首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Nineteen samples from the Kane Fracture Zone have been studied for sulfide mineralogy and analyzed for S, Se, platinum-group elements (PGE), and Au to assess the effect of refertilization processes on the PGE systematics of abyssal peridotites. The lherzolites show broadly chondritic PGE ratios and sulfide modal abundances (0.01 to 0.03 wt%) consistent with partial melting models, although the few pyroxene-hosted sulfide inclusions and in situ LAM-ICPMS analyses provide evidence for in situ mobilization of a Cu-Ni-rich sulfide partial melt. The most refractory harzburgites (spinel Cr# > 29) are almost devoid of magmatic sulfides and show uniformly low PdN/IrN (<0.5) for variable PtN/IrN (0.8 to 1.2). The compatible behavior of Os, Ir, Ru, Rh, and Pt reflects the presence of primary Os-Ru alloys. Some harzburgites displaying petrographic evidence for refertilization by incremental melts en route to the surface are enriched in sulfides (up to 0.1 wt%). Some of these sulfides are concentrated in small veinlets of clinopyroxene and spinel crystallized from these melts. These S-rich harzburgites display superchondritic PdN/IrN (up to 2.04) positively correlated with sulfide modal contents. It is concluded that refertilization processes resulting in precipitation of metasomatic sulfides may significantly enhance Pd concentrations of abyssal peridotites while marginally affecting Pt (PtN/IrN ≤ 1.24) and Rh (RhN/IrN ≤ 1.23) as well. When the effects of such processes are screened out, our database suggests PGE relative abundances in the DMM (Depleted MORB Mantle; MORB: Mid-Ocean Ridge) within the uncertainty range of chondritic meteorites, without evidence of superchondritic Pt/Ir and/or Rh/Ir ratios.  相似文献   

2.
The distribution of platinum group elements (PGEs) in massive sulfides and hematite–magnetite±pyrite assemblages from the recently discovered basalt-hosted Turtle Pits hydrothermal field and in massive sulfides from the ultramafic-hosted Logatchev vent field both on the Mid-Atlantic Ridge was studied and compared to that from selected ancient volcanic-hosted massive sulfide (VHMS) deposits. Cu-rich samples from black smoker chimneys of both vent fields are enriched in Pd and Rh (Pd up to 227 ppb and Rh up to 149 ppb) when compared to hematite–magnetite-rich samples from Turtle Pits (Pd up to 10 ppb, Rh up to 1.9 ppb). A significant positive correlation was established between Cu and Rh in sulfide samples from Turtle Pits. PGE chondrite-normalized patterns (with a positive Rh anomaly and Pd and Au enrichment), Pd/Pt and Pd/Au ratios close to global MORB, and high values of Pd/Ir and Pt/Ir ratios indicate mafic source rock and seawater involvement in the hydrothermal system at Turtle Pits. Similarly shaped PGE chondrite-normalized patterns and high values of Pd/Pt and Pd/Ir ratios in Cu-rich sulfides at Logatchev likely reflect a similar mechanism of PGE enrichment but with involvement of ultramafic source rocks.  相似文献   

3.
The geochemical characteristics and behaviors of highly siderophile elements (HSEs) in forearc peridotites remain poorly constrained due to the scarcity of data. Here, we report HSE abundances of mantle peridotites from the New Caledonia ophiolites, a classical ophiolite generated in a forearc setting. Those peridotites show non‐chondritic, strongly fractionated HSE patterns and can be classified into two distinct types (namely Group I and Group II). Group I peridotites have higher HSE contents than Group II peridotites, which might be because intergranular sulfides were completely removed but sulfide inclusions were retained during partial melting of peridotites in a forearc environment, and meanwhile the distribution of sulfide inclusions are not uniform in mantle. Moreover, Group I peridotites display flat patterns from Os to Pt but strongly depleted in Pd, which resemble those patterns of some mantle wedge xenoliths. The Pt–Pd decoupling can be attributed to high degrees of partial melting. However, Group II peridotites are characterized by strongly positive Ru anomaly with highly super‐chondritic Ru/Os and Ru/Ir ratios. Such characteristics are the first reported cases for forearc peridotites. The fractionation of Ru from other HSEs might reflect the stability of refractory Ru‐rich phases in mantle wedge peridotites during different processes, e.g., partial melting and melt/fluid‐rock reactions.  相似文献   

4.
采用镍锍火试金法结合ICP—MS分析了碱锅玄武岩和乌拉哈达高镁安山岩样品中的Ir.Ru、Rh、Pt和Pd的含量。原始地幔标准化后的PGE分布模式呈正斜率型,Pd/Ir值高于相应的地幔比值,表明铂族元素发生了分异,这是由于在部分熔融过程中,Ir存在于地幔矿物相尖晶石和合金中,而Pd赋存于硫化物中造成的,乌拉哈达高镁安山岩中的铂族元素还可能在结晶分异过程中受到先期结晶的矿物相和合金的影响。阜新火山岩Pt的负异常可能是包含Pt的金属合金残留在地幔中造成。  相似文献   

5.
The peridotites of the Manipur Ophiolite Complex (MOC) have been examined based on mineral chemistry, major elements and PGE contents. They represent high-magnesian cumulates with Mg# > 0.90 (Mg/Mg+Fe) in olivine and Cr# > 0.12 (Cr/Cr+Al) in spinel. High Mg* contents of the olivine show that these rocks are most likely derived from partial melting of the residual upper mantle. The peridotites contain higher concentration of Palladium Group PGE (PPGE) (Rh=4.4−6.6ppb; Pd=336−458ppb and Pt=14.6−36.4ppb) than the Iridium Group PGE (IPGE) (Os=2.4−5.8ppb; Ir=3.2−4.16ppb and Ru=5.2−7ppb). These are characterized by overall enrichment of PGE concentration (σPGE=365.8 − 516.6 ppb) and high ratio of (Pt+Pd)/(Os+Ir+Ru). This suggests that the rocks are formed by partial melting and crystal fractionation of olivine-rich (picritic) magma.  相似文献   

6.
Ultramafic xenoliths from a veined mantle wedge beneath the Kamchatka arc have non-chondritic, fractionated chondrite-normalized platinum-group element (PGE) patterns. Depleted (e.g., low bulk-rock Al2O3 and CaO contents) mantle harzburgites show clear enrichment in the Pd group relative to the Ir group PGEs and, in most samples, Pt relative to Rh and Pd. These PGE signatures most likely reflect multi-stage melting which selectively concentrates Pt in Pt–Fe alloys while strongly depleting the sub-arc mantle wedge in incompatible elements. Elevated gold concentrations and enrichment of strongly incompatible enrichment (e.g., Ba and Th) in some harzburgites suggest a late-stage metasomatism by slab-derived, saline hydrous fluids. Positive Pt, Pd, and Au anomalies coupled with Ir depletions in heavily metasomatized pyroxenite xenoliths probably reflect the relative mobility of the Pd and Ir groups (especially Os) during sub-arc metasomatism which is consistent with Os systematics in arc mantle nodules. Positive correlations between Pt, Pd, and Au and various incompatible elements (Hf, U, Ta, and Sr) also suggest that both slab-derived hydrous fluids and siliceous melts were involved in the sub-arc mantle metasomatism beneath the Kamchatka arc.  相似文献   

7.
Platinum-group element (PGE) geochemistry combined with elemental geochemistry and magnetite compositions are reported for the Mesoproterozoic Zhuqing Fe–Ti–V oxide ore-bearing mafic intrusions in the western Yangtze Block, SW China. All the Zhuqing gabbros display extremely low concentrations of chalcophile elements and PGEs. The oxide-rich gabbros contain relatively higher contents of Cr, Ni, Ir, Ru, Rh, and lower contents of Pt and Pd than the oxide-poor gabbros. The abundances of whole-rock concentrations of Ni, Ir, Ru, and Rh correlate well with V contents in the Zhuqing gabbros, implying that the distributions of these elements are controlled by magnetite. The fractionation between Ir–Ru–Rh and Pt–Pd in the Zhuqing gabbros is mainly attributed to fractional crystallization of chromite and magnetite, whereas Ru anomalies are mainly due to variable degrees of compatibility of PGE in magnetite. The order of relative incompatibility of PGEs is calculated to be Pd?<?Pt?<?Rh?<?Ir?<?Ru. The very low PGE contents and Cu/Zr ratios and high Cu/Pd ratios suggest initially S-saturated magma parents that were highly depleted in PGE, which mainly formed due to low degrees of partial melting leaving sulfides concentrating PGEs behind in the mantle. Moreover, the low MgO, Ni, Ir and Ru contents and high Cu/Ni and Pd/Ir ratios for the gabbros suggest a highly evolved parental magma. Fe–Ti oxides fractionally crystallized from the highly evolved magma and subsequently settled in the lower sections of the magma chamber, where they concentrated and formed Fe–Ti–V oxide ore layers at the base of the lower and upper cycles. Multiple episodes of magma replenishment in the magma chamber may have been involved in the formation of the Zhuqing intrusions.  相似文献   

8.
Ultramafic xenoliths entrained in the late Miocene alkali basalts and basanites from NW Turkey include refractory spinel-harzburgites and dunites accompanied by subordinate spinel-lherzolites. Whole-rock major and trace element characteristics indicate that the xenoliths are mostly the solid residues of varying degrees of partial melting (~4–~15%), but some have geochemical signatures reflecting the processes of melt/rock interaction. Mantle-normalized trace element patterns for the peridotites vary from LREE-depleted to strongly LREE-enriched, reflecting multistage mantle processes from simple melt extraction to metasomatic enrichment. Rhenium and platinum group element (PGE) abundances and 187Os/188Os systematics of peridotites were examined in order to identify the nature of the mantle source and the processes effective during variable stages of melt extraction within the sub-continental lithospheric mantle (SCLM). The peridotites are characterized by chondritic Os/Ir and Pt/Ir ratios and slightly supra-chondritic Pd/Ir and Rh/Ir ratios, representing a mantle region similar in composition to the primitive mantle (PM). Moderate enrichment in PPGE (Pd–Pt–Rh)/IPGE (Ir–Os–Ru) ratios with respect to the PM composition in the metasomatized samples, however, reflects compositional modification by sulphide addition during possible post-melting processes. The 187Os/188Os ratios of the peridotites range from 0.11801 to 0.12657. Highly unradiogenic Os isotope compositions (γOs at 10 Ma from –7.0 to –3.2) in the chemically undisturbed mantle residues are accompanied by depletion in Re/Os ratios, suggesting long-term differentiation of SCLM by continuous melt extraction. For the metasomatized peridotites, however, systematic enrichments in PPGE and Re abundances, and the observed positive covariance between 187Re/188Os and γOs can most likely be explained by interaction of solid residues with basaltic melts produced by melting of relatively more radiogenic components in the mantle. Significantly, the wide range of 187Os/188Os ratios characterizing the entire xenolith suite seems to be consistent with multistage evolution of SCLM and suggests that parts of the lithospheric mantle contain materials that have experienced ancient melt removal (~1.3 Ga) which created time-integrated depletion in Re/Os ratios; in contrast, some other parts display evidence indicative of recent perturbation in the Re–Os system by sulphide addition during interaction with metasomatizing melts.  相似文献   

9.
The Jinchuan deposit, NW China, is one of the world’s most important Ni-Cu-(PGE) sulfide deposits related to a magma conduit system and is hosted in an ultramafic intrusion. The intrusion is composed of lherzolite and dunite with the two largest sulfide ore bodies (named as ore body 1 and 2) in its middle portion. The sulfide ores may be disseminated, net-textured, or massive. The disseminated and net-textured sulfide ores are characterized by variable but generally low PGE concentrations: 10-3200 ppb Pt, 240-9800 ppb Pd, 17-800 ppb Ir, 25-1500 ppb Ru, and 15-400 ppb Rh in 100% sulfides. The massive sulfide ores are extremely low in Pt (<30 ppb) on a 100% sulfides and have very high Cu/Pd ratios, ranging from 104 to 4.5 × 105. The low PGE contents suggest that the sulfide ores formed from the silicate magmas that had already experienced prior-sulfide separation.Our calculations indicate that if the first stage basaltic magmas had contained 6.3 ppb Pt, 6.2 ppb Pd, and 0.1 ppb Ir, 0.008% sulfide removal would result in PGE-depletion in the residual magma with 0.57 ppb Pt, 0.25 ppb Pd, and 0.009 ppb Ir. The Jinchuan sulfides were formed by a second stage of sulfide segregation from a PGE-depleted magma under silicate/sulfide liquid ratios (R-factor) ranging from 103 to 104 in a deep-seated staging chamber. The massive sulfide ores and some of the net-textured sulfide ores exhibit strong negative Pt-anomalies that cannot be explained by sulfide segregation under variable R-factors. Instead, the sulfide melts that formed the massive ores were segregated from magmas experienced prior fractionation of Pt-Fe alloy. Alternatively, the Pt may have been selectively leached by hydrothermal fluids during remobilization of the sulfide melts that produced the massive sulfides, which occur in cross-cutting veins. We propose that the Jinchuan intrusion and ore bodies were formed by injections of sulfide-free and sulfide-bearing olivine mushes from a deep-seated staging chamber.  相似文献   

10.
Platinum group elements (PGE: Os, Ir, Ru, Rh, Pt, Pd) are important geochemical and cosmochemical tracers. Depending on physical and chemical behaviour the PGEs are divided into two subgroups: IPGE (Ir, Os, Ru) and PPGE (Pd, Pt, Rh). Platinum group elements show strong siderophile and chalcophile affinity. Base metal sulfides control the PGE budget of the Earth’s mantle. Mantle xenoliths contain two types of sulfide populations: (1) enclosed within silicate minerals, and (2) interstitial to the silicate minerals. In terms of PGE characters the included variety shows IPGE enriched patterns — similar to the melt-depleted mantle harzburgite, whereas the interstitial variety shows PPGE enriched patterns — resembling the fractionated PGE patterns of the basalt. These PGE characters of the mantle sulfides have been interpreted to be representative of multi-stages melting process of the mantle that helped to shape the chemical evolution of the Earth.  相似文献   

11.
Whole-rock major, trace, and platinum-group elemental (PGE) data, and major and trace element compositions of diopsides are reported for peridotite xenoliths from (1) early Mesozoic volcanic breccias in Xinyang, located at the southern margin of the North China Craton, and (2) Cenozoic basalts in Hebi and Shanwang, both of which are situated within the craton and lie on the North-South Gravity Line and the Tanlu fault zone, respectively. The early Mesozoic Xinyang xenoliths are harzburgites containing <2% Cpx with high Cr# and enriched in LREE but depleted in HFSE. These xenoliths have chondritic Pd/Ir (1.9-6.6) and Ru/Ir (3.5-4.0) ratios and high Ni and low CaO, Al2O3, and S contents, indicating derivation from a highly refractory mantle that experienced carbonatitic metasomatism. Negative Ce (mean δCe = 0.50) and low Mg/Si ratios of the Xinyang peridotites record the addition of crustal components likely produced from subducted continental material of the Yangtze Craton in the early Mesozoic. The subduction-related modification of the lithospheric mantle was limited to the area close to the collision zone rather than being pervasive throughout the craton. The Cenozoic Hebi peridotite xenoliths are harzburgites with ≤4.5% Cpx and have low CaO and Al2O3 but high Ni contents, chondritic Ru/Ir ratios (2.5-5.4), and a wide range of CaO/Al2O3, Na2O/TiO2, Pt/Ir (0.4-2.3), and Pd/Pt (1.1-8.5) ratios. These peridotites are interpreted as the shallow relics of the cratonic mantle. In contrast, the Cenozoic Shanwang xenoliths are lherzolites (5.6%-19.5% Cpx), which have low Ni contents and low Ni/Cu and Mg/Si ratios, but high CaO, Al2O3, S, and HREE contents, and relatively high Ru/Ir and Pd/Ir ratios. The Shanwang peridotites show pronounced positive Ti and Sr, negative Th, and slightly negative Y, Zr, and Hf anomalies. They are believed to represent newly accreted fertile lithospheric mantle derived from cooling of upwelling asthenosphere. The documented temporal and spatial variations in the Mesozoic-Cenozoic mantle support the previous suggestion that the buoyant refractory continental keel in the eastern part of the North China Craton was heterogeneously replaced by younger fertile lithospheric mantle in the late Cretaceous-early Tertiary.  相似文献   

12.
Highly depleted harzburgites and dunites were recovered from ODP Hole 1274A, near the intersection between the Mid-Atlantic Ocean Ridge and the 15°20′N Fracture Zone. In addition to high degrees of partial melting, these peridotites underwent multiple episodes of melt–rock reaction and intense serpentinization and seawater alteration close to the seafloor. Low concentrations of Se, Cu and platinum-group elements (PGE) in harzburgites drilled at around 35–85 m below seafloor are consistent with the consumption of mantle sulfides after high degrees (>15–20 %) of partial melting and redistribution of chalcophile and siderophile elements into PGE-rich residual microphases. Higher concentrations of Cu, Se, Ru, Rh and Pd in harzburgites from the uppermost and lowest cores testify to late reaction with a sulfide melt. Dunites were formed by percolation of silica- and sulfur-undersaturated melts into low-Se harzburgites. Platinum-group and chalcophile elements were not mobilized during dunite formation and mostly preserve the signature of precursor harzburgites, except for higher Ru and lower Pt contents caused by precipitation and removal of platinum-group minerals. During serpentinization at low temperature (<250 °C) and reducing conditions, mantle sulfides experienced desulfurization to S-poor sulfides (mainly heazlewoodite) and awaruite. Contrary to Se and Cu, sulfur does not record the magmatic evolution of peridotites but was mostly added in hydrothermal sulfides and sulfate from seawater. Platinum-group elements were unaffected by post-magmatic low-temperature processes, except Pt and Pd that may have been slightly remobilized during oxidative seawater alteration.  相似文献   

13.
We have analysed 18 samples of komatiite from five consecutivelava flows of the Komati Formation at Spinifex Creek, BarbertonMountain Land. Our samples include massive komatiite, varioustypes of spinifex-textured komatiite, and flow-top breccias.The rocks have low platinum-group element (PGE) contents andPd/Ir ratios relative to komatiites from elsewhere, at 0·45–2ppb Os, 1–1·4 ppb Ir, <1–5 ppb Ru, 0·33–0·79ppb Rh, 1·7–6 ppb Pt, 1·6–6·1ppb Pd, and Pd/Ir 3·3. Pt/Pd ratios are c. 1·1.Platinum-group elements are depleted relative to Cu (Cu/Pd =15 300). They display a tendency to increase in the less magnesiansamples, suggesting that the magmas were S-undersaturated uponeruption and that all PGE were incompatible with respect tocrystallizing olivine. Komatiites from the Westonaria Formationof the Ventersdorp Supergroup and the Roodekrans Complex nearJohannesburg have broadly similar PGE patterns and concentrationsto the Komati rocks, suggesting that the PGE contents of SouthAfrican ultrabasic magmas are controlled by similar processesduring partial mantle melting and low-P magmatic crystallization.Most workers believe that the Barberton komatiites formed byrelatively moderate-degree batch melting of the mantle at highpressure. Based on the concentration of Zr in the Komati samples,we estimate that the degree of partial melting was between 26and 33%. We suggest that the low PGE contents and Pd/Ir ratiosof all analysed South African komatiites are the result of sulphideshaving been retained in the mantle source during partial melting.The difference in Pd/Ir between our samples and Al-undepletedkomatiites from elsewhere further suggests that the PGE arefractionated during progressive partial melting of the mantle.Thus, our data are in agreement with other recent studies showingthat the PGE are hosted by different phases in the mantle, withPd being concentrated by interstitial Cu-rich sulphide, andthe IPGE (Os, Ir, Ru) and Rh resting in monosulphide solid solutionincluded within silicates. Pt is possibly controlled by a discreterefractory phase, as Pt/Pd ratios of most komatiites worldwideare sub-chondritic. KEY WORDS: platinum-group elements; komatiites; Barberton; mantle melting; South Africa  相似文献   

14.
The Xigaze ophiolite in the central part of the Yarlung–Zangbo suture zone, southern Tibet, has a well-preserved sequence of sheeted dykes, basalts, cumulates and mantle peridotites at Jiding and Luqu. Both the basalts and diabases at Jiding have similar compositions with SiO2 ranging from 45.9 to 53.5 wt%, MgO from 3.1 to 6.8 wt% and TiO2 from 0.87 to 1.21 wt%. Their Mg#s [100Mg/(Mg + Fe)] range from 40 to 60, indicating crystallization from relatively evolved magmas. They have LREE-depleted, chondrite-normalized REE diagrams, suggesting a depleted mantle source. These basaltic rocks have slightly negative Nb- and Ti-anomalies, suggesting that the Xigaze ophiolite represents a fragment of mature MORB lithosphere modified in a suprasubduction zone environment. The mantle peridotites at Luqu are high depleted with low CaO (0.3–1.2 wt%) and Al2O3 (0.04–0.42 wt%). They display V-shaped, chondrite-normalized REE patterns with (La/Gd)N ratios ranging from 3.17 to 64.6 and (Gd/Yb)N from 0.02 to 0.20, features reflecting secondary metasomatism by melts derived from the underlying subducted slab. Thus, the geochemistry of both the basaltic rocks and mantle peridotites suggests that the Xigaze ophiolite formed in a suprasubduction zone.Both the diabases and basalts have Pd/Ir ratios ranging from 7 to 77, similar to MORB. However, they have very low PGE abundances, closely approximating the predicted concentration in a silicate melt that has fully equilibrated with a fractionated immiscible sulfide melt, indicating that the rocks originated from magmas that were S-saturated before eruption. Moderate degrees of partial melting and early precipitation of PGE alloys explain their high Pd/Ir ratios and negative Pt-anomalies. The mantle peridotites contain variable amounts of Pd (5.99–13.5 ppb) and Pt (7.92–20.5 ppb), and have a relatively narrow range of Ir (3.47–5.01 ppb). In the mantle-normalized Ni, PGE, Au and Cu diagram, they are relatively rich in Pd and depleted in Cu. There is a positive correlation between CaO and Pd. The Pd enrichment is possibly due to secondary enrichment by metasomatism. Al2O3 and Hf do not correlate with Ir, but show positive variations with Pt, Pd and Au, indicating that some noble metals can be enriched by metasomatic fluids or melts carrying a little Al and Hf. We propose a model in which the low PGE contents and high Pd/Ir ratios of the basaltic rocks reflect precipitation of sulfides and moderate degrees of partial melting. The high Pd mantle peridotites of Xigaze ophiolites were formed by secondary metasomatism by a boninitic melt above a subduction zone.  相似文献   

15.
The nature of PGE-Re (PGE = Pt, Pd, Os, Ir, Ru) behavior in subcontinental lithospheric mantle was investigated using new, high precision PGE-Re abundance measurements and previously published Re-Os isotopic analyses of peridotite xenoliths from the Sierra Nevada and Mojave Province, California. Ru/Ir ratios and Ir concentrations are constant over a wide range in S content and major-element fertility indices (e.g., Mg/(Mg+Fe)), indicating that Ru and Ir are not only compatible during partial melting, but also that their partitioning behaviors may not be controlled entirely by sulfide. Pt/Ir, Pd/Ir, Os/Ir, and Re/Ir ratios range from slightly superchondritic to distinctly subchondritic for all xenoliths except for one anomalous sample (1026V), which is characterized by radiogenic 187Os/188Os, low Re/Os ratio, and large enrichments in Cu, Os, Pt, Pd, and S relative to Ir (COPPS metasomatism). Assuming chondritic initial relative abundances, the magnitudes of some of the depletions in Pt, Pd, Os, and Re relative to Ir and Ru require incompatible behavior or substantial secondary loss. In detail, some samples, which are otherwise characterized by fertile major-element indices, exhibit low S contents and subchondritic Os/Ir and Pd/Ir ratios, indicating that depletions in Pd and Os relative to Ir are not simple functions of the degree of melting as inferred from major elements. Possible mechanisms for depleting Pt, Pd, Os, and Re relative to Ir and Ru include partitioning into chromian spinels and alloys, partitioning between sulfide and sulfide liquids, mobilization by aqueous fluids, or secondary loss associated with late-stage sulfide breakdown. However, it is not possible to explain all of the depletions in Pt, Pd, Os, and Re by any single mechanism.The preferential enrichment in Os over Re and Ir in sample 1026V is somewhat paradoxical because this sample’s radiogenic 187Os/188Os requires a metasomatic agent, originating from a source with a high time-integrated Re/Os ratio. The abundant garnet websterite xenoliths may be a suitable source because they have high Re/Os ratios, radiogenic Os, and abundant garnet, which may sequester Re over Os during partial melting. However, their extremely low Os contents require the processing of large amounts of garnet websterite to concentrate enough Os into the metasomatic sulfides needed to enrich sample 1026V in Os. The homogeneity in 187Os/188Os ratio in the remaining xenoliths suggest that their Os isotopic compositions were not significantly affected by PGE metasomatism. The singular nature of 1026V’s composition emphasizes the rarity of COPPS metasomatism.  相似文献   

16.
The concentrations of Rh, Au and other highly siderophile elements (HSE: Re, Os, Ir, Ru, Pt, Rh, Pd and Au), and 187Os/188Os isotope ratios have been determined for samples from peridotite massifs and xenoliths in order to further constrain HSE abundances in the Earth's mantle and to place constraints on the distributions processes accounting for observed HSE variations between fertile and depleted mantle lithologies. Concentrations of Re, Os, Ir, Ru, Pt and Pd were determined by isotope dilution ICP-MS and N-TIMS. The monoisotopic elements Rh and Au were quantified by standardization relative to the concentrations of Ru and Ir, respectively, and were determined from the same digestion aliquot as other HSE. The measurement precision of the concentration data under intermediate precision conditions, as inferred from repeated analyses of 2 g test portions of powdered samples, is estimated to be better than 10% for Rh and better than 15% for Au (1 s).Fertile lherzolites display non-systematic variation of Rh concentrations and constant Rh/Ir of 0.34 ± 0.03 (1 s, n = 57), indicating a Rh abundance for the primitive mantle of 1.2 ± 0.2 ng/g. The data also suggest that Rh behaves as a compatible element during low to moderate degrees of partial melting in the mantle or melt–mantle interaction, but may be depleted at higher degrees of melting. In contrast, Au concentrations and Au/Ir correlate with peridotite fertility, indicating incompatible behaviour of Au during magmatic processes in the mantle. Fertile lherzolites display Au/Ir ranging from 0.20 to 0.65, whereas residual harzburgites have Au/Ir < 0.20. Concentrations of Au and Re are correlated with each other and suggest similar compatibility of both elements. The primitive mantle abundance of Au calculated from correlations displayed by Au/Ir with Al2O3 and Au with Re is 1.7 ± 0.5 ng/g (1 s).The depletion of Pt, Pd, Re and Au relative to Os, Ir, Ru and Rh displayed by residual harzburgites, suggests HSE fractionation during partial melting. However, the HSE abundance variations of fertile and depleted peridotites cannot be explained by a simple fractionation process. Correlations displayed by Pd/Ir, Re/Ir and Au/Ir with Al2O3 may reflect refertilization of previously melt depleted mantle rocks due to reactive infiltration of silicate melts.Relative concentrations of Rh and Au inferred for the primitive mantle model composition are similar to values of ordinary and enstatite chondrites, but distinct from carbonaceous chondrites. The HSE pattern of the primitive mantle is inconsistent with compositions of known chondrite groups. The primitive mantle composition may be explained by late accretion of a mixture of chondritic with slightly suprachondritic materials, or alternatively, by meteoritic materials mixed into mantle with a HSE signature inherited from core formation.  相似文献   

17.
Summary ?The PGE contents of chromite separated from peridotite layers of Archaean mafic–ultramafic flows, Abitibi belt (Canada), indicate enrichment in Os–Ir–Ru (600 ppb) relative to Pd–Au (<5 ppb). Evidently, chromite was a sink for Ir–Os–Ru during melt-chromite fractionation in each of the flows. However, an additional phase, probably olivine, is required to explain the bulk Ir content of the sulphide-poor peridotites. In contrast, the chromite Pt contents range from <10 ppb to 400 ppb, with large variation in Pt/Ru (0.02–2.76) and Pt/Pd (5–400) ratios. The Pt enrichment may be related to the presence of Pt spinel structure compounds in oxidised melt, reflecting Fe–Ti spinel-related mineralisation in higher pyroxenite-gabbro layers. Received December 5, 2002; revised version accepted January 7, 2003  相似文献   

18.
Summary The Jinchuan deposit is a platinum group element (PGE)-rich sulfide deposit in China. Drilling and surface sampling show that three categories of platinum group element (PGE) mineralization occur; type I formed at magmatic temperatures, type II occurs in hydrothermally altered zones of the intrusion, and type III in sheared dunite and lherzolite. All ore types were analyzed for Os, Ir, Ru, Rh, Pd, Pt and Au, as well as for Cu, Ni, Co and S. Type I ore has (Pt + Pd)/(Os + Ir + Ru + Rh) ratios of <7 and relatively flat chondrite-normalized noble metal patterns; the platinum group minerals (PGM) are dominated by sperrylite and moncheite associated with chalcopyrite, pyrrhotite and pentlandite. Type II has (Pt + Pd)/(Os + Ir + Ru + Rh) ratios from 40 to 330 and noble metal distribution patterns with a positive slope; the most common PGM are sperrylite and Pd bismuthotelluride phases concentrated mostly at the margins of base metal sulfides. Type III ores have the highest (Pt + Pd)/(Os + Ir + Ru + Rh) ratios from 240 to 710; the most abundant PGM are sperrylite and phases of the Pt–Pd–Te–Bi–As–Cl system. It is concluded that the Jinchuan deposit formed as a result of primary magmatic crystallization followed by hydrothermal remobilization, transport, and deposition of the PGE.  相似文献   

19.
The concentrations of Ir, Ru, Pt and Pd have been determined in 29 Mid-Oceanic Ridge basaltic (MORB) glasses from the Pacific (N = 7), the Atlantic (N = 10) and the Indian (N = 11) oceanic ridges and the Red Sea (N = 1) spreading centers. The effect of sulfide segregation during magmatic differentiation has been discussed with sample suites deriving from parental melts produced by high (16%) and low (6%) degrees of partial melting, respectively. Both sample suites define positive and distinct covariation trends in platinum-group elements (PGE) vs. Ni binary plots. The high-degree melting suite displays, for a given Ni content, systematically higher PGE contents relative to the low-degree melting suite. The mass fraction of sulfide segregated during crystallization (Xsulf), the achievement of equilibrium between sulfide melt and silicate melts (Reff), and the respective proportions between fractional and batch crystallization processes (Sb) are key parameters for modeling the PGE partitioning behavior during S-saturated MORB differentiation. Regardless of the model chosen, similar sulfide melt/silicate melt partition coefficients for Ir, Ru, Pt and Pd are needed to model the sulfide segregation process, in agreement with experimental data. When corrected for the effect of magmatic differentiation, the PGE data display coherent variations with partial melting degrees. Iridium, Ru and Pt are found to be compatible in nonsulfide minerals whereas the Pd behaves as a purely chalcophile element. The calculated partition coefficients between mantle sulfides and silicate melts (assuming a PGE concentration in the oceanic mantle at ∼0.007 × CI-chondritic abundances) increase from Pd (∼103) to Ir (∼105). This contrasting behavior of PGE during S-saturated magmatic differentiation and mantle melting processes can be accounted for by assuming that Monosufide Solid Solution (Mss) controls the PGE budget in MORB melting residues whereas MORB differentiation processes involve Cu-Ni-rich sulfide melt segregation.  相似文献   

20.
The emission of platinum group elements (PGE) from automobile catalytic converters has led to enrichment of PGE in road dusts and roadside soils in urban areas that are well above the natural background levels. This paper evaluates the source of contamination of all the PGE and Au in road dusts and roadside soils in the Pearl River Delta region, including three major cities, Shenzhen, Guangzhou and Hong Kong, South China. Samples were digested using Carius tube and analyzed by isotope dilution ICP-MS; Os was separated by distillation and other PGE by Te-coprecipitation. All samples have elevated PGE concentrations above the background values of uncontaminated soils and contain higher Pt, Pd and Rh than other PGE. The maximum values are 181 ng/g Pt, 514 ng/g Pd, 53 ng/g Rh and 1345 ng/g Au. There are clear positive correlations between Pt and Pd, Pt and Rh, and Pd and Rh, indicating that the main emitted of PGE from automobile catalyst are Pt, Pd and Rh. High concentrations of Au were also found in road dust samples from Hong Kong and Shenzhen. Dust samples with higher Os contents have lower 187Os/188Os ratios. Samples from Hong Kong show relatively high Pt/Rh ratios. Positive correlations between Pt and Ru, and Pt and Ir were found in Shenzhen and Hong Kong, but only positive correlations between Pt and Ir were found in Guangzhou. These different characteristics reflect different automobile catalytic systems used in Hong Kong and mainland China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号