首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
《Geodinamica Acta》2001,14(1-3):103-131
We investigate the left-lateral slip on the 240-km-long, NE–SW-trending, Malatya–Ovacık fault zone in eastern Turkey. This fault zone splays southwestward from the North Anatolian fault zone near Erzincan, then follows the WSW-trending Ovacık valley between the Munzur and Yılan mountain ranges. It bends back to a SW orientation near Arapkir, from where we trace its main strand SSW beneath the Plio-Quaternary sediment of the Malatya basin. We propose that this fault zone was active during ∼5–3 Ma, when it took up 29 km of relative motion between the Turkish and Arabian plates; it ceased to be active when the East Anatolian fault zone formed at ∼3 Ma. The geometry of the former Erzincan triple junction, which differs from the modern Karlıova triple junction, where the North and East Anatolian fault zones intersect, suggests a possible explanation for why slip on the Malatya–Ovacık fault zone was unable to continue. We interpret the SW- and SSW-trending segments of the Malatya–Ovacık fault zone as transform faults, which define an Euler pole ∼1 400 km to the southeast. Its central part along the Ovacık valley, which is ∼30° oblique to the adjoining transform faults, is interpreted as the internal fault of a stepover. The adjoining mountain ranges, which now rise up to ∼3 300 m, ∼2 000 m above the surrounding land surface, are largely the result of the surface uplift which accompanied the components of shortening and thickening of the upper crustal brittle layer that occurred around this stepover while the left-lateral faulting was active.  相似文献   

2.
Abstract

We investigate the left-lateral slip on the 240-km- long, NE-SW-trending, Malatya-Ovacik fault zone in eastern Turkey. This fault zone splays southwestward from the North Anatolian fault zone near Erzincan, then follows the WSW-trending Ovacik valley between the Munzur and Yilan mountain ranges. It bends back to a SW orientation near Arapkir, from where we trace its main strand SSW beneath the Plio-Quaternary sediment of the Malatya basin. We propose that this fault zone was active during ~5–3 Ma, when it took up 29 km of relative motion between the Turkish and Arabian plates; it ceased to be active when the East Anatolian fault zone formed at ~3 Ma. The geometry of the former Erzincan triple junction, which differs from the modem Karliova triple junction, where the North and East Anatolian fault zones intersect, suggests a possible explanation for why slip on the Malatya- Ovacik fault zone was unable to continue. We interpret the SW- and SSW-trending segments of the Malatya-Ovacik fault zone as transform faults, which define an Euler pole ~1 400 km to the southeast. Its central part along the Ovacik valley, which is ~30° oblique to the adjoining transform faults, is interpreted as the internal fault of a stepover. The adjoining mountain ranges, which now rise up to ~3 300 m, ~2 000 m above the surrounding land surface, are largely the result of the surface uplift which accompanied the components of shortening and thickening of the upper crustal brittle layer that occurred around this stepover while the left-lateral faulting was active. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

3.
Geometric and kinematic analyses of minor thrusts and folds, which record earthquakes between 1200 AD and 1700 AD, were performed for two trench sites (Rampur Ghanda and Ramnagar) located across the Himalayan Frontal Thrust (HFT) in the western Indian Himalaya. The present study aims to re-evaluate the slip estimate of these two trench sites by establishing a link between scarp geometry, displacements observed very close to the surface and slip at deeper levels. As geometry of the active thrust beneath the scarp is unknown, we develop a parametric study to understand the origin of the scarp surface and to estimate the influence of ramp dip. The shortening estimates of Rampur Ghanda trench by line length budget and distance–displacement (D–d) method show values of 23 and 10–15 %, respectively. The estimate inferred from the later method is less than the line length budget suggesting a small internal deformation. Ramnagar trench shows 12 % shortening by line length budget and 10–25 % by the D–d method suggesting a large internal deformation. A parametric study at the trenched fault zone of Rampur Ghanda shows a slip of 16 m beneath the trailing edge of the scarp, and it is sufficient to raise a 8-m-high scarp. This implies that the Rampur Ghanda scarp is balanced with a single event with 7.8-m-coseismic slip in the trenched fault zone at the toe of the scarp, 8–15 % mean deformation within the scarp and 16-m slip at depth along a 30° ramp for a pre-1400 earthquake event. A 16-m slip is the most robust estimate of the maximum slip for a single event reported previously by trench studies along the HFT in the western Indian Himalaya that occurred between 1200 AD and 1700 AD. However, the Ramnagar trenched fault zone shows a slip of 23 m, which is larger than both line length and D–d methods. It implies that a 13-m-high scarp and 23-m slip beneath the rigid block may be ascribed to multiple events. It is for the first time we report that in the south-eastern extent of the western Indian Himalaya, Ramnagar scarp consists of minimum two events (i) pre-1400 AD and (ii) unknown old events of different lateral extents with overlapping ruptures. If the more optimistic two seismic events scenario is followed, the rupture length would be at least 260 km and would lead to an earthquake greater than Mw 8.5.  相似文献   

4.
王洵  周云  孙蒙  王卫民 《地质通报》2014,33(4):517-523
针对2010年青海玉树藏族自治州发生的Mw6.9(Ms7.1)级地震,利用地震波形资料和InSAR获取的同震位移资料,根据同震形成的地表位移干涉图,构建三段式断层模型,反演重建地震的破裂过程。研究显示本次地震断层面走向为119°,倾角79°,滑动角-2.2°,最大滑动量达到200cm,震源深度12.5km,地震标量地震矩为2.18×1026dyn·cm。震源破裂特征表明,玉树地震主要是沿甘孜—玉树断裂发生的左旋走滑破裂事件,反映了印度板块向北的推挤作用下,青藏高原东部不同次级块体东向不均匀挤出的运动学特征。  相似文献   

5.
We derive a slip rate for a frontal thrust in the western Hexi Corridor along the northern Qilian Shan by combining topographic profiling and 10Be exposure dating. The active Yumen‐Beidahe thrust fault offsets late Pleistocene alluvial‐fan deposits, and a prominent north‐facing scarp is well preserved. To quantify the slip rate, we surveyed the uplifted terraces and sampled quartz‐rich pebbles on terrace surfaces and river channels to determine surface exposure ages and pre‐depositional inheritance. The minimum vertical slip rate of the fault is 0.73 ± 0.09 mm a?1. This represents a horizontal shortening rate of 1.26 ± 0.31 mm a?1 for a fault dip of 30 ± 5°. This estimated slip rate supports the inference made from previous geological and GPS constraints that NNE‐directed shortening across the western Qilian Shan and the Hexi Corridor is distributed on several active faults with a total shortening rate of 4–10 mm a?1.  相似文献   

6.
On the morning of 15 November 1990 local time, Armidale and the area to the west of Armidale was shaken by a magnitude 3.2 earthquake. The epicentre was located at 30.39° S, 150.88° E and the depth of focus at 12 ± 7 km. As the epicentre was close to the Peel Fault an attempt was made to constrain the focal mechanism of this earthquake. The conventional method, which is based on the analysis of P wave polarities, was not applicable because the event was not strong enough. In an alternative method, the amplitudes of various seismic phases recorded at a number of stations well distributed in azimuth were compared with theoretical amplitudes calculated with the reflectivity method for a point shear dislocation in a layered medium. The differences between observed and calculated amplitudes were minimized as a function of fault strike, fault dip and direction of the slip vector. The analysis indicates that none of the possible fault planes had the strike of the Peel Fault. The solution suggests predominantly strike slip motion along two possible, steeply dipping fault planes. The inferred direction of the maximum compressional stress. is east‐west which is in good agreement with other estimates of the stress field for eastern Australia.  相似文献   

7.
估计同震滑移向量对于认识和理解破裂方式和破裂过程具有重要意义。2008年汶川大地震在青藏高原东缘龙门山推覆构造带的中央断裂和前山断裂上各形成了一条长250 km和72 km的地表破裂带。地震发生后至今,已经发表了大量有关同震位错沿破裂带分布的论文和报告,但绝大部分都仅仅是破裂的走向位错和垂直位错,极少有同震滑移向量的报道。这不仅是因为野外难以直接测量到水平缩短量(或拉张量),而且还因为这些走滑位错实际上是视走滑位错,部分或全部来自水平缩短或拉张。因此,仅仅根据视走滑同震位错和垂直同震位错估计的同震总滑移量肯定包含了相当大的误差。尝试利用据不同走向参考线测量到的一组(两个以上)视走滑位错来计算水平滑移向量的这一新方法,获得了中央破裂带上的7个水平同震滑移向量,并结合垂直位错量进一步计算了走滑、倾滑和水平缩短三个同震滑移分量以及断层倾角和破裂面上的同震滑移向量,综合出露破裂面的擦痕所指示的滑移向量,并对比根据矩张量解获得的震源深度的滑移向量,得出以下认识:(1)破裂南段的地表滑移向量的方位角明显小于震源深度滑移向量的方位角,表明在破裂从震源向地表传播过程中破裂面上的滑移向量发生了逆时针旋转;(2)滑移方位角向北东方向逐渐增大,表明地平面上水平滑移向量表现出顺时针旋转的趋势,而且在破裂向北东方向传播过程中近地表的走滑分量逐渐减小而倾滑分量逐渐增大;(3)几乎在每一个观测点倾滑分量都大于走滑分量,表明汶川地震的破裂方式在任何地点都是以逆冲运动为主;(4)破裂面倾角在10.4°~64.7°,平均值为41°,与天然破裂露头和探槽揭示的结果基本一致;(5)滑移向量沿破裂带的分布显示,走滑分量中段大而两端小,倾滑分量则相反,中段小两端大。  相似文献   

8.
The Mondy strike-slip fault connects the W-E Tunka and N-S Hovsgol basins on the southern flank of the Baikal rift system. Ground penetrating radar (GPR) surveys in its damage zone provide constraints on thicknesses, dips, and plunges of fault planes, as well as on the amount and sense of vertical slip. Strike-slip faulting in the southern segment of the Mondy fault within the territory of Russia bears a normal slip component of motion along the W-E and NW planes. These motions have produced negative flower structures in shallow crust appearing as grabens upon Pleistocene fluvioglacial terraces. The amount of normal slip estimated from the displacement of reflection events varies over the area and reaches its maximum of 3.4 m near Mondy Village. In the Kharadaban basin link, left-lateral strike slip displaces valleys of ephemeral streams to 22 m, while normal slip detected by GPR reaches 2.2 m; this normal-to-strike slip ratio corresponds to a direction of ~ 6° to the horizon. The angles of dips of faults are in the range 75°-79°; the thicknesses of fault planes marked by low- or high-frequency anomalies in GPR records vary from 2.5 to 17.0 m along strike and decrease with depth within a few meters below the surface, which is common to near-surface coseismic motions. Many ruptures fail to reach the surface but appear rather as sinkholes localized mainly in fault hanging walls. The deformation style in the damage zone of the Mondy fault bears impact of the NW Yaminshin fault lying between its two segments. According to photoelasticity, the stress field changes locally at the intersection of the two faults, under NE compression at 38°, till the inverse orientations of principal compression and extension stresses. This stress pattern leads to a combination of normal and left-lateral strike slip components.  相似文献   

9.
The active kinematics of the eastern Tibetan Plateau are characterized by the southeastward movement of a major tectonic unit, the Chuan-Dian crustal fragment, bounded by the left-lateral Xianshuihe–Xiaojiang fault in the northeast and the right-lateral Red River–Ailao Shan shear zone in the southwest. Our field structural and geomorphic observations define two sets of young, active strike–slip faults within the northern part of the fragment that lie within the SE Tibetan Plateau. One set trends NE–SW with right-lateral displacement and includes the Jiulong, Batang, and Derong faults. The second set trends NW–SE with left-lateral displacement and includes the Xianshuihe, Litang, Xiangcheng, Zhongdian, and Xuebo faults. Strike–slip displacements along these faults were established by the deflection and offset of streams and various lithologic units; these offsets yield an average magnitude of right- and left-lateral displacements of ~15–35 km. Using 5.7–3.5 Ma as the time of onset of the late-stage evolution of the Xianshuihe fault and the regional stream incision within this part of the plateau as a proxy for the initiation age of conjugate strike–slip faulting, we have determined an average slip rate of ~2.6–9.4 mm/year. These two sets of strike–slip faults intersect at an obtuse angle that ranges from 100° to 140° facing east and west; the fault sets define a conjugate strike–slip pattern that expresses internal E–W shortening in the northern part of the Chuan-Dian crustal fragment. These conjugate faults are interpreted to have experienced clockwise and counterclockwise rotations of up to 20°. The presence of this conjugate fault system demonstrates that this part of the Tibetan Plateau is undergoing not only southward movement, but also E–W shortening and N–S lengthening due to convergence between the Sichuan Basin and the eastern Himalayan syntaxis.  相似文献   

10.
The 2002 earthquake sequence of October 31 and November 1 (main shocks Mw = 5.7) struck an area of the Molise region in Southern Italy. In this paper we analyzed the co-seismic deformation related to the Molise seismic sequence, inferred from GPS data collected before and after the earthquake, that ruptured a rather deep portion of crust releasing a moderate amount of seismic energy with no surface rupture. The GPS data have been reduced using two different processing strategies and softwares (Bernese and GIPSY) to have an increased control over the result accuracy, since the expected surface displacements induced by the Molise earthquake are in the order of the GPS reliability. The surface deformations obtained from the two approaches are statistically equivalent and show a displacement field consistent with the expected deformation mechanism and with no rupture at the surface. In order to relate this observation with the seismic source, an elastic modeling of fault dislocation rupture has been performed using seismological parameters as constraints to the model input and comparing calculated surface displacements with the observed ones. The sum of the seismic moments (8.9 × 1017 Nm) of the two main events have been used as a constraint for the size and amount of slip on the model fault while its geometry has been constrained using the focal mechanisms and aftershocks locations. Since the two main shocks exhibit the same fault parameters (strike of the plane, dip and co-seismic slip), we modelled a single square fault, size of 15 km × 15 km, assumed to accommodate the whole rupture of both events of the seismic sequence. A vertical E–W trending fault (strike = 266°) has been modeled, with a horizontal slip of 120 mm. Sensitivity tests have been performed to infer the slip distribution at depth. The comparison between GPS observations and displacement vectors predicted by the dislocation model is consistent with a source fault placed between 5 and 20 km of depth with a constant pure right-lateral strike-slip in agreement with fault slip distribution analyses using seismological information. The GPS strain field obtained doesn't require a geodetic moment release larger than the one inferred from the seismological information ruling out significant post-seismic deformation or geodetic deformation released at frequencies not detectable by seismic instruments. The Molise sequence has a critical seismotectonic significance because it occurred in an area where no historical seismicity or seismogenic faults are reported. The focal location of the sequence and the strike-slip kinematics of main shocks allow to distinguish it from the shallower and extensional seismicity of the southern Apennines being more likely related to the decoupling of the southern Adriatic block from the northern one.  相似文献   

11.
Yu Wang 《地学学报》2006,18(6):423-431
In eastern China, the Dabie Shan–Su–Lu orogenic belt has been separated by the Tan–Lu sinistral strike–slip fault. Mylonites are exposed along the strike–slip fault system in the southern segment, and along the eastern margin of the Dabie Shan orogenic belt. The country rocks of the mylonites are retrograde UHP eclogites, gneissic granites, muscovite granites and gneisses. The ductile strike–slip shear zone trends 30–40°N (NE30–40°‐trending) and exhibits stretching lineations and nearly vertical, SE‐dipping foliations. Most of the zircon grains separated from mylonites have a weighted average radiometric age of 233 ± 6–225 ± 6 Myr. These data constrain the onset of the Tan–Lu sinistral strike–slip movement and imply that the Tan–Lu sinistral strike–slip motion developed after retrograde UHP metamorphism. The related phengite within the eclogite rocks on the western side of the Tan–Lu fault, with 40Ar/39Ar plateau ages of c. 182–190 Myr, is also deformed and aligned parallel to the almost NE trending stretching lineations. Non‐metamorphosed granites exhibit sinistral strike–slip shearing and indicate that the Tan–Lu fault initially developed after 182–190 Myr. Muscovite collected from the mylonite yields 40Ar/39Ar plateau ages of 162 ± 1–156 ± 2 Myr. The zircon SHRIMP age data, the muscovite 40Ar/39Ar plateau ages, together with structural and petrological field information support the interpretation that the Tan–Lu strike–slip fault was not related to the Yangtze–north China plates collision, but corresponded to the formation of a NE‐trending tectonic framework in eastern China starting c. 165–160 Ma.  相似文献   

12.
We estimate the distribution of slip in the dip section of the causative fault for the 1905 Kangra earthquake by applying the minimum norm inversion technique to differences in pre- and post-earthquake levelling data collected along the Saharanpur-Dehradun-Mussoorie highway. For this purpose it is assumed that the causative fault of the 1905 Kangra earthquake was planar with a dip of 5° in the northeast direction and that it had a depth of 6 km at the southern limit of the Outer Himalaya in Dehradun region. The reliably estimated maximum slip on the fault is 7.5 m under the local northern limit of the Outer Himalaya. Using the inverted slip distribution we estimate that the maximum permanent horizontal and vertical displacements at the surface due to the Kangra earthquake were about 4 m and 1.5m respectively. The maximum transient displacements at the surface should have exceeded these permanent displacements. These estimates of maximum slip on the causative fault and the resultant maximum permanent and transient displacements at the surface during the Kangra earthquake may be taken tentatively as being representative of the great Himalayan earthquakes.  相似文献   

13.
We revisit the April 1979 Montenegro earthquake sequence to invert for finite-fault slip models for the mainshock of 15 April 1979 (Mw 7.1) and of the strongest aftershock of 24 May 1979 (Mw 6.2) using P, SH and SV waveforms, retrieved from IRIS data center. We also used body waveform modelling inversion to confirm the focal mechanism of the mainshock as a pure thrust mechanism and rule out the existence of considerable strike slip component in the motion. The mainshock occurred along a shallow (depth 7 km), low angle (14°) thrust fault, parallel to the coastline and dipping to the NE. Our preferred slip distribution model for the mainshock indicates that rupture initiated from SE and propagated towards NW, with a speed of 2.0 km/s. Moment was released in a main slip patch, confined in an area of L  50 km × W  23 km. The maximum slip ( 2.7 m) occurred  30 km to the NW of the hypocenter (location of rupture initiation). The average slip is 49 cm and the total moment release over the fault is 4.38e19 Nm. The slip model adequately fits the distribution of the Mw ≥ 4.3 aftershocks, as most of them are located in the regions of the fault plane that did not slip during the mainshock. The 24 May 1979 (Mw 6.2) strongest aftershock occurred  40 km NW of the mainshock. Our preferred slip model for this event showed a characteristic two-lobe pattern, where each lobe is  7.5 × 7.5 km2. Rupture initiated in the NW lobe, where the slip obtained its maximum value of 45 cm, very close to the hypocenter, and propagated towards the south-eastern lobe where it reached another maximum value — for this lobe — of 30 cm, approximately 10 km away from the hypocenter. To indirectly validate our slip models we produced synthetic PGV maps (Shake maps) and we compared our predictions with observations of ground shaking from strong motion records. All comparisons were made for rock soil conditions and in general our slip models adequately fit the observations especially at the closest stations where the shaking was considerably stronger. Through the search of the parameter space for our inversions we obtained an optimum location for the mainshock at 42.04°N and 19.21° E and we also observed that better fit to the observations was obtained when the fault was modeled as a blind thrust fault.  相似文献   

14.
Timpanogos Cave, located near the Wasatch fault, is about 357 m above the American Fork River. Fluvial cave sediments and an interbedded carbonate flowstone yield a paleomagnetic and U–Th depositional age of 350 to 780 ka. Fault vertical slip rates, inferred from calculated river downcutting rates, range between 1.02 and 0.46 mm yr− 1. These slip rates are in the range of the 0–12 Ma Wasatch Range exhumation rate ( 0.5–0.7 mm yr− 1), suggesting that the long-term vertical slip rate remained stable through mid-Pleistocene time. However, the late Pleistocene (0–250 ka) decelerated slip rate ( 0.2–0.3 mm yr− 1) and the accelerated Holocene slip rate ( 1.2 mm yr− 1) are consistent with episodic fault activity. Assuming that the late Pleistocene vertical slip rate represents an episodic slowing of fault movement and the long-term (0–12 Ma) average vertical slip rate, including the late Pleistocene and Holocene, should be  0.6 mm yr− 1, there is a net late Pleistocene vertical slip deficit of  50–75 m. The Holocene and late Pleistocene slip rates may be typical for episodes of accelerated and slowed fault movement, respectively. The calculated late Pleistocene slip deficit may mean that the current accelerated Wasatch fault slip rate will extend well into the future.  相似文献   

15.
A petrological investigation of abyssal, plagioclase-free spinel peridotite drilled during ODP cruise 153 in the North Atlantic revealed that the peridotite represent refractory, partial residual mantle material that experienced depletion of incompatible trace elements during upper mantle melting. The degree of partial melting as estimated from spinel compositions was c. 12%. Fractionated middle and heavy rare earth elements imply polybaric melting, with c. 1–4% initial melting in the garnet peridotite stability field and subsequent partial melting of ~7–10% in the spinel peridotite stability field. Geothermobarometric investigations revealed that the solid-state equilibration of the spinel peridotite occurred at some 1,100–1,150°C and c. 20–23 kbar, corresponding to an equilibration depth of c. 70?±?5 km and an unusually low thermal gradient of some 11–17°C/km. A thermal re-equilibration of the peridotite occurred at ~850–1,000°C at similar depths. Naturally, the initial mantle melting in the garnet-peridotite stability field must have commenced at depths greater than 70?±?5 km. It is likely that the residual peridotite rose rapidly through the lithospheric cap towards the ridge axis. The exhumation of the abyssal peridotite occurred, at least in parts, via extensional detachment faulting. Given the shallow to moderate dip angles of the fault surfaces, the exhumation of the peridotite from its equilibration depth would imply an overall ridge-normal horizontal displacement of c. 50–160 km if tectonic stretching and detachment faulting were the sole exhumation mechanism.  相似文献   

16.
何书  赵奎  朱忠  吴开兴 《岩土力学》2012,33(11):3414-3418
利用Aleksandrowski推导的断层擦痕侧伏角公式,提出了一种改进的构造应力张量反演法。根据不同应力比值下构造应力与断层擦痕侧伏角的关系,利用最小二乘法,详细推导了构造应力张量的反演方法,最后利用Matlab软件编制程序实现了该计算过程。在此基础上,现场调查了江西武山铜矿北矿带的断层滑动数据,利用上述改进方法反演了该地区的构造应力张量方向特征。将上述反演结果与由震源机制解获得的最新构造应力场结果进行对比分析,并结合研究区断层的展布特征及所在的地质构造背景,获得了该地区自晚侏罗世以来的构造应力场特征,表明该地区构造应力场具有一定的稳定性。改进后的构造应力张量求解过程及工程应用表明,将Aleksandrowski的图示法和Etchecopar等的反演法结合起来反演构造应力张量,是对已有方法的改进,具有更加简单、实现容易等特点,计算结果比较符合实际。  相似文献   

17.
芦山地震发震构造及其与汶川地震关系讨论   总被引:14,自引:0,他引:14  
芦山地震发生在巴彦喀拉块体与华南块体之间龙门山推覆构造带南段。野外考察表明,芦山地震在震中区没有形成具有构造地质意义的地震地表破裂带,仅在各山前陡坡地带出现平行于山麓陡坡的张性地裂缝、山地基岩崩塌、滑坡等边坡震动失稳现象和震动引起的砂土液化现象。重新定位的芦山地震余震分布、震源机制解和地表构造地质等分析表明,芦山地震的发震断层为一条现今尚未出露地表、其上断点仍埋藏在地下9 km以下地壳中的一条盲逆断层,走向212°,倾向NW,倾角38°±2°,上断点以上至地表的构造变形符合断层扩展背斜模型。根据汶川地震和芦山地震的余震空间分布、地震破裂过程、深浅构造关系等差异反映出它们是分别发生在龙门山推覆构造带中段和南段的两次独立地震破裂事件。  相似文献   

18.
The Gulf of Patti and its onshore sector represent one of the most seismically active regions of the Italian Peninsula. Over the period 1984–2014, about 1800 earthquakes with small-to-moderate magnitude and a maximum hypocentral depth of 40 km occurred in this area. Historical catalogues reveal that the same area was affected by several strong earthquakes such as the Mw = 6.1 event in April 1978 and the Mw = 6.2 one in March 1786 which have caused severe damages in the surrounding localities. The main seismotectonic feature affecting this area is represented by a NNW–SSE trending right-lateral strike-slip fault system called “Aeolian–Tindari–Letojanni” (ATLFS) which has been interpreted as a lithospheric transfer zone extending from the Aeolian Islands to the Ionian coast of Sicily. Although the large-scale role of the ATLFS is widely accepted, several issues about its structural architecture (i.e. distribution, attitude and slip of fault segments) and the active deformation pattern are poorly constrained, particularly in the offshore. An integrated analysis of field structural geology with marine geophysical and seismological data has allowed to better understand the structural fabric of the ATLFS which, in the study area, is expressed by two major NW–SE trending, en-echelon arranged fault segments. Minor NNE–SSW oriented extensional structures mainly occur in the overlap region between major faults, forming a dilatational stepover. Most faults display evidence of active deformation and appear to control the main morphobathymetric features. This aspect, together with diffused continental slope instability, must be considered for the revaluation of the seismic and geomorphological hazard of this sector of southern Tyrrhenian Sea.  相似文献   

19.
The authors have made a comparative study of surface deformations deduced from the analysis of recent faults, and deformation in depth deduced from, focal mechanisms associated with shallow earthquakes. The initial results obtained in the Paphos region of Cyprus are presented.Study of striations on centi- to decametric-scale fracture surfaces which affect Plio-Quaternary beaches in the Paphos region has enabled the authors to determine statistically the position of the principal axes of Plio-Quaternary deformation: lengthening X (strike N32°, dip 12°NE), shortening Z (N297°, 23°NW) and intermediate Y (N138°, 65°SE).On the 10th of September 1953 a superficial earthquake (depth 6 km) of 6.5 magnitude occurred near Paphos (location 34.9°N, 32.2°E) whose focal mechanism has been studied. Fault-plane solutions were obtained using 36 data points relating to the initial movements of the P-waves measured by longand short-period seismographs. Unfortunately the distribution of data with respect to the focus is such that it does not permit a single, but rather three possible solutions. Two of these are compatible with the model of deformation deduced from surface study. While the most probable solution favours a normal fault (solution no. 3), the system of deep strike-slip faults (solution no. 2) is equally compatible with the existence of predominantly normal surface faults.The preliminary results constitute part of a more regional study of the eastern Mediterranean. The authors consider it fundamental to establish this type of correlation when studying neotectonics.  相似文献   

20.
赵强  杨国东  张旭晴  邵鹏 《世界地质》2018,37(3):938-944
利用覆盖九寨沟地区的RadarSat—2数据与Sentinel—1A数据,采用精轨数据进行定轨,消除轨道误差,并结合合成孔径差分(D-InSAR)方法中的双轨差分技术,获取2017年8月8日Mw7. 0级地震的同震形变场。结果表明,视线方向(LOS)最大沉降量约为20 cm,隆起量达9 cm。基于弹性半空间形变模型反演该地震的断层滑动分布,得出该地震断层滑动以左旋走滑为主,走向为330°,倾角为32°,滑动角为-170°,同震滑动分布主要集中在4~12 km深度处,最大滑动量位于9 km处,约为6. 14 m,平均滑动量为0. 57 m。反演获得的地震标量矩为4. 06E+18N·m,震级Mw约为6. 4,深度为19. 5 km。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号