首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluid origins in the sandstone-hosted Pb-Zn class of ore deposit have been investigated in three deposits from Scandinavia; Laisvall, Vassbo and Osen. The deposits studied are hosted by autochthonous Cambrian sandstones that preserve a near original structural relationship to the underlying Precambrian basement, enabling the role of basement interaction to be assessed.Mineral samples have been collected from across the paragenetic sequence: sphalerite, galena, pyrite, fluorite and barite, of impregnation and related joint-hosted mineralization. Fluid-inclusion halogen (Cl, Br and I) and noble gas isotope (40Ar, 36Ar, 84Kr) compositions were determined simultaneously by noble gas mass spectrometry of irradiated sample splits. Complementary He isotope analyses are obtained from nonirradiated splits of the same samples.3He/4He values at Laisvall and Osen are highly radiogenic, 0.02 Ra, and the 4He/40Ar* ratio extends to values greater than the crustal production value of 5, characteristic of low-temperature crustal fluids. At Vassbo, a slightly elevated 3He/4He ratio of 0.1-0.3 Ra is compatible with a very minor mantle component (1%-4%) suggesting a distal source for the basinal brine-dominated fluid.Br/Cl molar ratios 3.2-8.2 × 10−3 are greater than the present seawater value of 1.54 × 10−3 and correspond with I/Cl molar ratios in the range 64-1600 × 10−6. The upper limits of both the I/Cl and Br/Cl values are amongst the highest measured in crustal fluids. Together, the data indicate acquisition of salinity by the evaporation of seawater beyond the point of halite saturation and subsequent fluid interaction with I-rich organic matter in the subsurface. The data are compatible with the independent transport of sulfate and sulfide and indicate that fluids responsible for joint-hosted mineralization were distinct to those responsible for impregnation mineralization.All three deposits preserve fluids with 40Ar/36Ar in the range of 6,000-10,000 and fluid inclusion 40Ar* concentrations of >0.02-0.05 cm3cm−3. Fluid-inclusion 4He concentrations are also extremely elevated with maximum values of ∼0.1 cm3cm−3 in Laisvall fluorite and sphalerite. The high 40Ar/36Ar values, together with the high 4He and 40Ar* concentrations, result from a very long premineralization crustal residence time on the order of 100-200 Ma.Together, the noble gas and halogen data are compatible with a Caledonian mineralization event (∼425 Ma) caused by mixing of two or more, long-lived, hydrothermal basinal brines and pore fluids at the sites of mineralization. The data suggest negligible recharge of the basinal brines by meteoric water and indicate extensive fluid-basement interaction before mineralization. The similar noble gas composition of each deposit, suggests that similar processes operated at all three deposits and favors a single-pass fluid-flow model for mineralization.  相似文献   

2.
《Applied Geochemistry》2001,16(3):291-315
Hydraulic changes caused by tunneling at the Aspo Hard Rock Laboratory (HRL) in Sweden have been investigated over a period of 2a using different hydrochemical approaches, i.e. noble gas content, isotopic measurements and major ion concentrations. The dissolved noble gases (4He and Ne contents, and the ratio of 3He/4He, 40Ar/36Ar), stable isotopes, chemical concentrations of major ions, and 36Cl/Cl ratios, were determined in groundwater samples collected in the tunnel from borehole sections isolated by inflated packers. Groundwater was categorized into 3 groups based on 4He and Cl contents: undisturbed groundwater (i.e. prior to tunnel construction) with high 4He and Cl contents, groundwater that has been gradually changed by mixing with Baltic seawater and whose 4He and Cl contents have gradually increased with increasing depth, and groundwater that has been totally changed due to a rapid mixing of Baltic seawater and/or shallow groundwater and whose 4He and Cl contents are extremely low compared with other samples collected at the same surrounding depth. The oldest groundwater with a high salinity of more than 14,000 mg l−1 of Cl is estimated to be more than 1.8 Ma old. The groundwater residence time ranges from 0.9 to 900 Ka in the mixing-zone. Groundwater in the disturbed zone where rapid mixing has occurred is hard to date reliably and its primary hydrochemical character has already been lost.  相似文献   

3.
In order to better investigate the compositions and the origins of fluids associated with diamond growth, we have carried-out combined noble gas (He and Ar), C and N isotope, K, Ca and halogen (Cl, Br, I) determinations on fragments of individual microinclusion-bearing diamonds from the Panda kimberlite, North West Territories, Canada. The fluid concentrations of halogens and noble gases in Panda diamonds are enriched by several orders of magnitude over typical upper mantle abundances. However, noble gas, C and N isotopic ratios (3He/4He = 4-6 Ra, 40Ar/36Ar = 20,000-30,000, δ13C = −4.5‰ to −6.9‰ and δ15N = −1.2‰ to −8.8‰) are within the worldwide range determined for fibrous diamonds and similar to the mid ocean ridge basalt (MORB) source value. The high 36Ar content of the diamonds (>1 × 10−9 cm3/g) is at least an order of magnitude higher than any previously reported mantle sample and enables the 36Ar content of the subcontinental lithospheric mantle to be estimated at ∼0.6 × 10−12 cm3/g, again similar to estimates for the MORB source. Three fluid types distinguished on the basis of Ca-K-Cl compositions are consistent with carbonatitic, silicic and saline end-members identified in previous studies of diamonds from worldwide sources. These fluid end-members also have distinct halogen ratios (Br/Cl and I/Cl). The role of subducted seawater-derived halogens, originally invoked to explain some of the halogen ratio variations in diamonds, is not considered an essential component in the formation of the fluids. In contrast, it is considered that large halogen fractionation of a primitive mantle ratio occurs during fluid-melt partitioning in forming silicic fluids, and during separation of an immiscible saline fluid.  相似文献   

4.
A bulk geochemical study has been carried out on fluid inclusion leachates extracted from quartz veins from porphyry Cu deposits in Butte, Montana, USA and Bingham Canyon, Utah, USA. The leachates mostly represent low-salinity magmatic–hydrothermal fluid inclusions. Their halogen ratios (Br/Cl) of fluid inclusion leachates were determined by ion chromatography, and δ37Cl values of the leachates were measured by continuous-flow isotope ratio mass spectrometry. Br/Cl ratios from early pre-Main stage and later Main stage veins at Butte range from 0.60 to 1.88 × 10−3 M. Ratios are similar in pre-Main stage veins with sericite bearing selvages and Main stage samples ranging from 0.81 to 1.08 × 10−3 and from 0.92 to 1.88 × 10−3 M, respectively, clustering below seawater (1.54 × 10−3 M) and overlapping mantle values (~1–2 × 10−3 M). Two samples associated with early pre-Main stage potassic alteration yield distinctly lower Br/Cl ratios of 0.60 and 0.64 × 10−3 M. Butte δ37Cl values range from −0.8‰ to −2.3‰ with no significant difference between pre-Main stage and Main stage samples. Br/Cl ratios for quartz veins from Bingham Canyon range from 0.18 to 3.68 × 10−3 M. Br/Cl ratios from Bingham range above and below previously reported for porphyry copper deposits. In contrast to Butte, δ37Cl values for Bingham are lower, ranging from −0.9‰ to −4.1‰. In the absence of any processes which can significantly fractionate chlorine isotopes at high temperatures, we suggest that the porphyry system at Bingham, and to a lesser extent at Butte, have inherited negative chlorine isotopic signatures from the subducting slab generated at low temperatures.  相似文献   

5.
Halogen ratios (Br/Cl and I/Cl) and concentrations provide important information about how sedimentary formation waters acquire their salinity, but the possible influence of organic Br derived from sedimentary wall-rocks is rarely quantified. Here, it is demonstrated that Br/Cl versus I/Cl mixing diagrams can be used to deconvolve organic Br contributions; that organic matter has a limited range of Br/I ratios; and that organic Br is a more significant component in Zn–Pb deposit ore fluids than previously recognised. The significance of these findings is illustrated for the Lennard Shelf Zn–Pb deposits of Western Australia.Fluid inclusions related to Lennard Shelf Zn–Pb mineralisation have variable salinity and hydrocarbon contents. The halogen data from these fluid inclusions require mixing of three fluid end-members: (1) an evaporated seawater bittern brine (30 wt.% NaCl equiv.) with greater than seawater Br/Cl ratio; (2) a lower salinity pore fluid (?5 wt.% NaCl equiv.) with moderately elevated Br/Cl and I/Cl; and (3) fluids with Br/Cl ratios of ~5 times seawater and extremely elevated I/Cl ratios of ~11,500 times seawater. The first two fluids have 40Ar/36Ar of 300–400 and greater than air saturated water 36Ar concentrations that are typical of fluid inclusions related to Zn–Pb mineralisation. The third ‘organic-rich’ fluid has the highest 40Ar/36Ar ratio of up to 1500 and a depleted 36Ar concentration.Mineralisation is interpreted to have resulted from mixing of Zn-rich evaporitic brines and H2S present in hydrocarbons. It is suggested that aqueous fluids acquired organic Br and I from hydrocarbons, and that hydrocarbons exsolving from the aqueous fluid removed noble gases from solution. Interaction of variably saline brines and hydrocarbons could account for the variable Br/Cl and I/Cl composition, and 36Ar concentrations, recorded by Lennard Shelf fluid inclusions. The distinct 40Ar/36Ar signature of the fluid with the highest I/Cl ratio suggests the hydrocarbons and brines were sourced independently from different parts of the sedimentary basin. These data indicate the complementary nature of halogen and noble gas analysis and provide new constraints on important mixing processes during sediment-hosted Zn–Pb mineralisation.  相似文献   

6.
文章利用黄铁矿流体包裹体惰性气体同位素,探讨了广西栗木锡铌钽矿田成矿流体的来源.黄铁矿流体包裹体的3He/4He比值为0.14~0.97 Ra,远远低于地幔流体的比值,接近饱和大气水的比值,并与地壳流体的比值处在相同的数量级上;40 Ar/36 Ar比值为555.98~ 855.11,平均705.55,显然偏离大气氩的同位素组成;40Ar*/4He比值为0.08~0.27,平均值为0.153,接近地壳值;20Ne/22 Ne=9.671~9.748和21Ne/22 Ne=0.0306~ 0.0330,具有饱和大气水的Ne同位素比值特征.结果表明,广西栗木锡铌钽矿田老虎头、牛栏岭和金竹源3个矿床的成矿流体是大气水和地壳流体的混合流体;水溪庙矿床的成矿流体也主要是大气水和地壳流体的混合流体,但可能有少量地幔流体的加入.  相似文献   

7.
The abundances and isotopic compositions of Helium and Argon have been analyzed in a suite of fresh spinel peridotite xenoliths in Cenozoic basalts from the eastern North China Craton (NCC) by step-wise heating experiments, to investigate the nature of noble gas reservoirs in the subcontinental lithospheric mantle beneath this region. The xenoliths include one harzburgite collected from Hebi in the interior of the NCC, two lherzolites from Hannuoba at the northern margin of the craton, and three lherzolites from Shanwang and Nushan on the eastern margin. 3He/4He ratios in most of the xenoliths are similar to those of mid-ocean ridge basalts (MORB) or slightly lower (2–10.5 Ra, where Ra is the 3He/4He ratio of the atmosphere), suggesting mixing of MORB-like and radiogenic components. One olivine separate from Nushan has a helium value of 25.3 Ra, probably suggesting cosmogenic 3He addition. The 40Ar/36Ar ratios vary from atmospheric value (296) to 1625, significantly lower than the MORB value. Available data of the peridotite xenoliths indicate the He and Ar isotopic systematics of the mantle reservoirs beneath the NCC can be interpreted as mixtures of at least three end-members including MORB-like, radiogenic and atmospheric components. We suggest that the MORB-like noble gases were derived from the underlying asthenosphere during mantle upwelling, whereas the radiogenic and recycled components probably were incorporated into the lithospheric mantle during circum-craton subduction of oceanic crust. Available data suggest that the MORB-like fluids are better preserved in the interior of the NCC, whereas the radiogenic ones are more prevalent at the margins. The Paleo-Asian ocean subduction system probably was responsible for the enriched and recycled noble gas signatures on the northern margin of the craton, while the Pacific subduction system could account for the observed He–Ar isotopic signatures beneath the eastern part. Therefore, integration of helium and argon isotopes reflects heterogeneous metasomatism in the lithospheric mantle and demonstrates the critical importance of lithospheric mantle modification related to both circum-craton subduction of oceanic crust and asthenospheric upwelling beneath the eastern NCC.  相似文献   

8.
The Yangtze craton (YC), in eastern China, is one of the oldest cratons in the world and is characterized by a complex tectonic and geodynamic evolution. This evolution regards most of the eastern China craton, which since Mesozoic time has undergone significant thinning (> 200 km) of Archean lithosphere. This thinning favored the refertilization of the old refractory subcontinental lithospheric mantle (SCLM) by the upwelling of younger fertile asthenosphere. Whether this feature is localized only beneath certain areas of eastern China or is a more widespread characteristic of the mantle, including the YC, is a matter of debate.In order to constrain the history of the YC SCLM, we have measured the He- and Ar-isotopic compositions of fluid inclusions hosted in mantle xenoliths in the Lianshan area, which is part of the poorly investigated YC in south-east China. We also report new mineral chemistry and trace element compositions of clinopyroxenes from the same suite of samples, for comparison with noble gases. Two distinct types of xenoliths can be identified: Type 1, characterized by mantle-like He-isotopic (3He/4He) ratios (up to 9.1 Ra), represents fragments of a fertile lithospheric mantle; Type 2, showing 3He/4He values in the SCLM range (3He/4He < 7 Ra), represents shallow relicts of a refractory mantle. The patterns of rare-earth elements as well as the Y and Yb concentrations in the clinopyroxenes normalized to primitive mantle (YN and YbN, respectively) indicate that fractional partial melting might have affected the local mantle by < 3% in Type 1 and up to 20% in Type 2 xenoliths from Lianshan, respectively. The range of 4He/40Ar* (40Ar* is corrected for atmospheric contamination) ranges from 4.9 × 10 4 to 3.6 × 10 1, which is below the typical production ratio of the mantle (4He/40Ar* = 1–5); this range is however compatible with this fractional partial melting. The variable 3He/4He and 4He/40Ar* values in Lianshan xenoliths suggest that the local mantle source was also influenced by kinetic fractionation, possibly triggered by metasomatic melts. Metasomatism associated with carbonatitic melts, together with fluxing by CO2-rich fluids, have permeated the mantle beneath Lianshan, generating the observed decoupling between noble gases and trace elements. The interpretative framework is also applicable for other mantle xenoliths from eastern China, indicating that the refertilization of the SCLM by ascending mantle-like melts is common also to YC, which can be identified using noble gases.  相似文献   

9.
新疆坡北镁铁-超镁铁质杂岩体由一个辉长岩体以及二十多个超镁铁质侵入体组成,其中坡一超镁铁质岩体稀有气体同位素组成揭示存在地幔柱的贡献。坡北杂岩体西端的坡一、坡四、坡十和坡十四等几个超镁铁质岩体的稀有气体同位素对比分析结果表明,岩浆矿物的3He/4He值(0.26~2.79Ra)分布于地壳与地幔值之间,较高的20Ne/22Ne和较低的21Ne/22Ne值分布于Ne质量分馏线(MFL)和L-K线之间,40Ar/36Ar=295~598。3He/4He与40Ar/36Ar比值揭示坡北杂岩体西端不同超镁铁质岩体形成过程中地幔(柱)、地壳和大气组分的贡献不同,岩体成因也可能不同。其中,坡一岩体具有地幔柱作用的贡献,其他三个岩体的岩石圈地幔及地壳流体组分的贡献较大。岩浆地幔源区由深部地幔柱物质叠加俯冲流体交代的岩石圈地幔物质所组成,大气与地壳物质组分可能由俯冲再循环洋壳带入到岩浆地幔源区以及围岩物质的混入。  相似文献   

10.
《Applied Geochemistry》2001,16(3):323-338
Chemical and isotopic compositions are reported for water, and CO2 and noble gases in groundwater and soda springs from Bioko, Principé, São Tomé and Annobon, all islands located in the off-shore part of the Cameroon Volcanic Line in West Africa. The soda spring waters are of Ca–Mg–HCO3 type, with δD and δ18O values that range from −20 to −8‰ and −5.4 to −2.7‰ respectively, indicative of a meteoric origin. CO2 is the main gas species in the springs. δ13C–CO2 values vary from −2.8 to −5.0‰, overlapping the observed mantle C range (−3 to −8‰). CO2/3He ratios (3–9×109) suggest that most C (∼90%) in the samples is derived from the mantle. Neon has atmospheric isotopic compositions, while Ar is slightly enriched in radiogenic 40Ar. 3He/4He ratios (3.0 to 10.1×10−6 or 2.1 to 7.2Ra, where Ra is the atmospheric ratio of 1.4×10−6) are much higher than those for typical crustal fluids (∼10−8) but lower than those expected for fluids derived from ‘high-3He/4He’ hotspots like Loihi and Iceland. This precludes significant contributions of such fluids in the source regions of the gases, and by inference, in the magmatism of these oceanic islands. Alternatively, approximately 90% of the He in São Tomé gases is inferred to be derived from a source similar to the MORB source. The 3He/4He ratio for the Bioko gas (6.6×10−6) may be derived from a source with a higher time integrated (U+Th)/3He ratio than the MORB source.  相似文献   

11.
《Comptes Rendus Geoscience》2018,350(4):154-163
Fluids trapped in inclusions in well-characterized Archaean hydrothermal quartz crystals were analyzed by the extended argon–argon method, which permits the simultaneous measurement of chlorine and potassium concentrations. Argon and nitrogen isotopic compositions of the trapped fluids were also determined by static mass spectrometry. Fluids were extracted by stepwise crushing of quartz samples from North Pole (NW Australia) and Barberton (South Africa) 3.5–3.0-Ga-old greenstone belts. The data indicate that fluids are a mixture of a low salinity end-member, regarded as the Archaean oceanic water, and several hydrothermal end-members rich in Cl, K, N, and radiogenic parentless 40Ar. The low Cl–K end-member suggests that the salinity of the Archaean oceans was comparable to the modern one, and that the potassium content of the Archaean oceans was lower than at present by about 40%. A constant salinity of the oceans through time has important implications for the stabilization of the continental crust and for the habitability of the ancient Earth.  相似文献   

12.
粤北诸广南部铀矿田是我国重要的花岗岩型铀矿产地之一,有关诸广南部花岗岩型铀矿田的成因,多年来一直存在较大的争议。本文以诸广南部铀矿田典型铀矿床成矿期萤石、方解石和黄铁矿中流体包裹体为测试对象,研究了成矿流体的He、Ar同位素地球化学。研究表明,萤石流体包裹体的~3He/~4He比值为0. 021~0. 186Ra,~(40) Ar/~(36)比值为298. 4~2515. 7;方解石流体包裹体的3He/4He比值为0. 027~0. 209Ra,~(40) Ar/~(36)比值为295. 9~327. 2;黄铁矿流体包裹体的3He/4He比值为0. 021~1. 543Ra,~(40) Ar/~(36)比值为326. 9~1735. 1; He-Ar同位素系统显示成矿流体的3He/4He比值略高于地壳氦同位素特征值(0. 01~0. 05Ra),但低于幔源氦同位素特征值(6~9Ra),~(40) Ar/~(36)比值接近或高于大气氩的同位素组成(~(40) Ar/~(36)=295. 5),成矿流体为壳-幔混合来源。结合H-O、He-Ar、C和Sr等多元同位素证据表明,成矿流体由两个端元组成:一是含有一定放射性成因Ar的大气降水的地壳流体,二是含幔源He的地幔流体。进一步研究表明,受NNW向断裂控制的棉花坑、书楼丘、长排等铀矿床受地幔流体影响比较大,而受NE向断裂控制的蕉坪、东坑、烟筒岭铀矿床受大气降水影响比较大。  相似文献   

13.
Major and trace elements, noble gases, and stable (δD, δ18O) and cosmogenic (3H, 14C) isotopes were measured from geothermal fluids in two adjacent geothermal areas in NW-Mexico, Las Tres Vírgenes (LTV) and Cerro Prieto (CP). The goal is to trace the origin of reservoir fluids and to place paleoclimate and structural-volcanic constraints in the region. Measured 3He/4He (R) ratios normalized to the atmospheric value (Ra = 1.386 × 10−6) vary between 2.73 and 4.77 and are compatible with mixing between a mantle component varying between 42 and 77% of mantle helium and a crustal, radiogenic He component with contributions varying between 23% and 58%. Apparent U–Th/4He ages for CP fluids (0.7–7 Ma) suggest the presence of a sustained 4He flux from a granitic basement or from mixing with connate brines, deposited during the Colorado River delta formation (1.5–3 Ma). Radiogenic in situ 4He production age modeling at LTV, combined with the presence of radiogenic carbon (1.89 ± 0.11 pmC – 35.61 ± 0.28 pmC) and the absence of tritium strongly suggest the Quaternary infiltration of meteoric water into the LTV geothermal reservoir, ranging between 4 and 31 ka BP. The present geochemical heterogeneity of LTV fluids can be reconstructed by mixing Late Pleistocene – Early Holocene meteoric water (58–75%) with a fossil seawater component (25–42%), as evidenced by Br/Cl and stable isotope trends. CP geothermal water is composed of infiltrated Colorado River water with a minor impact by halite dissolution, whereas a vapor-dominated sample is composed of Colorado River water and vapor from deeper levels. δD values for the LTV meteoric end-member, which are 20‰–44‰ depleted with respect to present-day precipitation, as well as calculated annual paleotemperatures 6.9–13.6 °C lower than present average temperatures in Baja California point to the presence of humid and cooler climatic conditions in the Baja California peninsula during the final stage of the Last Glacial Pluvial period. Quaternary recharge of the LTV geothermal reservoir is related to elevated precipitation rates during cooler-humid climate intervals in the Late Pleistocene and Early Holocene. The probable replacement of connate water or pore fluids by infiltrating surface water might have been triggered by enhanced fracture and fault permeability through contemporaneous tectonic–volcanic activity in the Las Tres Vírgenes region. Fast hydrothermal alteration processes caused a secondary, positive δ18O-shift from 4‰ to 6‰ for LTV and from 2‰ to 4‰ for CP geothermal fluids since the Late Glacial infiltration.  相似文献   

14.
The Sanshandao Au deposit is located in the famous Sanshandao metallogenic belt, Jiaodong area. To date, accumulative Au resources of 1000 t have been identified from the belt. Sanshandao is a world-class gold deposit with Au mineralization hosted in Early Cretaceous Guojialing-type granites. Thus, studies on the genesis and ore-forming element sources of the Sanshandao Au deposit are crucial. He and Ar isotopic analyses of fluid inclusions from pyrite(the carrier of Au) indicate that the fluid inclusions have 3 He/4 He=0.043–0.21 Ra with an average of 0.096 Ra and 40 Ar/36 Ar=488–664 with an average of 570.8. These values represent the initial He and Ar isotopic compositions of ore-forming fluids for trapped fluid inclusions. The comparison of H–O isotopic characteristics combined with deposit geology and wall rock alteration reveals that the ore-forming fluids of the Sanshandao Au deposit show mixed crust–mantle origin characteristics, and they mainly comprise crust-derived fluid mixed with minor mantle-derived fluid and meteoric water during the uprising process. The ore-forming elements were generally sourced from pre-Cambrian meta-basement rocks formed by Mesozoic reactivation and mixed with minor shallow crustal and mantle components.  相似文献   

15.
Isotopic data for the Bakircay granodiorite porphyry, give a Late Eocene age for the development of the porphyry copper system. They suggest a close temporal and genetic relationship between igneous and hydrothermal activity, and indicate that magmatic-hydrothermal fluids produced potassic alteration and that meteoric fluids enriched in radiogenic87Sr were responsible for propylitic alteration. The granodiorite porphyry is petrologically similar to porphyry copper-related intrusions from island arc and continental margin settings, which form a group with initial87Sr/86Sr ratios of less than 0. 7043, representing magmas produced in tectonic environments lacking any important component of old (i. e. Precambrian) continental material.  相似文献   

16.
武丽艳 《岩石学报》2019,35(1):215-232
稀有气体因其化学惰性以及在不同来源地质体中的同位素组成差异很大,在研究成矿流体来源、演化和壳-幔相互作用过程中具有非常重要的意义。另外,由于~4He、40Ar是放射成因子体同位素,具有年代积累效应,因此,它们常被用于同位素测年。本文简要回顾了流体包裹体中稀有气体同位素的后生影响和样品、分析方法选择注意事项,以及近年来稀有气体同位素在成矿流体示踪,40K-40Ar、40Ar-39Ar定年及(U-Th)/He定年方面的研究进展。已有研究证实流体包裹体中的稀有气体可能受后期扩散丢失、后生叠加和同位素分馏的影响,要根据目的选择不同的分析方法;稀有气体同位素可以示踪不同类型矿床的流体来源、演化及壳-幔相互作用、稀有气体同位素与卤素联合运用可以用来指示流体和盐度来源、演化过程以及矿物沉淀机制等,~3He/热的研究可以追溯流体的热源及其运移方式;流体包裹体40Ar-39Ar可以用于矿床直接定年,表生含钾矿物的40K-40Ar、40Ar-39Ar定年以及锆石、磷灰石和铁氧化物(U-Th)/He定年可为矿床及氧化带的形成时间、矿床形成后的抬升、剥露历史、古气候演化等重大地质问题讨论提供大量有意义的信息。  相似文献   

17.
Noble gas isotopes of HIMU and EM ocean island basalts from the Cook-Austral and Society Islands were investigated to constrain their origins. Separated olivine and clinopyroxene (cpx) phenocrysts were used for noble gas analyses. Since samples are relatively old, obtained from the oceanic area and showing chemical zoning in cpx phenocrysts, several tests on sample preparation and gas extraction methods were performed. First, by comparing heating and crushing methods, it has been confirmed that the crushing method is suitable to obtain inherent magmatic noble gases without radiogenic and cosmogenic components which were yielded after eruption, especially for He and Ne analyses. Second, noble gas compositions in the core and the rim of cpx phenocrysts were measured to evaluate the zoning effect on noble gases. The result has been that noble gas concentrations and He and Ne isotope ratios are different between them. The enrichment of noble gases in the rim compared to the core is probably due to fractional crystallization. Difference of He and Ne isotope ratios is explained by cosmogenic effect, and isotope ratios of the trapped component seem to be similar between the rim and the core. Third, leaching test reveals no systematic differences in noble gas compositions between leached and unleached samples.3He/4He ratios of HIMU samples in the Cook-Austral Islands are uniform irrespective of phenocryst type (olivine and cpx) and age of samples (10–18 Ma), and lower (average 6.8 RA) than those of the Pacific MORB. On the other hand, 3He/4He of EM samples in the Cook-Austral Islands are similar to MORB values. EM samples in the Society Islands show rather higher 3He/4He than MORB. Ne, Kr and Xe isotope ratios are almost atmospheric within analytical uncertainties. 40Ar/36Ar are not so high as those of MORB. Anomalous noble gas abundance pattern such as He and Ne depletion and Kr and Xe enrichment relative to atmospheric abundances was observed. Furthermore, Ne/Ar and Kr/Ar show correlation with some trace elemental ratios like La/Yb.Lower 3He/4He of HIMU than MORB values requires relatively high time-integrated (U + Th)/3He for the HIMU source, which suggests that the HIMU source was produced from recycled materials which had been once located near the Earth’s surface. Moreover, extreme noble gas abundance pattern and strong correlation of Ne/Ar and Kr/Ar with La/Yb indicate that the HIMU endmember is highly depleted in light noble gases and enriched in heavy noble gases. Such feature is not common to mantle materials and is rather similar to the noble gas abundance patterns of the old oceanic crust and sediment, which supports the model that the HIMU source originates from subducted oceanic crust and/or sediment.If the HIMU source corresponds to the oceanic crust which subducted at 1–2 Ga as suggested by Pb isotope studies, however, the characteristic 3He/4He of HIMU (6.8 RA) would be too high because radiogenic 4He produced by U and Th decay should dramatically decrease 3He/4He. To overcome this problem, the He open system model is introduced which includes the effects of 4He production and diffusion between the HIMU source material and the surrounding mantle. This model favors that the HIMU source resides in the upper mantle, rather than in the lower mantle. Furthermore, this model predicts the thickness of the HIMU source to be in the order of 1 km.In contrast to low and uniform 3He/4He character of HIMU, 3He/4He of EM are rather variable. Entrainment of upper mantle material and/or a less-degassed component are required to explain the observed 3He/4He of EM in the Polynesian area. Participation of the less-degassed component would be related to the “superplume” below the Polynesian region.  相似文献   

18.
The noble gases (He, Ne, Ar, Kr and Xe) are powerful geochemical tracers because they have distinctive isotopic compositions in the atmosphere, crust and mantle. This study illustrates how noble gases can be used to trace fluid origins in high-temperature metamorphic and mineralising environments; and at the same time provides new information on the composition of noble gases in deeper parts of the crust than have been sampled previously.We report data for H2O and CO2 fluid inclusions trapped at greenschist to amphibolite facies metamorphic conditions associated with three different styles of mineralisation and alteration in the Proterozoic Mt Isa Inlier of Australia. Sulphide fluid inclusions are dominated by crustal 4He. However, co-variations in fluid inclusion 20Ne/22Ne, 21Ne/22Ne, 40Ar/36Ar and 136Xe/130Xe indicate noble gases were derived from three or more reservoirs. In most cases, the fluid inclusions elemental noble gas ratios (e.g. Ne/Xe) are close to the ranges expected in sedimentary and crystalline rocks. However, the elemental ratios have been modified in some of the samples providing evidence for independent pulses of CO2, and interaction of CO2 with high-salinity aqueous fluids.Compositional variation is attributed to mixing of: (i) magmatic fluids (or deeply sourced metamorphic fluids) characterised by basement-derived noble gases with 20Ne/22Ne ∼ 8.4, 21Ne/22Ne ∼ 0.4, 40Ar/36Ar ∼ 40,000 and 136Xe/130Xe ∼ 8; (ii) basinal-metamorphic fluids with a narrow range of compositions including near-atmospheric values and (iii) noble gases derived from the meta-sedimentary host-rocks with 20Ne/22Ne ∼ 8-9.8, 21Ne/22Ne < 0.1, 40Ar/36Ar < 2500 and 136Xe/130Xe ∼ 2.2.These data provide the strongest geochemical evidence available for the involvement of fluids from two distinct geochemical reservoirs in Mt Isa’s largest ore deposits. In addition the data show how noble gases in fluid inclusions can provide information on fluid origins, the composition of the crust’s major lithologies, fluid-rock interactions and fluid-fluid mixing or immiscibility processes.  相似文献   

19.
The Lanping basin, Yunnan province, SW China, is located at the juncture of the Eurasian and Indian Plates in the eastern part of the Tibetan Plateau. The Lanping basin, in the Sanjiang Tethyan metallogenic province, is a significant Cu–Ag–Zn–Pb mineralized belt in China that includes the largest sandstone‐hosted Zn–Pb deposit in the world, the Jinding deposit, as well as several Ag–Cu deposits (the Baiyangping and Jinman deposits). These deposits, with total reserves of over 16.0 Mt Pb + Zn, 0.6 Mt Cu, and 7,000 t Ag, are mainly hosted in Meso‐Cenozoic clastic rocks and are dominantly controlled by two Cenozoic thrust systems developed in the western and eastern segments of the basin. The Baiyangping, Babaoshan, and Hetaoqing ore deposits are representative of the epithermal base metal deposits in the Lanping basin. The microthermometric data show that the ore‐forming fluids for these deposits were low temperature (110–180 °C) and had bimodal distribution of salinity at moderate and mid to high salinities (approximately 2–8 wt.% and 18–26 wt.% NaCl equivalent). The C and O isotope data indicate that the ore‐forming fluids were related to hot basin brines. We present new He and Ar isotope data on volatiles released from fluid inclusions contained in sulfides and in barite in these three deposits. 3He/4He ratios of the ore‐forming fluids are 0.01 to 0.14 R/Ra with a mean of 0.07 Ra (where R is the 3He/4He ratio and Ra is the ratio for atmospheric helium). This mean value is intermediate to typical 3He/4He ratios for the crust (R/Ra = 0.01 to 0.05) and the ratio for air‐saturated water (R/Ra = 1). The mean ratio is also significantly lower than the ratios found for mantle‐derived fluids (R/Ra = 6 to 9). The 40Ar/36Ar ratios of the ore‐forming fluids range from 298 to 382 with a mean of 323. This value is slightly higher than that for the air‐saturated water (295.5). The 3He/4He ratios of fluids from the fluid inclusions imply that the ore‐forming fluid for the Baiyangping, Babaoshan, and Hetaoqing deposits was derived from the crust and that any mantle‐derived He was negligible. The content of the radiogenic Ar ranges between 0.2 to 20.4%, and the proportion of air‐derived 40Ar averages 94.1%. This indicates that atmospheric Ar was important in the formation of these deposits but that some radiogenic 40Ar was derived from crustal rocks. Based on these observations coupled with other geochemical evidence, we suggest that the ore‐forming fluids responsible for the formation of the Ag–Cu–Pb–Zn polymetallic ore deposits in the Baiyangping area of the Lanping basin were mainly derived from crustal fluids. The fluids may have mixed with some amount of air‐saturated water, but there was no significant involvement of mantle‐derived fluids.  相似文献   

20.
The Early Cretaceous Duolong gold‐rich porphyry copper deposit is a newly discovered deposit with proven 5.38 Mt Cu resources of 0.72% Cu and 41 t gold of 0.23 g t?1 in northern Tibet. Granodiorite porphyry and quartz diorite porphyrite are the main ore‐bearing porphyries. A wide range of hydrothermal alteration associated with these porphyries is divided into potassic, argillic and propylitic zones from the ore‐bearing porphyry center outward and upward. In the hydrothermal alteration zones, secondary albite (91.5–99.7% Ab) occurs along the rim of plagioclase phenocryst and fissures. Secondary K‐feldspar (75.1–96.9% Or) replaces plagioclase phenocryst and matrix or occurs in veinlets. Biotite occurs mainly as matrix and veinlet in addition to phenocryst in the potassic zone. The biotite are Mg‐rich and formed under a highly oxidized condition at temperatures ranging from 400°C to 430°C. All the biotites are absent in F, and have high Cl content (0.19–0.26%), with log (XCl/XOH) values of ?2.74 to ?2.88 and IV (Cl) values of ?3.48 to ?3.35, suggesting a significant role of chloride complexes (CuCl2 and AuCl2) in transporting and precipitating copper and gold. Chlorites are present in all alteration zones and correspond mainly to pycnochlorite. They have similar Fe/(Fe+Mg), Mn/(Mn+Mg) ratios, and a formation temperature range of 280–360°C. However, the formation temperature of chlorite in the quartz‐gypsum‐carbonate‐chlorite vein is between 190°C and 220°C, indicating that it may have resulted from a later stage of hydrothermal activity. Fe3+/Fe2+ ratios of chlorites have negative correlation with AlIV, suggesting oxygen fugacity of fluids increases with decreasing temperature. Apatite mineral inclusions in the biotite phenocrysts show high SO3 content (0.44–0.82%) and high Cl content (1–1.37%), indicating the host magma had a high oxidation state and was enriched in S and Cl. The highest Cl content of apatite in the propylitic zone may have resulted from pressure decrease, and the lowest Cl content of apatite in the argillic zone may have been caused by a low Cl content in the fluids. The low concentration of SO3 content in the hydrothermal apatite compared to the magmatic one may have resulted from the decrease of oxygen fugacity and S content in the hydrothermal fluid, which are caused by the abundant precipitation of magnetite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号