首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The easternmost sector of the Gulf of Corinth, the Beotia area in Central Greece, is an area with active normal faults located between the two major rift structures of Central Greece, the Gulf of Corinth and the North Gulf of Evia. These active normal faults include WNW to E–W and NE to ENE-trending faults affect the landscape and generate basin and range topography within the Beotia. We study four normal fault zones and drainage basin geometry in the easternmost sector of the Gulf of Corinth to document the impact of active tectonics on the landscape evolution. Fault and drainage geometry are investigated based on detailed field mapping and high-resolution digital elevation models. Tectonic geomorphic analysis using several parameters of active tectonics provides information concerning the relative tectonic activity and fault growth. In order to detect areas of lateral stream migration that could indicate recent tectonic activity, the Transverse Topographic Symmetry Factor and the Asymmetry Factor are used to analyse drainage basin geometry in six large drainage basins and a drainage domain covering the study area. Our results show that vertical motions and tilting associated with normal faulting influence the drainage geometry and its development. Values of stream-gradient indices (SL) are relatively high close to the fault traces of the studied fault zones suggesting high activity. Mountain-front sinuosity (Smf) mean values along the fault zones ranges from 1.08 to 1.26. Valley floor width to valley height ratios (Vf) mean values along the studied fault zones range between 0.5 and 1.6. Drainage basin shape (BS) mean values along the fault zones range from 1.08 to 3.54. All these geomorphic parameters and geomorphological data suggest that the analyzed normal faults are highly active. Lateral fault growth was likely produced by primarily eastward propagation, with the WNW to E–W trending faults being the relatively more active structures.  相似文献   

2.
The Sumatra Fault System provides a unique geologic setting to evaluate the influence of structural controls on geothermal activity. Whereas most of the geothermal systems in Indonesia are controlled by volcanic activity, geothermal systems at the Sumatra Fault System might be controlled by faults and fractures. Exploration strategies for these geothermal systems need to be verified because the typical pattern of heat source and alteration clays are missing so that conventional exploration with magnetotelluric surveys might not provide sufficient data to delineate favorable settings for drilling. We present field geological, structural and geomorphological evidence combined with mapping of geothermal manifestations to allow constraints between fault dynamics and geothermal activity in the Tarutung Basin in north central Sumatra. Our results indicate that the fault pattern in the Tarutung Basin is generated by a compressional stress direction acting at a high angle to the right-lateral Sumatra Fault System. NW–SE striking normal faults possibly related to negative flower structures and NNW-SSE to NNE-SSW oriented dilative Riedel shears are preferential fluid pathways whereas ENE–WSW striking faults act as barriers in this system. The dominant of geothermal manifestations at the eastern part of the basin indicates local extension due to clockwise block rotation in the Sumatra Fault System. Our results support the effort to integrate detailed field geological surveys to refined exploration strategies even in tropical areas where outcrops are limited.  相似文献   

3.
《Geodinamica Acta》2013,26(3-4):333-342
Travertine deposits reflect some aspects of the regional tectonics because of the close association between travertine deposits and active fractures, that later of which provide conduits along which travertine-depositing waters may rise. Fissure-ridge travertines form above extensional fissures which are located in the hanging walls of normal faults, in step-over zones between fault segments, or in active or recently active) volcanic provinces. Numerous active and inactive fissure-ridge travertines are located in the hanging walls of normal faults in the Denizli Basin. A typical fissure-ridge comprises a central fissure along its long axis and flanking bedded travertines dipping away from the fissure. Central fissures of travertine ridges have been dilating since the initiation of the fissures. Samples from both the margins and centres of banded travertine deposits were dated by Th/U methods in order to determine dilation rates. Individual fissures have been dilating at average rates of between 0.008 and 0.1 mm yr–1 during travertine deposition, and ~ 0.001 and 0.007 mm yr–1 after cessation of travertine deposition. There is a noticable decrease in dilation rate from west to east in the Denizli Basin, and this decrease in dilation rate may be related to decrease in overall extension in southwest Turkey, which decreases eastward.  相似文献   

4.
Following an Early Miocene phase of N–S extension affecting the entire Hellenides, 50° clockwise rotation affected western Greece. Modern GPS analyses show rapid southwestward motion in southwestern Greece over subducting oceanic lithosphere and no motion in the northwest, where Greece collided with Apulia. We aim to identify the deformation history of western Greece associated with the rotation and the collision with Apulia. The timing of the various phases of deformation is constrained via detailed analysis of vertical motions based on paleobathymetry evolution of sedimentary sequences overlying the evolving structures. The results show that accompanying the onset of rotation, compression was re-established in western Greece in the early Langhian, around 15 Ma. Subsequently, western Greece collided with the Apulian platform, leading in the Late Miocene to a right-lateral strike-slip system running from the Aliakmon Fault Zone in northern Greece via the Kastaniotikos Fault and the Thesprotiko Shear Zone to the Kefallonia Fault Zone, offshore western Greece. NE–SW compression and uplift of the Ionian Islands was accompanied by NE–SW extension in southwestern Greece, associated with faster southwestward motion in the south than in the north. This led in the middle Pliocene (around 3.5 Ma) to collision without further shortening in northwestern Greece. From then onward, NW–SE to N–S extension east of Apulia, and gradually increasing influence of E–W extension in the south accommodated motion of the Hellenides around the Apulian platform. As a result, curved extensional basin systems evolved, including the Gulf of Amvrakikos-Sperchios Basin–Gulf of Evia system and the Gulf of Corinth–Saronic Gulf system.  相似文献   

5.
Comparison of historical and of post-seismic triangulation data is used to model vertical crustal movements in the vicinity of the Kapareli Fault (or the Alkynonides earthquakes North Fault), one of the two antithetic normal faults which reactivated during the 1981, Gulf of Corinth (Ms = 6.7) earthquakes. This fault is characterized by a much smaller geomorphological signature than the South (or Perachora) fault of the same seismic sequence. Analysis of geodetic data on the basis of polynomial filtering and elastic dislocation modelling, as well as analysis of structural and coastal change data permits us to conclude that the upper bound in the uncertainty level of most of the available elevation changes is 20–30 cm, usually lower than the corresponding dislocation signal. In addition, the available geodetic data have a systematic pattern and are consistent with structural data. For this reason they permit more precise constraints on the geometry and the role of the Kapareli Fault (or the Alkyonides earthquakes North Fault): its total length is estimated about 17 km, about 50% longer than its surface trace; about 30–40 cm subsidence of its hanging wall, as well as at least 15 cm maximum uplift of its footwall is also inferred. This new evidence suggests that although in the long-term the Kapareli fault may represent a rather secondary, antithetic fault to the Alkyonides earthquakes South (Perachora) fault, during the 1981 earthquakes it probably had a more important structural role.  相似文献   

6.
The NW-dipping Fiery Creek Fault System, located in the northern Mount Isa terrane, comprises numerous sub-parallel faults that record multiple episodes of Palaeo- to Mesoproterozoic movement. Hanging wall wedge-shaped stratal geometries and marked stratal thickness variation across the fault system indicate that the earliest movement occurred during episodic intracontinental extension (Mount Isa Rift Event; ca. 1710–1655 Ma). Reactivation of the fault system during regional shortening and basin inversion associated with the Mesoproterozoic Isan Orogeny (ca. 1590–1500 Ma) resulted in complex three-dimensional hanging wall geometries and highly variable strain in the hanging wall strata along the fault system. This has resulted in the development of discrete hanging wall deformation compartments, that are characterised by different structural styles. High strain compartments are characterised by relatively intense folding and the development of break-back thrusts, whereas low strain compartments are only weakly folded. Variations in hanging wall strain are attributed to selective reactivation of normal fault segments, controlled by the pre-inversion fault dip and lithological contrasts across the faults. Variation of the pre-inversion fault dip is interpreted to have been caused by episodic tilt-block rotation during crustal extension. Moderately dipping faults active early in the Mount Isa Rift Event show the greatest degree of reactivation, whereas younger and steeper normal faults have behaved as buttresses during inversion with strain focussed in zones of upright folding in the hanging wall.  相似文献   

7.
The major structure accommodating orogen-parallel extension in the Eastern Alps is inferred to be the Brenner Fault, which forms the western boundary of the Tauern Window. The estimated amount of extension along this fault varies from a minimum of 10–20 km to a maximum of >70 km. All investigations that have attempted to constrain this amount of extension have calculated the fault plane parallel displacement required to restore the difference in structural level between footwall and hanging wall as constrained by geobarometry. However, these calculations neglected the component of exhumation of the footwall resulting from folding and erosion. Therefore, the total amount of extensional displacement was systematically overestimated. In the present study, we project a tectonic marker surface from the footwall and hanging wall of the Brenner Fault onto a N–S-striking cross section. This marker surface, which is the base of the Patscherkofel unit in the footwall and the base of the Ötztal basement in the hanging wall, is inferred to have occupied the same structural level in the hanging wall and footwall of the Brenner Fault before its activity. Therefore, the difference in height between the marker projected from the footwall and from the hanging wall is a measure of the vertical offset across the Brenner Fault. This construction shows that the vertical offset of the marker horizon on both sides of the Brenner Fault varies strongly and continuously along strike of the Brenner Fault, attaining a maximum value of 15 km at the hinge of the folded footwall (Tauern Dome). The along-strike change of vertical offset is explained by large-scale upright folding of the footwall that did not affect the hanging wall of the Brenner Fault. Therefore, the difference in vertical offset of 10 km between the area of the Brenner Pass and the area immediately south of Innsbruck corresponds to the shortening (upright folding) component of exhumation of the footwall. The remaining 5 km of vertical offset must be attributed to extensional deformation. The Brenner Fault itself is barely folded, its dip varies between 20 and 70°, and it crosscuts the upright folds of the western Tauern Window. Given the offset of 5 km, the dip of the fault constrains the extensional displacement to be between 2 and 14 km. We conclude that the Tauern Window was exhumed primarily by folding and erosion, not by extensional unroofing.  相似文献   

8.
In the Guadix-Baza Basin (Betic Cordillera) lies the Baza Fault, a structure that will be described for the first time in this paper. Eight gravity profiles and a seismic reflection profile, coupled with surface studies, indicate the existence of a NE-dipping normal fault with a variable strike with N-S and NW-SE segments. This 37-km long fault divides the basin into two sectors: Guadix to the West and Baza to the East. Since the Late Miocene, the activity of this fault has created a half-graben in its hanging wall. The seismic reflection profile shows that the fill of this 2,000–3,000 m thick asymmetric basin is syntectonic. The fault has associated seismicity, the most important of which is the 1531 Baza earthquake. Since the Late Tortonian to the present, i.e. over approximately the last 8 million years, extension rates obtained vary between 0.12 and 0.33 mm/year for the Baza Fault, being one of the major active normal faults to accommodate the current ENE–WSW extension produced in the central Betic Cordillera. The existence of this fault and other normal faults in the central Betic Cordillera enhanced the extension in the upper crust from the Late Miocene to the present in this regional compressive setting.  相似文献   

9.
Integrated studies based on tectonic, seismotectonic and geomorphological analyses indicate that Normandy (northwest France) has been an active area during the Quaternary. Topography and landform discontinuities reflect the dislocation and differential uplift of a late Cenozoic platform. The tectonic activity is represented by (i) active faults, indicated by linear scarps and seismic activity, (ii) offsetting of pre‐existing surfaces, (iii) Plio‐Pleistocene sedimentation restricted within narrow subsiding zones, and (iv) morphometric properties of drainage basins that indicate zones of differential uplift. The inferred strain pattern involves (i) a shortening direction that strikes NW–SE as expected in the European context of Alpine compression, and (ii) a NE–SW trending extension accommodated by NW–SE normal faults. The geomorphological systems encountered in Normandy preferentially record differential vertical displacements. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
Geomorphic and seismic data relative to one of the major faults of Iran, the Doruneh Fault, are presented. It is shown that along its eastern section, the fault is presently active and connected with two destructive earthquakes during the twentieth century. Contrary to previous assumptions, recent and probably contemporary movements along it are essentially in the vertical direction.  相似文献   

11.
Northwestern Argentina was the site of the continental Salta rift in Cretaceous to Paleogene time. The Salta rift had a complex geometry with several subbasins of different trends and subsidence patterns surrounding a central high. Fault trends in the rift were extremely variable. There is evidence of normal and/or transfer faults trending N, NE, E and SE. It is not clear if all these faults were active at the same time, indicating a poorly defined extension direction, or if they formed in different, non-coaxial extension phases. In either case, their trends were very likely influenced by preexisting fault systems. Beginning in early Eocene time, the rift basins were superseded by Andean foreland basins and later became caught in the Andean thrust deformation propagating eastward, resulting in the inversion of rift faults. Due to their different orientations, not all faults were equally prone to reactivation as thrusts. N to NNE trending faults were apparently most strongly inverted, probably often to a degree where the traces of their normal fault origin have become obliterated. We present seismic evidence of moderately inverted N trending faults in the Tres Cruces basin and field examples of preserved E trending normal faults. However, reactivation sometimes also affects faults trending approximately parallel to the main Neogene shortening direction, indicating short-term deviations from the general pattern of Neogene thrust deformation. These pulses of orogen-parallel contraction may be linked to the intermittent activity of oblique transfer zones.  相似文献   

12.
The Halten Terrace, offshore mid-Norway, is underlain by a Triassic evaporitic package that is rheologically weak, and led to decoupling of fault systems during Middle Jurassic to Early Cretaceous rifting. We use 2D and 3D reflection seismic data, constrained by wells, from the southern Bremstein Fault Complex of the Halten Terrace to map faults and key stratigraphic horizons, and analyse throw variations along faults, allowing us to constrain patterns of fault segmentation and linkage within the complex. The Bremstein Fault Complex has an overall tilted monoclinal geometry with localised fault systems at base salt level associated with overlying, highly distributed systems of normal faults. Vertical strain partitioning across the evaporite package means that sub-evaporite and supra-evaporite fault populations acted as semi-independent fault systems. Supra-evaporite faults are partly gravity-driven, and controlled by sub-evaporite faulting and consequent tilting of the evaporitic package. This behaviour leads to a wide variety of possible vertical linkage patterns of faults across the evaporite package. A greater variety of lateral segment linkage patterns occurs in evaporite-detached normal fault systems than in normal fault systems developed in the absence of evaporite units. Segment boundary styles can also be modified by migration of evaporite. Some segment boundaries are associated with a footwall anticline and hanging-wall syncline, in contrast to the footwall synclines and hanging-wall anticlines widely described in studies of normal fault systems.  相似文献   

13.
Pliocene and Quaternary tectonic structures mainly consisting of segmented northwest–southeast normal faults, and associated seismicity in the central Betics do not agree with the transpressive tectonic nature of the Africa–Eurasia plate boundary in the Ibero-Maghrebian region. Active extensional deformation here is heterogeneous, individual segmented normal faults being linked by relay ramps and transfer faults, including oblique-slip and both dextral and sinistral strike-slip faults. Normal faults extend the hanging wall of an extensional detachment that is the active segment of a complex system of successive WSW-directed extensional detachments which have thinned the Betic upper crust since middle Miocene. Two areas, which are connected by an active 40-km long dextral strike-slip transfer fault zone, concentrate present-day extension. Both the seismicity distribution and focal mechanisms agree with the position and regime of the observed faults. The activity of the transfer zone during middle Miocene to present implies a mode of extension which must have remained substantially the same over the entire period. Thus, the mechanisms driving extension should still be operating. Both the westward migration of the extensional loci and the high asymmetry of the extensional systems can be related to edge delamination below the south Iberian margin coupled with roll-back under the Alborán Sea; involving the asymmetric westward inflow of asthenospheric material under the margins.  相似文献   

14.
王海学  付晓飞  付广  吕延防  杜微  刘桐汐 《地球科学》2014,39(11):1539-1546
野外观察、典型地震解剖和物理模拟证实, 只要岩石存在能干性差, 断层具有典型垂向分段生长特征.岩石能干性差异决定断层演化历经3个阶段: 下部断层形成、断裂上下分段和贯通性断裂形成.以三肇凹陷为例, 应用岩石力学特征和断层相关褶皱理论, 证实扶杨油层砂岩层段普遍形成断裂, 青一段泥岩阻止下部断层向上传播, 从而形成断层垂向分段生长现象.结合油藏精细解剖表明, 三肇凹陷扶杨油层"倒灌"运移的主要油源断层是成藏期活动、沟通源储且垂向分段生长的断裂.   相似文献   

15.
Fracture-fissure systems found at mid-ocean ridges are dominating conduits for the circulation of metallogenic fluid. Ascertaining the distribution area of active faults on both sides of mid-ocean ridges will provide a useful tool in the search for potential hydrothermal vents, thus guiding the exploration of modern seafloor sulfides. Considering the Mid-Atlantic Ridge 20°N–24°N (NMAR) and North Chile Rise (NCR) as examples, fault elements such as Fault Spacing (?S) and Fault Heave (?X) can be identified and quantitatively measured. The methods used include Fourier filtering of the multi-beam bathymetry data, in combination with measurements of the topographic slope, curvature, and slope aspect patterns. According to the Sequential Faulting Model of mid-ocean ridges, the maximal migration distance of an active fault on either side of mid-ocean ridges—that is, the distribution range of active faults—can be measured. Results show that the maximal migration distance of active faults at the NMAR is 0.76–1.01 km (the distance is larger at the center than at the ends of this segment), and at the NCR, the distribution range of active faults is 0.38–1.6 km. The migration distance of active faults on the two study areas is positively related to the axial variation of magma supply. In the NCR study area, where there is an abundant magma input, the number of faults within a certain distance is mainly affected by the variation of lithospheric thickness. Here a large range of faulting clearly corresponds to a high proportion of magmatism to seafloor spreading near mid-ocean ridges (M) value, and in the study area of the NMAR, there is insufficient magmatism, and the number of faults may be controlled by both lithospheric thickness and magma supply, leading to a less obvious positive correlation between the distribution range of active faults and M.  相似文献   

16.
Soil–gas measurements of different gas species were performed in two distinct areas of the Corinth Gulf Rift (Greece): the Aigion-Neos Erineos-Lambiri (ANEL) fault zone and the Rion-Patras fault zone. Both zones lie in one of the most seismically active areas of the Euro-Mediterranean region, where a fast-opening continental rift is located. In particular, the geochemical investigations were focused on fault segments and fracture systems previously inferred by geomorphological, lithological and structural studies.In this work the applicability of soil–gas geochemistry surveys for the exploration of buried/hidden faults was tested by using various statistical methods. Moreover, a comprehensive geostatistical treatment of the collected data provided new insights into the control exerted by active structures on deep-seated gas migration towards the surface. In both investigated areas, the highest 222Rn and CO2 concentration peaks correspond with zones where the interaction among fracture and fault segments was inferred by structural and morphological methods. This indicates a clear correlation between the shape and orientation of the anomalies and the different attitude and kinematic behavior of the faults recognized in the two areas. Furthermore, obtained results show that gases migrate preferentially through zones of brittle deformation by advective processes, as suggested by the relatively high rate of migration needed to obtain anomalies of short-lived 222Rn in the soil pores.  相似文献   

17.
断层是油气纵向输导的主要通道,其发育特征与断圈的油气成藏有着密切的联系。通过分析恩平凹陷断层特征,将该区断层划分为2个断层系统4类不同活动期次的断层,并系统研究了断层的构造样式、活动性和封闭性对本区新近系油气成藏的影响。结果表明:恩平凹陷新近系发育7种构造样式,控制着新近系各二级构造带圈闭发育类型,翘倾半背斜和背斜是该区最有利的成藏类型;长期型断层和晚期型断层是本区主要的控运断层,在油气运聚与成藏中断层具有通道和封堵的双重作用,其封堵性制约了油气烃柱高度,而活动性主导了新近系油气富集程度,且断层生长指数为1.09是该区控运期断层纵向输导成藏的临界值,随着控运断层活动性增大,断层纵向输导能力增强,新近系圈闭成藏的概率越高。  相似文献   

18.
位于滇西北断陷带东北部、程海-宾川断裂带北端的永胜地区上新世以来断裂活动强烈,构造地貌特征显著。永胜地区1:50000活动构造填图发现,区内共存在各类断裂14条。其中金官断裂(F1)、永胜断裂(F2)、木耳坪羊坪断裂(F3)三者规模最大,活动性亦远超其他断裂,属于程海-宾川断裂带的一级分支断裂,其他断裂为程海-宾川断裂的二级分支断裂。构造地貌特征、错断地质体及擦痕统计等均指示区内断裂现今主要以伸展正断活动为主,根据活动性的差异可将其分为强、较强、中等、弱、极弱5类,其中金官断裂的活动性最强,垂向活动速率可达0.20~0.26 mm/a。对永胜地区主要断裂几何学、运动学特征的研究及动力学机制的讨论可知,永胜地区主要断裂在平面上构成向东突出的弧形旋扭构造体系,在剖面上表现为张扭性断裂常见的负花状构造;程海-宾川断裂带现今活动主要是在近南北向主压应力作用下产生的近东西向的伸展正断,并因为叠加了旋扭作用而具有一定左旋走滑。永胜地区的弧形旋扭构造体系及滇西北断陷带等均是在川滇内弧带顺时针旋转及南汀河断裂、畹町断裂与理塘断裂的走滑拉分共同作用下形成的。   相似文献   

19.
黄骅坳陷中区新生代断裂系统及其成因分析   总被引:7,自引:2,他引:5       下载免费PDF全文
何书  杨桥  漆家福  王家鼎 《地质科学》2008,43(3):533-545
断裂是黄骅坳陷新生代主要构造变形类型,对该区油气成藏有重要影响。本文将黄骅坳陷中区的断裂划分为6个系统,并综合分析了它们之间的关系。每一断裂系统至少有一条主干基底断层,发育在该断层上、下盘的次级断层以不同形式与主干基底断层组合在一起,其剖面上的构造样式和平面上的构造组合显示了该断裂系统在新生代的运动学特征。在系统分析黄骅坳陷中区新生代断裂系统的断层组合、构造样式、主干断层位移方式及生长史的基础上,结合区域构造背景、伸展边界条件及断层间的相互作用,探讨了该区断裂系统的形成机制。分析结果表明:区域构造背景下存在的伸展边界控制了整个黄骅坳陷中区新生代断裂系统总的构造格局,系统中主要断层走向与伸展边界近于平行。这进一步证实了区内右旋走滑作用与伸展作用的相互耦合,致使断层沿走滑构造带出现转向或中断。各断裂系统之间及系统内部断层间的运动学关系表明黄骅坳陷古近纪受两个构造动力控制,一是地幔热作用引起岩石圈北西—南东向引张作用,二是北北东向深断裂带的右旋剪切作用。  相似文献   

20.
ACTIVE DEFORMATION STYLE IN SOUTH-EASTERN AND NORTH MARGINS OF TIBETAN PLATEAU  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号