe 20–30 km north of the Selimiye shear zone record maximum P–T conditions of 8–11 kbar and 600–650 °C. An age of about 550 Ma is indicated for amphibolite facies metamorphism and associated top‐N shear in the orthogneiss of the Çine nappe. Our study shows that simple monophase tectonometamorphic fabrics do not always indicate a simple orogenic development of a nappe stack. Preservation in some areas and complete overprinting of those fabrics in other areas apparently occur very heterogeneously.  相似文献   

8.
A nappe of amphibolite-facies metamorphic rocks of pre-Permian age in the southern Vanoise massif (the Arpont schist) has been affected by an Alpine HP/LT metamorphism. The first mesoscopically recognizable deformation (D1) post-dated the high-pressure peak (jadeitic pyroxene + quartz, glaucophane + ?lawsonite), and was associated with glaucophane + epidote. D1 produced a flat-lying schistosity and a NW-trending glaucophane lineation, and was probably associated with nappe displacement involving NW-directed subhorizontal shear. D2 formed small-scale folds and a foliation associated with chlorite + albite. The changing parageneses during the period pre-D1 to D1 to D2 suggest decreasing pressure, so that the deformation appears to have been related to the uplift history, rather than to the process of tectonic burial. D2 was followed by a static metamorphism (green biotite + chlorite + albite), possibly of Lepontine age. SE-directed backthrusting and folding (D3), and later differential uplift along steep faults, took place under low-grade conditions.  相似文献   

9.
The Zenaga Inlier shows a comprehensive record of the Eburnian and Pan-African Orogenies. The Eburnian is characterised by high-temperature regional metamorphism and complex magmatism. The early (Azguemerzi) granodiorite has an isotopic mantle signature and was emplaced diapirically during the Eburnian Orogeny causing local thermal metamorphism. The foliation observed in this granitoid is a result of the interference between its primary syn-emplacement foliation and the regional foliation under amphibolite-facies conditions. The northern part of Zenaga has been intruded by the leucocratic granites of Tazenakht. These granites are cut by mylonites and phyllonites, corresponding to the Pan-African shear zones and accompanied with sub-greenschist-facies metamorphism during the Pan-African Orogeny. The deformation was the result of a regional sinistral transpressive event. This study in the northern part of the West African Craton shows the superposition of the Pan-African on the Eburnian Orogeny and the presence of a major fault in the Anti-Atlas.  相似文献   

10.
新地沟和卯独庆金矿赋存于新太古界色尔腾山群柳树沟岩组中,是典型的与韧性一脆韧性剪切变形有关的绿岩型金矿。构造-蚀变岩石的主要类型有千糜岩化石英绢云片岩、千糜岩化绿泥绢云片岩、糜棱岩化绿泥石英片岩、绢云绿泥长英质糜棱片岩、长英质碎裂岩、黄铁绢英岩质构造片岩等。构造一蚀变岩石的岩石地球化学特征与中基性火山岩类似.其稀土元素总量∑REE(44.9×10^-6~155.4×10^-6)、LREE/HREE比值(7.0~26.1)、δEu(0.6~1.2)也显示了中基性火山原岩的特点。构造一蚀变一成矿流体的特征为富CO2的低盐度的较高密度的流体,具有造山型金矿的特点。前寒武纪绿岩带建造变质镁铁质火山岩分布的地区构造一蚀变作用强烈的地段是重要的找矿有利地区。  相似文献   

11.
Geological, petrological and structural observations were obtained along a 30-km-long traverse across a segment of the Valle Fértil shear zone, central-western Argentina. On a regional scale, the shear zone appears as numerous discontinues belts over 25 km in width and is approximately 140 km in length, extended on the western section of the Sierras Valle Fértil – La Huerta mountain range. The steeply dipping shear zone with a vertical mylonitic lineation is composed of amphibolite facies ribbon mylonites and amphibolite to greenschist facies ultramylonites derived from Early Ordovician plutonic and metasedimentary parent rocks. Locally, syn-kinematic retrogression of mylonites formed greenschist facies phyllonites. During the later stages of deformation, unstrained parent rocks, mylonites, ultramylonites and phyllonites were affected by pervasive cataclasis under low greenschist facies conditions associated with localized faulting. One new 40Ar/39Ar age on biotite and published 40Ar/39Ar ages on amphibole in the shear zone yield an average cooling rate of 6.2 °C/Ma for a time period that crosses the Silurian–Devonian boundary. Since in metasedimentary rocks the youngest zircon's rims dated at 465 Ma marks the beginning of cooling, nearly continuous uplift of rocks within the shear zone occurred over a minimum time span of 55 Ma. During the period of active deformation, dip-slip movement can explain uplift of several kilometers of the Early Ordovician arc crust. The Valle Fértil shear zone, which was formed near above the inferred suture zone between the Famatinian arc and Cuyania microcontinent, is a major structural boundary nucleated within the Early Ordovician crust. The simplest geodynamic model to explain the evolution of the Valle Fértil shear zone involves the collision of the composite Cuyania/Precodillera microcontinent against the Famatinian arc.  相似文献   

12.
《International Geology Review》2012,54(11):1409-1428
ABSTRACT

The Mauranipur and Babina greenstone belts of the Bundelkhand Craton are formed of the Central Bundelkhand greenstone complex (CBGC). This complex represents tectonic collage which has not been previously studied in depth. The purpose of this study is to contribute to the understanding of the main features of the Archaean crustal evolution of the Bundelkhand Craton. The CBGC consists of two assemblages: (1) the early assemblage, which is composed of basic-ultramafic, rhyolitic–dacitic, and banded iron formation units, and (2) the late assemblage, which is a felsic volcanic unit. The units and assemblages are tectonically unified with epidote–quartz–plagioclase metasomatic rocks formed locally in these tectonic zones.

The early assemblage of the Mauranipur greenstone belt is estimated at 2810 ± 13 Ma, from the U–Pb dating (SHRIMP, zircon) of the felsic volcanics. Also, there are inherited 3242 ± 65 Ma zircons in this rock. It is deduced that this assemblage is related to early felsic subduction volcanism during the Mesoarchaean that occurred in the Bundelkhand Craton.

Zircons extracted from metasomatic rocks in the early assemblage’s high-Mg basalts show a concordant age of 2687 ± 11 Ma. This age is interpreted as a time of metamorphism that occurred simultaneously with an early accretion stage in the evolution of the Mauranipur greenstone belt.

The felsic volcanism, appearing as subvolcanic bodies in the late assemblage of the Mauranipur greenstone belt, is estimated to be 2557 ± 33 Ma from the U–Pb dating (SHRIMP, zircon) of the felsic volcanic rocks. This rock also contains inherited 2864 ± 46 Ma zircons. The late assemblage of the Mauranipur greenstone belt corresponds with a geodynamic setting of active subduction along the continental margin during Neoarchaean.

The late assemblage Neoarchaean felsic volcanic rocks from the Mauranipur and Babina greenstone belts are comparable in age and geochemical characteristics. The Neoarchaean rocks are more enriched in Sr and Ba and are more depleted in Cr and Ni than the Mesoarchaean felsic volcanic rocks of the early assemblage.

Through isotopic dating and the geochemical analysis of the volcanic and metasomatic rocks of the CBGC, this study has revealed two subduction–accretion events, the Meso–Neoarchaean (2.81–2.7 Ga) and Neoarchaean (2.56–2.53 Ga), during the crustal evolution of the Bundelkhand Craton (Indian Shield).  相似文献   

13.
The Sm-Nd isotope-chronological method is used for the first time to investigate the whole rock and rock-forming minerals from metasomatic sillimanite orthopyroxene rocks in the Por’ya Guba nappe of the Lapland granulite belt. As a result isochrone values of the age are obtained, which allows estimate the minimum time intervals that have passed from the moment of formation of the investigated rocks. They indicate that peak conditions of collision metamorphism in fluid-permeable shear zones of the LGB occurred in the Paleoproterozoic Svekofennian age when high-temperature high-pressure sillimanite-orthopyroxene metasomatic rocks were formed. The obtained data make it possible to assume that, with regard to the measurement errors, high-pressure metasomatism did not last over 10 Ma, and this process did not coincide in time with older medium pressure metamorphism.  相似文献   

14.
The Mobrun Zn-Cu-Ag-Au deposit in the Noranda mining camp is hosted by Archean mafic and felsic submarine volcanic rocks. The deposit comprises three massive sulfide complexes: the Main and Satellite Lenses near surface, and the 1100 orebody at depth. The rocks have been subjected to lower greenschist-facies metamorphism and related deformation, which resulted in changes in ore textures, development of shear zones and veins systems, remobilization of gold, and formation of a new mineral (electrum) within the orebodies. Both mechanical and chemical processes operated to produce secondary textures and structures resulting from brittle deformation, ductile deformation, and annealing. The specific deformation mechanisms include brittle failure and cataclastic flow, dislocation glide, dislocation creep and solution-precipitation creep. The Main and Satellite Lenses are characterized by excellent preservation of primary sulfides deposited from and reworked by synvolcanic hydrothermal fluids. These orebodies were affected to a limited degree by mechanical processes of deformation. In contrast, the 1100 orebody is characterized by a higher degree of development of textures and structures related to metamorphism and deformation, especially those formed by chemical processes. The differences may be due to the greater depth of the 1100 orebody relative to the other lenses, as regional metamorphic isograds are subhorizontal, and more extensive interaction between metamorphic fluids and the 1100 Lens.  相似文献   

15.
The southeast Reynolds Range, central Australia, is cut by steep northwest‐trending shear zones that are up to hundreds of metres wide and several kilometres long. Amphibolite‐facies shear zones cut metapelites, while greenschist‐facies shear zones cut metagranites. Rb–Sr and 40Ar–39Ar data suggest that both sets of shear zones formed in the 400–300 Ma Alice Springs Orogeny, with the sheared granites yielding well‐constrained 40Ar–39Ar ages of ca 334 Ma. These data imply that the shear zones represent a distinct tectonic episode in this terrain, and were not formed during cooling from the ca 1.6 Ga regional metamorphism. A general correlation between regional metamorphic grade and the grade of Alice Springs structures implies a similar distribution of heat sources for the two events. This may be most consistent with both phases of metamorphism being caused by the burial of anomalously radiogenic heat‐producing granites. The sheared rocks commonly have undergone metasomatism implying that the shear zones were conduits of fluid flow during Alice Springs times.  相似文献   

16.
The Makran accretionary prism in SE Iran and SW Pakistan is one of the most extensive subduction accretions on Earth. It is characterized by intense folding, thrust faulting and dislocation of the Cenozoic units that consist of sedimentary, igneous and metamorphic rocks. Rock units forming the northern Makran ophiolites are amalgamated as a mélange. Metamorphic rocks, including greenschist, amphibolite and blueschist, resulted from metamorphism of mafic rocks and serpentinites. In spite of the geodynamic significance of blueschist in this area, it has been rarely studied. Peak metamorphic phases of the northern Makran mafic blueschist in the Iranshahr area are glaucophane, phengite, quartz±omphacite+epidote. Post peak minerals are chlorite, albite and calcic amphibole. Blueschist facies metasedimentary rocks contain garnet, phengite, albite and epidote in the matrix and as inclusions in glaucophane. The calculated P–T pseudosection for a representative metabasic glaucophane schist yields peak pressure and temperature of 11.5–15 kbar at 400–510 °C. These rocks experienced retrograde metamorphism from blueschist to greenschist facies (350–450 °C and 7–8 kbar) during exhumation. A back arc basin was formed due to northward subduction of Neotethys under Eurasia (Lut block). Exhumation of the high‐pressure metamorphic rocks in northern Makran occurred contemporarily with subduction. Several reverse faults played an important role in exhumation of the ophiolitic and HP‐LT rocks. The presence of serpentinite shows the possible role of a serpentinite diapir for exhumation of the blueschist. A tectonic model is proposed here for metamorphism and exhumation of oceanic crust and accretionary sedimentary rocks of the Makran area. Vast accretion of subducted materials caused southward migration of the shore.  相似文献   

17.
刘德良  杨晓勇 《岩石学报》1996,12(4):573-588
本文对郯庐断裂带南段主干断裂典型的韧性剪切带进行了系统的剖析。从糜棱岩塑性变形的亚颗粒化、动态重结晶和矿物成分特征及岩石组分迁移变化等入手进行系统的研究工作,计算了岩石形成的温度、压力和流动应力和流变速率参数;模拟计算了岩石在剪切变形作用下的体积亏损及组分迁移的量值,探讨了变形-变质及流体的相关关系  相似文献   

18.
The Nassara-Au prospect is located in the Birimian Boromo Greenstone Belt in southwestern Burkina Faso. It is part of a larger mineralized field that includes the Cu–Au porphyry system of Gaoua, to the north. At Nassara, mineralization occurs within the West Batié Shear Zone that follows the contact between volcanic rocks (basalt and andesite) and volcano-sediments (pyroclastics and black shales) at the southern termination of the Boromo Belt. Gold is associated with pyrite and other Fe-bearing minerals that occur disseminated within the sheared volcanic and volcano-sedimentary rocks. In particular, highest grades are distinguished in alteration halos of small quartz–albite–ankerite veins that form networks along the shear zone. Here, pyrites are marked by As-poor and As-rich growth zones, the latter containing gold inclusions. Gold mineralization formed during D2NA. Subsequent shear fractures related to D3NA related are devoid of gold. Nassara is a classical orogenic gold occurrence where gold is associated to disseminated pyrite along quartz veins.  相似文献   

19.
The Wadi El-Shush area in the Central Eastern Desert (CED) of Egypt is occupied by the Sibai core complex and its surrounding Pan-African nappe complex. The sequence of metamorphic and structural events in the Sibai core complex and the enveloping Pan-African nappe can be summarized as follows: (1) high temperature metamorphism associated with partial melting of amphibolites and development of gneissic and migmatitic rocks, (2) between 740 and 660 Ma, oblique island arc accretion resulted in Pan-African nappe emplacement and the intrusion of syn-tectonic gneissic tonalite at about 680 ± 10 Ma. The NNW–SSE shortening associated with oblique island arc accretion produced low angle NNW-directed thrusts and open folds in volcaniclastic metasediments, schists and isolated serpentinite masses (Pan-African nappe) and created NNE-trending recumbent folds in syn-tectonic granites. The NNW–SSE shortening has produced imbricate structures and thrust duplexes in the Pan-African nappe, (3) NE-ward thrusting which deformed the Pan-African nappe into SW-dipping imbricate slices. The ENE–WSW compression event has created NE-directed thrusts, folded the NNW-directed thrusts and produced NW-trending major and minor folds in the Pan-African nappe. Prograde metamorphism (480–525 °C at 2–4.5 kbar) was synchronous with thrusting events, (4) retrograde metamorphism during sinistral shearing along NNW- to NW-striking strike-slip shear zones (660–580 Ma), marking the external boundaries of the Sibai core complex and related to the Najd Fault System. Sinistral shearing has produced steeply dipping mylonitic foliation and open plunging folds in the NNW- and NE-ward thrust planes. Presence of retrograde metamorphism supports the slow exhumation of Sibai core complex under brittle–ductile low temperature conditions. Arc-accretion caused thrusting, imbrication and crustal thickening, whereas gravitational collapse of a compressed and thickened lithosphere initiated the sinistral movement along transcurrent shear zones and low angle normal ductile shear zones and consequently, development and exhumation of Sibai core complex.  相似文献   

20.
The Arpont-Parrachée region in the southern Vanoise massif comprises a stack of minor fold- and thrust-nappes that were emplaced during subduction and closure of the Piémont ocean basin in Late Cretaceous to Eocene time. The stack includes the Arpont nappe, composed mainly of pre-Permian schist metamorphosed to blueschist facies early in the Alpine history, and several sheets of Permian to Eocene metasedimentary rocks. Nappe formation, recumbent folding, and associated ductile deformation postdated the high-pressure metamorphic peak, and probably involved translation to the northwest. The rocks were then refolded by large- and small-scale folds trending roughly E-W. These deformational events were accompanied by a decrease in metamorphic pressure, indicating uplift. They were followed by regional greenschist-facies metamorphism, which caused breakdown of high-pressure parageneses, annealing of microstructures, and widespread growth of albite porphyroblasts. The entire nappe pile was then refolded by large- and small-scale folds overturned towards the southeast. Reorientation of small-scale structures with increasing strain by this event indicates a large component of ESE-directed shear, which culminated in the formation of anastomosing ductile shear-zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号