首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Initial dissolution kinetics at orthoclase (001) and (010) cleavage surfaces were measured for ∼2 to 7 monolayers as a function of temperature using in situ X-ray reflectivity. The sensitivity of X-ray reflectivity to probe mineral dissolution is discussed, including the applicability of this approach for different dissolution processes and the range of dissolution rates (∼10−12 to 10−6 mol/m2/sec) that can be measured. Measurements were performed at pH 12.9 for the (001) surface and at pH 1.1 for the (001) and (010) surfaces at temperatures between 46 and 83°C. Dissolution at pH 12.9 showed a temperature-invariant process with an apparent activation energy of 65 ± 7 kJ/mol for the (001) cleavage surface consistent with previous powder dissolution results. Dissolution at pH 1.1 of the (001) and (010) surfaces revealed a similar process for both surfaces, with apparent activation energies of 87 ± 7 and 41 ± 7 kJ/mol, respectively, but with systematic differences in the dissolution process as a function of temperature. Longer-term measurements (five monolayers) show that the initial rates reported here at acidic pH are greater than steady-state rates by a factor of 2. Apparent activation energies at acidic pH differ substantially from powder dissolution results for K-feldspar; the present results bracket the value derived from powder dissolution measurements. The difference in apparent activation energies for the (001) and (010) faces at pH 1.1 reveals an anisotropy in dissolution kinetics that depends strongly on temperature. Our results imply a projected ∼25-fold change in the ratio of dissolution rates for the (001) and (010) surfaces between 25 and 90°C. The dissolution rate of the (001) surface is higher than that of the (010) surface above 51°C and is projected to be lower below this temperature. These results indicate clearly that the kinetics and energetics of orthoclase dissolution at acidic pH depend on crystal orientation. This dependence may reflect the different manifestation of the Al-Si ordering between the T1 and T2 tetrahedral sites at these two crystal faces and can be rationalized in terms of recent theoretical models of mineral dissolution.  相似文献   

2.
Bulk dissolution rates for sediment from ODP Site 984A in the North Atlantic are determined using the 234U/238U activity ratios of pore water, bulk sediment, and leachates. Site 984A is one of only several sites where closely spaced pore water samples were obtained from the upper 60 meters of the core; the sedimentation rate is high (11-15 cm/ka), hence the sediments in the upper 60 meters are less than 500 ka old. The sediment is clayey silt and composed mostly of detritus derived from Iceland with a significant component of biogenic carbonate (up to 30%).The pore water 234U/238U activity ratios are higher than seawater values, in the range of 1.2 to 1.6, while the bulk sediment 234U/238U activity ratios are close to 1.0. The 234U/238U of the pore water reflects a balance between the mineral dissolution rate and the supply rate of excess 234U to the pore fluid by α-recoil injection of 234Th. The fraction of 238U decays that result in α-recoil injection of 234U to pore fluid is estimated to be 0.10 to 0.20 based on the 234U/238U of insoluble residue fractions. The calculated bulk dissolution rates, in units of g/g/yr are in the range of 4 × 10−7 to 2 × 10−6 yr−1. There is significant down-hole variability in pore water 234U/238U activity ratios (and hence dissolution rates) on a scale of ca. 10 m. The inferred bulk dissolution rate constants are 100 to 104 times slower than laboratory-determined rates, 100 times faster than rates inferred for older sediments based on Sr isotopes, and similar to weathering rates determined for terrestrial soils of similar age. The results of this study suggest that U isotopes can be used to measure in situ dissolution rates in fine-grained clastic materials.The rate estimates for sediments from ODP Site 984 confirm the strong dependence of reactivity on the age of the solid material: the bulk dissolution rate (Rd) of soils and deep-sea sediments can be approximately described by the expression Rd ≈ 0.1 Age−1 for ages spanning 1000 to 5 × 108 yr. The age of the material, which encompasses the grain size, surface area, and other chemical factors that contribute to the rate of dissolution, appears to be a much stronger determinant of dissolution rate than any single physical or chemical property of the system.  相似文献   

3.
Calcite dissolution rates were measured as a function of saturation state in NaCl–CaCl2–MgCl2 solutions at 1 bar (0.1 MPa) pCO2 and 25 °C. Rates measured in phosphate- and sulfate-free pseudo-seawater (Ca2+:Mg2+= 0.2, I= 0.7) were compared with those in synthetic brines. The brines were prepared by co-varying calcium and magnesium (Ca2+:Mg2+= 0.9; 2.0; 2.8; 3.1; 4.8; 5.8) along with ionic strength (I= 0.9; 1.1; 1.6; 2.1; 3.0; 3.7; 4.4 m) to yield solutions approximating those of subsurface formation waters. The rate data were modeled using the equation, R = k(1 ? Omega;) n , where k is the empirical rate constant, n describes the order of the reaction and ω is saturation state. For rates measured in the pseudo-seawater, n= 1.5 and k= 4.7 × 10?2 mol m?2 hr?1. In general, rates were not significantly faster in the synthetic brines (n= 1.4 ± 0.2 and k= 5.0 ± 7 × 10?2 mol m?2 hr?1). The rate coefficients agree within experimental error indicating that they are independent of ionic strength and Ca2+:Mg2+ over a broad range of brine compositions. These findings have important application to reaction-transport modeling because carbonate bearing saline reservoirs have been identified as potential repositories for CO2 sequestration.  相似文献   

4.
Two-dimensional modulation in synthetic åkermanite (Ca2MgSi2O7) and hardystonite (Ca2ZnSi2O7) has been studied by the single-crystal X-ray diffraction methods in the temperature range between 18 and 297 K. It is found that change of the modulation wavelength Ca2MgSi2O7 is slight, but that in Ca2ZnSi2O7 it is noticeable and indicates a plateau-like temperature dependence. The plateau-like region may be regarded as an independent phase with a specific q [~0.2924(3)].  相似文献   

5.
《Applied Geochemistry》2004,19(8):1217-1232
Laboratory experiments were conducted with volcanic ash soils from Mammoth Mountain, California to examine the dependence of soil dissolution rates on pH and CO2 (in batch experiments) and on oxalate (in flow-through experiments). In all experiments, an initial period of rapid dissolution was observed followed by steady-state dissolution. A decrease in the specific surface area of the soil samples, ranging from 50% to 80%, was observed; this decrease occurred during the period of rapid, initial dissolution. Steady-state dissolution rates, normalized to specific surface areas determined at the conclusion of the batch experiments, ranged from 0.03 μmol Si m−2 h−1 at pH 2.78 in the batch experiments to 0.009 μmol Si m−2 h−1 at pH 4 in the flow-through experiments. Over the pH range of 2.78–4.0, the dissolution rates exhibited a fractional order dependence on pH of 0.47 for rates determined from H+ consumption data and 0.27 for rates determined from Si release data. Experiments at ambient and 1 atm CO2 demonstrated that dissolution rates were independent of CO2 within experimental error at both pH 2.78 and 4.0. Dissolution at pH 4.0 was enhanced by addition of 1 mM oxalate. These observations provide insight into how the rates of soil weathering may be changing in areas on the flanks of Mammoth Mountain where concentrations of soil CO2 have been elevated over the last decade. This release of magmatic CO2 has depressed the soil pH and killed all vegetation (thus possibly changing the organic acid composition). These indirect effects of CO2 may be enhancing the weathering of these volcanic ash soils but a strong direct effect of CO2 can be excluded.  相似文献   

6.
7.
We present a numerical model to quantify calcite dissolution in the guts of deposit feeding invertebrates. Deposit feeder guts were modeled as constantly stirred reactors (CSTRs) following terminology from digestion theory. Saturation state and dissolution of calcium carbonate were calculated from changes in total dissolved carbon dioxide and alkalinity resulting from sediment passage through the digestive tract, while accounting for dissolution of calcite and respiration of organic carbon. Typical dissolution rates for a gut volume of 1 ml ranged between 0.5-4 mg calcite d−1. Sensitivity analysis revealed gut pH, sediment organic matter (OM) content and OM reactivity to be the critical parameters determining calcite dissolution rate. Carbonate dissolution rate was inversely related to gut pH. However, calcite dissolution was found to be possible even at alkaline gut pH due to respiration by intestinal microbes. The kinetics of calcite dissolution had only marginal influence on daily calcite dissolution rates: Varying the calcite dissolution rate constant κ by six orders of magnitude affected calcite dissolution rates by less than a factor of 10. Calcite dissolution rates were calculated for 4 different hydrographic regimes that differed in their content of sedimentary calcite and OM and furthermore in their OM reactivity. Highest dissolution rates were calculated for the shallow water setting, where relatively high OM content facilitated high microbial respiration rates depressing gut pH. However, dissolution rates for the deep sea setting were only slightly lower, due to greatly elevated ingestion rates resulting from low OM content. As a consequence of much higher faunal abundances, shallow-water benthos is likely to contribute the vast majority of gut-mediated carbonate dissolution. Nevertheless, the fraction of sedimentary calcite that dissolves during one gut passage is probably too small to be observable by simple gravimetric analysis. This may explain the notable scarcity of evidence for gut-mediated carbonate dissolution in the literature to date. Assuming depth-dependent calcite dissolution rates and deposit feeder abundances, we estimate gut-mediated carbonate dissolution to contribute approximately 5% of the annual global sedimentary carbonate dissolution rate, which corresponds to an average calcite dissolution rate of approximately 0.5 mg m−2 d−1 for the entire ocean floor.  相似文献   

8.
Non-metamict perrierite-(La) discovered in the Dellen pumice quarry, near Mendig, in the Eifel volcanic district, Rheinland-Pfalz, Germany has been approved as a new mineral species (IMA no. 2010-089). The mineral was found in the late assemblage of sanidine, phlogopite, pyrophanite, zirconolite, members of the jacobsite-magnetite series, fluorcalciopyrochlore, and zircon. Perrierite-(La) occurs as isolated prismatic crystals up to 0.5 × 1 mm in size within cavities in sanidinite. The new mineral is black with brown streak; it is brittle, with the Mohs hardness of 6 and distinct cleavage parallel to (001). The calculated density is 4.791 g/cm3. The IR spectrum does not contain absorption bands that correspond to H2O and OH groups. Perrierite-(La) is biaxial (-), α = 1.94(1), β = 2.020(15), γ = 2.040(15), 2V meas = 50(10)°, 2V calc = 51°. The chemical composition (electron microprobe, average of seven point analyses, the Fe2+/Fe3+ ratio determined from the X-ray structural data, wt %) is as follows: 3.26 CaO, 22.92 La2O3, 19.64 Ce2O3, 0.83 Pr2O2, 2.09 Nd2O3, 0.25 MgO, 2.25 MnO, 3.16 FeO, 5.28 Fe2O3, 2.59 Al2O3, 16.13 TiO2, 0.75 Nb2O5, and 20.06 SiO2, total is 99.21. The empirical formula is (La1.70Ce1.45Nd0.15Pr0.06Ca0.70)Σ4.06(Fe 0.53 2+ Mn0.38Mg0.08)Σ0.99(Ti2.44Fe 0.80 3+ Al0.62Nb0.07)Σ3.93Si4.04O22. The simplified formula is (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4(Si2O7)2O8. The crystal structure was determined by a single crystal. Perrierite-(La) is monoclinic, space group P21/a, and the unit-cell dimensions are as follows: a =13.668(1), b = 5.6601(6), c = 11.743(1) Å, β = 113.64(1)°; V = 832.2(2) Å3, Z = 2. The strong reflections in the X-ray powder diffraction pattern are [d, Å (I, %) (hkl)]: 5.19 (40) (110), 3.53 (40) ( $\overline 3 $ 11), 2.96 (100) ( $\overline 3 $ 13, 311), 2.80 (50) (020), 2.14 (50) ( $\overline 4 $ 22, $\overline 3 $ 15, 313), 1.947 (50) (024, 223), 1.657 (40) ( $\overline 4 $ 07, $\overline 4 $ 33, 331). The holotype specimen of perrierite-(La) is deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia, with the registration number 4059/1.  相似文献   

9.
 The structures of Ca2CoSi2O7, Ca2MgSi2O7, and Ca2(Mg0.55Fe0.45)Si2O7 have been determined in the temperature range between 297 and 773 K with arbitrary intervals. The structures of the incommensurate phase of the three compounds are characterized by the presence of the six-, seven-, and eight-coordinated Ca–O polyhedra and of the bundles along the c-axes consisting of four arrays of the six-coordinated Ca–O polyhedra and an array of T1O4 (T1: Co, Mg, or Mg–Fe) tetrahedra in the structures. The number of bundles in each material decreases at elevated temperatures. The incommensurate phase undergoes a phase transition into the normal phase at 493 K in Ca2CoSi2O7, at 360 K in Ca2MgSi2O7, and at 510 K in Ca2(Mg0.55Fe0.45)Si2O7. The features of the structures of the normal phase are almost the same as those found in the basic structures (the averaged structures of the incommensurate structures), and this fact implies that the characteristics of the structures, such as the six-coordinated Ca–O polyhedra or fragments of the bundles, should be partially preserved at higher temperatures both in the incommensurate structures and also in the structures of the normal phase. Analyses of anisotropic displacement parameters clarified that disorder of the modulation waves is developed in the structures at higher temperatures. The evolution of a disorder in the structures was ascertained by observation of the circular diffuse streaks in the vicinity of the transition temperature between the incommensurate and normal phases. Received: 3 July 2000 / Accepted: 26 October 2000  相似文献   

10.
We report the benthic fluxes of O2, titration alkalinity (TA), Ca2+, NO3, PO43−, and Si(OH)4 from in situ benthic flux chamber incubations on the Ceara Rise and Cape Verde Plateau and compare them to previously published results. We find within analytical uncertainty that the TA flux is twice the calcium flux, suggesting that dissolution/precipitation of CaCO3 is the principal mechanism controlling benthic TA and Ca2+ fluxes. At sites where the sediments contain significant (>35%) CaCO3 and the overlying waters are supersaturated with respect to CaCO3, the ratios of the total dissolution rate to the remineralization rate are significantly less than at all other study sites. We propose that these observations can be explained by precipitation of fresh CaCO3 at the supersaturated sediment surface followed by redissolution deeper in the sediments because of metabolically-produced CO2. A numerical simulation is presented to demonstrate the feasibility of this explanation. In addition, surface exchange reactions in high-CaCO3 sediments coupled with high rates of particle mixing may also impact rates of metabolic dissolution and depress chamber-derived estimates of carbonate alkalinity and calcium benthic fluxes. These results suggest that at supersaturated, high CaCO3 locations, previous models of sediment diagenesis may have overestimated the impact of metabolic dissolution on the preservation of CaCO3 deposited on the sea floor.  相似文献   

11.
12.
由于层间含有高价态金属阳离子的蒙脱石对特定有机物的吸附能力可大大增强,故分别用层间含有Na+、Ca2+、Al3+和Cr3+的蒙脱石对垃圾渗滤液中的有机物进行吸附实验,研究它们吸附苯酚、二甲苯和COD的能力及离子形态对吸附效果的影响.结果表明,含高价金属阳离子的蒙脱石对苯酚和COD的吸附能力较高,吸附能力由小到大的顺序为Na+<Ca2+<Al3+<Cr3+蒙脱石;各种类型蒙脱石对二甲苯的吸附能力相对较低,并且没有一定的规律可循.并对氢键吸附机制进行了探讨.  相似文献   

13.
Microbial biomineralization in submarine hydrothermal environments provides an insight into the formation of vent microfossils and the interactions between microbes, elements and minerals throughout the geological record. Here, we investigate microbial biomineralization of a deep-sea vent community in the Edmond vent field and provide ultrastructural evidence for the formation of microfossils and biogenic iron-rich minerals related to Archaea and Bacteria. Environmental scanning electron microscopy (ESEM) analysis shows that filamentous and spiral microbes are encrusted by a non-crystalline silica matrix and minor amounts of iron oxides. Examination by transmission electron microscopy (TEM) reveals acicular iron-rich particles and aggregates that occur either intracellularly or extracellularly. A culture-independent molecular phylogenetic analysis demonstrates a diverse range of Bacteria and Archaea, the majority of which are related to sulfur metabolism in the microbial mats. Both Archaea and Bacteria have undergone silicification, in a similar manner to microorganisms in some terrestrial hot springs and indicating that silicification may be driven by silica supersaturation and polymerization. Formation mechanisms of intracellular and extracellular iron oxides associated with microbes are discussed. These results enhance our understanding of microbial mineralization in extreme environments, which may be widespread in the Earth's modern and ancient hydrothermal vent fields.  相似文献   

14.
15.
The crystal structure of akermanite, Ca2Mg-Si2O7, consists of mixed tetrahedral sheets formed by [MgO4] tetrahedra and [Si2O7] groups interleaved along the c axis with Ca2+ ions in eight-fold coordination. Above 358 K, the structure is tetragonal , and below it is incommensurate with modulations parallel to [110] and . The elastic stiffness moduli, C ij of the incommensurate phase at room temperature were measured from wave velocities in the 20–75 MHz carrier frequency range by the ultrasonic phase comparison method using optically clear synthetic single crystal plates (3×3×2 mm) oriented parallel to (100), (001), (110) and (101) planes. The C ij values (GPa) are: C 11 159.40, C 33 149.43, C 44 30.26, C 66 58.10, C 12 76.58 and C 13 57.80. In (010) and (001) planes, the compressional modulus, V 2(L) from the longitudinal wave, L is considerably larger than the shear moduli, V 2(T1, T 2) both from the in-plane and perpendicular-to-plane shear waves, T 1 and T 2. The relatively small values of the shear moduli indicate the ease of tetrahedral rotations in response to in-plane and perpendicular-to-plane shears and may provide preconditions for structural changes involving shear-type atomic movements.  相似文献   

16.
17.
As paleoceanographic archives, deep sea coral skeletons offer the potential for high temporal resolution and precise absolute dating, but have not been fully investigated for geochemical reconstructions of past ocean conditions. Here we assess the utility of skeletal P/Ca, Ba/Ca and U/Ca in the deep sea coral D. dianthus as proxies of dissolved phosphate (remineralized at shallow depths), dissolved barium (trace element with silicate-type distribution) and carbonate ion concentrations, respectively. Measurements of these proxies in globally distributed D. dianthus specimens show clear dependence on corresponding seawater properties. Linear regression fits of mean coral Element/Ca ratios against seawater properties yield the equations: P/Cacoral (μmol/mol) = (0.6 ± 0.1) P/Casw(μmol/mol) - (23 ± 18), R2 = 0.6, n = 16 and Ba/Cacoral(μmol/mol) = (1.4 ± 0.3) Ba/Casw(μmol/mol) + (0 ± 2), R2 = 0.6, n = 17; no significant relationship is observed between the residuals of each regression and seawater temperature, salinity, pressure, pH or carbonate ion concentrations, suggesting that these variables were not significant secondary dependencies of these proxies. Four D. dianthus specimens growing at locations with Ωarag ? 0.6 displayed markedly depleted P/Ca compared to the regression based on the remaining samples, a behavior attributed to an undersaturation effect. These corals were excluded from the calibration. Coral U/Ca correlates with seawater carbonate ion: U/Cacoral(μmol/mol) = (−0.016 ± 0.003) (μmol/kg) + (3.2 ± 0.3), R2 = 0.6, n = 17. The residuals of the U/Ca calibration are not significantly related to temperature, salinity, or pressure. Scatter about the linear calibration lines is attributed to imperfect spatial-temporal matches between the selected globally distributed specimens and available water column chemical data, and potentially to unresolved additional effects. The uncertainties of these initial proxy calibration regressions predict that dissolved phosphate could be reconstructed to ±0.4 μmol/kg (for 1.3-1.9 μmol/kg phosphate), and dissolved Ba to ±19 nmol/kg (for 41-82 nmol/kg Basw). Carbonate ion concentration derived from U/Ca has an uncertainty of ±31μmol/kg (for ). The effect of microskeletal variability on P/Ca, Ba/Ca, and U/Ca was also assessed, with emphasis on centers of calcification, Fe-Mn phases, and external contaminants. Overall, the results show strong potential for reconstructing aspects of water mass mixing and biogeochemical processes in intermediate and deep waters using fossil deep-sea corals.  相似文献   

18.
The quartz-coesite transition has been determined over the temperature range 600–1100° C by in Situ X-ray measurements with NaCl as internal pressure standard. An internally heated high-pressure X-ray apparatus (Belt-type) was used which is based on the principle developed by Freud and Sclar (1969). The obtained quartz-coesite equilibrium line may be represented by the equation P=31±1+0.0075 T where P is in kb and T in ° C.  相似文献   

19.
A compressional study of (Na,Ca)(Ti3+,Mg)Si2O6-clinopyroxenes was carried out at high pressures between 10−4 and 10.2 GPa using in situ single-crystal X-ray diffraction, Raman spectroscopy and optical absorption spectroscopy. Compressional discontinuities accompanied by structural changes, in particular, the appearance of two distinct Ti3+–Ti3+ distances within the octahedral chains at 4.37 GPa, provide evidence for the occurrence of a phase transition in NaTi3+Si2O6. Equation-of-state parameters are K 0 = 115.9(7) GPa with K′ = −0.9(3) and K 0 = 102.7(8) GPa with K′ = 4.08(5) for the low- and high-pressure range, respectively. The transition involves a C2/c–P [`1] \overline{1} symmetry change, which can be confirmed by the occurrence of new modes in Raman spectra. Since no significant discontinuity in the evolution of the unit-cell volume with pressure has been observed, the transition appears to be second-order in character. The influence of the coupled substitution Na+Ti3+↔Ca2+Mg2+ on the static compression behavior and the structural stability has been investigated using a sample of the intermediate composition (Na0.54Ca0.46)(Mg0.46Ti0.54)Si2O6. No evidence for a deviation from continuous compression behavior has been found, neither in lattice parameter nor in structural data and the fit of a third-order Birch–Murnaghan equation-of-state to the pressure–volume data yields a bulk modulus of K 0 = 109.1(5) GPa and K′ = 5.02(13). Raman and polarized absorption spectra have been compared to NaTiSi2O6 and reveal major similarities. The main driving force for the phase transition in NaTi3+Si2O6 is the localization of the Ti3+ d-electron and the accompanying distortion, which is suppressed in the (Na,Ca)(Ti3+,Mg)Si2O6-clinopyroxene.  相似文献   

20.
The distribution of Fe3+ and Ga3+ between the two tetrahedral sites in three synthetic melilites has been studied by using 57Fe Mössbauer spectroscopy. In the melilite, (Ca2Ga2SiO7)50 (Ca2Fe3+GaSiO7)50 (mol %), the distribution of Fe3+ and Ga3+ in T1 and T2 sites is apparently random, which can be explained in terms of the electrostatic valence rule. However in the melilites, (Ca2MgSi2O7)52 (Ca2Fe3+GaSiO7)42 (Ca2Ga2SiO7)6 and (Ca2MgSi2O7)62 (Ca2Fe3+GaSiO7)36 (Ca2Ga2SiO7)2 (mol %), Fe3+ shows preference for the more ionic T1 site and Ga3+ for the more covalent T2 site. If the electronegativity of Ga3+ is assumed to be larger than that of Fe3+, the mode of distribution of Fe3+ and Ga3+ can be explained in terms of our previous hypothesis that a large electronegativity induces a stronger preference for the more covalent T2 site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号