首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Hydrographic (CTD) observations obtained with R/V'Lance'in July-August 1982 across the Fram Strait are presented. The extent and the presence of traditional water masses such as Atlantic Water, Polar Water and Greenland Sea Deep Water are discussed. The complicated hydrographical structure in the upper water masses due to eddies and fronts near the ice edge is noted. An intermediate water mass characterized by a salinity minimum is found all across the Strait, and is suggested to originate in the Greenland Sea. The deep water in the south-west part of the Strait shows strong horizontal salinity and temperature gradients, and the structure of the corresponding station profiles indicates large hydrographical activity. This is in contrast to the east-north-east part, where the horizontal gradients are much weaker and the profiles much smoother. Thus most of the deep-and bottom-water communication between the Greenland/ Norwegian Seas and the Arctic Ocean seems to take place west of the 0° meridian.  相似文献   

2.
The θ-S relations for the cold, saline deep and bottom waters in the Greenland and Norwegian Seas and the Polar Ocean are displayed and discussed. The differences in θ-S curves are explained by a mixing of the deep water masses and by the injection of waters from above consisting of cold dense water formed by cooling and ice formation at the sea surface and entrained warm water from the intermediate layers. Estimates of the strength of the deep water circulation are based upon the changes in θ-S curves and on some assumptions about the transformations of the Bering Strait inflow in the Chukchi Sea and on the Alaskan shelf.  相似文献   

3.
The spatial distribution of heat and freshwater content and potential energy of a several hundred metre thick surface layer are computed for the Nordic seas and adjacent parts of the northern North Atlantic and the Arctic Ocean using a total of almost 100 000 hydrographic stations. The fields clearly show the major features of the area's circulation, with warm salty water in the eastern part and fresher, colder water in the western part. Comparisons with published estimates show that the potential energy field, representing the baroclinic part of the flow, accounts for about 30 % of the total flow but roughly 100 % of the flow of Polar Water in the northern part of the East Greenland Current, about 50 % of the total flow in the Norwegian Atlantic Current, and just a small fraction of the flow in the eastern part of Fram Strait. This suggests that the barotropic circulation is quite important in many parts of the Nordic seas. The barotropic circulation is also clearly seen by its effects on the integrated fields with isolines following deep bathymetric contours. We speculate that the barotropic circulation in combination with topographic obstacles, like the Greenland–Scotland Ridge and the ridge system in the Jan Mayen area, may have large impact on the spreading of freshwater and heat in the Nordic seas.  相似文献   

4.
The maximum dense shelf water salinity formed during winter in the Svalbard Bank area of the north-western Barents Sea is reconstructed for the period 1952–2000 by analysing the transformation of summer remnants. The variability of 34.7 - 35.4, waters being at the freezing point, is mainly generated by interannual variations in the near surface salinity. On interannual time scales the latter is strongly linked to the sea ice import. In contrast, no correlation of the salinity of the Atlantic Water (AW) throughflow to the Arctic Ocean with the ice import is found. Salinities of both the dense shelf water site in the north-west Barents Sea and the north-eastward AW throughflow show a long term decrease, which can partly be explained by a less saline inflow of AW from the Norwegian Sea. The unusually low dense water salinities in the north-west Barents Sea during the 1990s appear to have a different origin, consistent with a response to oceanic heat advection and decreasing sea ice extent.  相似文献   

5.
A total of 276 driftwood samples from Wijdefjorden on the northern coast of Spitsbergen were den-drochronologically analysed and compared with results from a similar study on driftwood from Isfjorden. The composition and origin of the driftwood from the two places differ. Whereas Larix is almost absent in the Isfjorden driftwood, it comprises 25% of the Wijdefjorden collection. The Isfjorden driftwood has its main origin in the White Sea region and the dates of the driftwood concentrate around the period from 1950 to 1979, with only a few dates from the period 1910 to 1950. The Wijdefjorden driftwood has two main origins: Siberia and the White Sea region. The dates of the White Sea components of the Wijdefjorden driftwood are concentrated mainly in the period 1910-1950. The dates of the Siberian (Yenisey) components of the Wijdefjorden driftwood are concentrated in the period 1950–1979. It can be argued that during the time period from ca. 1910 to 1950 the activity of a warm northerly flowing current along the western coast of Spitsbergen was stronger, transporting White Sea driftwood all the way to the Wijdefjorden area. However, after ca. 1950 the input of White Sea driftwood decreased, and the relative importance of the Siberian component increased. These results fit well with the climatic records from Svalbard, showing a warm regime during the first half of this century due to increased activity of the warm West Spitsbergen Current along the western coast of Spitsbergen. After ca. 1950, the influx of Atlantic Water became weaker, the climate became colder and the relative occurrences of Siberian driftwood transported by the Transpolar Current increased on the northern coast of the Svalbard archipelago.  相似文献   

6.
Flooding 1990s along the Yangtze River, has it concern of global warming?   总被引:4,自引:0,他引:4  
1 IntroductionFloods occurring along the Yangtze River (Changjiang River) valley make up about 35.8 % of the floods over China[1]. Most noteworthily, a series of severe floods happened along the middle to lower Yangtze River and caused great damages during the past decade. The flood of 1991 afflicted 0.98 million hectares of farmland and resulted in 1,200 loss of life. Severe flood occurred again over this region in 1996. An extremely destructive flood emerged during the summer of 1998, wh…  相似文献   

7.
Features of the physical oceanographic conditions of the Barents Sea   总被引:17,自引:2,他引:15  
  相似文献   

8.
基于1960~2015年西安气象站点逐日最高温、最低温数据,采用RHtest软件对非均一化气温序列进行订正,进而选取16项极端气温指数,对西安极端气温变化特征进行分析。结果表明:由于气象站点迁移,西安气温资料存在非均一性,导致极端气温变化趋势被低估;全球变暖背景下,西安极端气温变化表现出:“快速增温与平稳波动并存,冷暖变化趋势相反,夜晚增暖趋势比白天明显,白天波动变化明显于夜晚,持续性高温事件变化不大,持续性低温事件大幅下降”的变化特征;通过不同区域趋势变化对比、冷暖、昼夜变化关系对比发现,受城市热岛影响,西安极端低温事件减少更为突出,远高于中国其他对比区域(秦岭南北、黄土高原、东北地区等);在昼夜变化上,西安极端气温变化与中国、全球变化具有一致性,但是通过冷暖指标对比发现,西安极端气温变化具有区域性,表现为冷昼日数下降高于暖昼日数上升,冷夜日数下降高于暖夜日数上升,冷持续日数和暖持续日数共同表现为下降趋势。  相似文献   

9.
本文利用1906-2015年武汉月平均最高与最低气温资料,重建了过去110年武汉市年平均气温距平序列,分析了其年代际尺度的变化特征。主要结论为:①过去110年武汉市经历了“暖—冷—暖”3个多年代际波动,其中1906-1946年与1994-2015年气候相对温暖,1947-1993年则气候相对寒冷;②在多年代尺度上,武汉市存在多次显著增温和降温过程,其中增温速率最快的30年和50年分别出现在1980-2009年和1960-2009年;最快降温速率则出现在1928-1957年和1925-1974年;③过去110年武汉市年均温发生了3次跃变,其中由冷转暖的跃变出现在20世纪20年代初和90年代中后期,而由暖转冷的跃变则出现在40年代;④武汉市年均温变化与全球/北半球和中国的变化趋势基本一致,但变幅偏大。此外,全球增暖停滞现象在武汉市最近十几年也有所体现。  相似文献   

10.
Eva Falck 《Polar research》2001,20(2):193-200
Measurements of nitrate and phosphate taken in the Northeast Water Polynya (NEWP) during the summer of 1993 have been used to identify the contribution of waters of Atlantic and Pacific origin in the polynya. Since waters from the northern Pacific exhibit a deficit in nitrate relative to phosphate due to denitrification in low oxygen waters, the relationship between nitrate and phosphate can be used to distinguish between oceanic waters of Pacific and Atlantic origin. The Pacific Water enters the Arctic Ocean through Bering Strait and flows along the northern coasts of Alaska and Canada. Some of this water exits through Fram Strait and may therefore enter the polynya which is situated above the continental shelf off the north-eastern coast of Greenland. Compared to data from the Greenland Sea, which only show a N–P relationship of typical Atlantic Water, the data from the Northeast Water Polynya show that the upper waters of the polynya bear a clear signal of waters of Pacific origin. In the surface mixed layer an average of about 90% is found to have Pacific N–P characteristics. Below the surface mixed layer the amount of Pacific derived water decreases through the halocline and from about 150 m to the bottom only typical Atlantic Water is found.  相似文献   

11.
This study investigates the Arctic Ocean warming episodes in the 20th century using both a high-resolution coupled global climate model and historical observations .The model,with no flux adjustment,reproduces well the Atlantic Water core temperature(AWCT) in the Arctic Ocean and shows that four largest decadal-scale warming episodes occurred in the 1930s,70s,80s,and 90s,in agreement with the hydrographic observational data.The difference is that there was no pre-warming prior to the 1930s episode,while there were two pre-warming episodes in the 1970s and 80s prior to the 1990s,leading the 1990s into the largest and prolonged warming in the 20th century.Over the last century,the simulated heat transport via Fram Strait and the Barents Sea was estimated to be,on average,31.32 TW and 14.82 TW,respectively,while the Bering Strait also provides 15.94 TW heat into the western Arctic Ocean.Heat transport into the Arctic Ocean by the Atlantic Water via Fram Strait and the Barents Sea correlates significantly with AWCT(C=0.75 ) at 0- lag.The modeled North Atlantic Oscillation(NAO) index has a significant correlation with the heat transport(C=0.37).The observed AWCT has a significant correlation with both the modeled AWCT(C=0.49) and the heat transport(C=0.41). However,the modeled NAO index does not significantly correlate with either the observed AWCT(C=0.03) or modeled AWCT(C=0.16) at a zero-lag,indicating that the Arctic climate system is far more complex than expected.  相似文献   

12.
There were a series of severe floods along the middle to lower reaches of the Yangtze River (Changjiang River) in China during the 1990s. The extensive summer (June, July and August) precipitation is mostly responsible for the flooding. The summer rainfall in the 1980s and the 1990s is much higher than that in the previous 3 decades. The means for 1990-1999 is +87.62 mm above normal, marked the 1990s the wettest decade since the 1950s. Six stations with a time span of 1880-1999 are selected to establish century -long rainfall series. This series also shows that the 1990s is the wettest decade during the last 120 years. In the wettest 12 years, four occurred in the 1990s (1991,1996,1998 and 1999). Both global and China’s temperature show there is a relative lower air temperature during the 1960-1970s, and a rapid warming in the 1980-1990s. Comparisons of rainfall between 1960-1979 and 1980-1999 show there are dramatic changes. In the cold period 1960-1979, the summer rainfall along the Yangtze River is 3.8 % to 4.7 % below the normal, during the warm period 1980-1999, over 8.4 % to 18.2 % of summer rainfall occurs. Over the whole eastern China, the summer rainfall shows opposite spatial patterns from the 1960-1970s to 1980-1990s. The consistent trend toward more rainfall with global warming is also presented by the greenhouse scenario modeling. A millennial Drought/flood Index for the middle to lower reaches of the Yangtze River showed that although the surplus summer rainfall in the 1990s is the severest during the past 150 years, it is not outstanding in the context of past millennium. Power spectra of the Drought/flood Index show significant interdecadal periods at 33.3 and 11.8 years. Thus, both the natural inter-decadal variations and the global warming may play important roles in the frequent floods witnessed during the last two decades.  相似文献   

13.
Historical winter sea ice concentration data are used to examine the relation between the Northern Annular Mode (NAM) and the sea ice concentration in the Nordic seas over the past 50 years. The well known basic response pattern of a seesaw between the Labrador Sea and the Greenland, Iceland and Barents seas is being reproduced. However, the response is not robust in the Greenland and Iceland seas. There the observed variability has a more complex relationship with surface temperatures and winds. We divide the sea ice response into three spectral bands: high (P< year), band (515 year) filtered NAM indices. This division is motivated by the expected slow response of the ocean circulation which might play a significant role in the Greenland and Iceland seas. The response to the NAM is also examined separately for the periods before and after 1976 to identify variations due to the relocation of the northern centre of the North Atlantic Oscillation.  相似文献   

14.
One of the parameters useful for monitoring large-scale climate variability in the Arctic Ocean is sea level. It integrates virtually all static and dynamic processes in the hydrosphere and atmosphere of the Arctic. Previously unavailable mean monthly sea level data at 44 coastal and island stations in the Kara, Laptev, East Siberian and Chukchi seas covering years from 1950 to 1990 were used to analyse seasonal and inter-annual variability. Sea level has a significant annual cycle with an average seasonal amplitude (from peak to peak) in the coastal zone of the Arctic seas on the order of 20 - 30 cm. The analysis of inter-annual and inter-decadal changes has shown that at nearly all stations in the Kara, Laptev, East Siberian and Chukchi seas from the beginning of the 1950s through the end of 1980s there is a positive trend in sea level variability. The main contribution to the sea level rise was in the 1980s; on average for the coastal zone of Siberian shelf the sea level in the 1980s was 5-6 cm higher than in the previous decades. A reasonable agreement between observed decadal mean sea level values and the results of diagnostic model simulations suggests that this rise in the Arctic seas is connected with the reorganization of large-scale circulation of the Arctic Ocean, rather than the regional lowering of the coasts, as has been suggested previously.  相似文献   

15.
利用祁连山区及周边29 个气象观测站近41 年秋季云形状和气温观测资料, 分析了祁连山区秋季层状云出现频率的空间分布与时间变化特征, 探讨了秋季层状云出现频率与气候变暖的关系, 并选用同期NCEP/NCAR全球再分析资料, 对祁连山区秋季层状云的环流特征和水汽输送进行了分析。结果表明:①祁连山区秋季层状云出现频率为8%~26%, 呈西少东多的空间分布。②近41 年来, 祁连山区秋季增温1.2℃, 气温变化的倾向率为0.29℃/10a, 80 年代中期以后发生了增温的突变。③祁连山区秋季层状云的出现频率呈明显的减少趋势, 近41 年来减少约11%, 倾向率为-2.7%/10a, 尤其在20 世纪80 年代中期以后与同期祁连山区显著增温相对应, 层状云出现频率减少更为明显, 层状云出现频率与气温呈明显的反相变化趋势。④在气候变暖的背景下, 祁连山区的层状云出现频率减少, 减少的幅度从西北向东南递增。当祁连山区秋季平均气温在升高1℃ 时, 祁连山区层状云出现频率减少2%~10%, 祁连山西段、中段减少2%~4%, 祁连山东段减少4%~10%。⑤祁连山区秋季层状云偏多与偏少年在欧亚500 hPa 环流场上存在明显的差异, 层状云偏多年, 极涡向亚洲北部伸展, 东亚大槽较偏弱, 乌拉尔山高压脊偏强, 脊前偏北气流引导极地冷空气沿偏西北路径向中国西北地区输送, 中亚地区到高原上不断有低值系统发展东移, 同时南支槽加强, 来自阿拉伯海、南海、东海的暖湿气流向内陆地区的输送明显加强, 与进入高原北部的冷空气交绥, 从而使祁连山区层状云出现频次增多;层状云偏少年, 中亚-中国西北地区暖性高压异常加强, 东亚大槽偏强, 冷空气活动路径偏东, 亚洲大陆至西太平洋冬季风特征明显, 偏北风加强, 不利于东南暖湿气流向西北内陆地区的输送, 冷暖气流在祁连山区交绥次数减少, 从而使祁连山区层状云出现频次减少。⑥印度洋沿孟加拉湾的向北的水汽输送, 副热带西太平洋的偏东气流在南海和中南半岛附近转为向北的水汽输送, 地中海、里海的西风带纬向水汽输送是3支影响祁连山区秋季层状云多寡的水汽输送通道, 进而对祁连山区秋季降水产生影响。  相似文献   

16.
1960-2017年渭河流域极端气温变化及其对区域增暖的响应   总被引:2,自引:1,他引:1  
姬霖  段克勤 《地理科学》2020,40(3):466-477
基于逐日最高和最低气温,计算1960-2017年渭河流域16项极端气温指数,发现近58 a渭河流域极端冷指数(冰冻日数、霜冻日数、冷夜日数、冷昼日数和冷持续指数)呈下降趋势,极端暖指数(夏日日数、热夜日数、暖昼日数、暖夜日数、作物生长期和热持续指数)呈上升趋势,特别是20世纪80年代后上升速率明显加快。流域半干旱区对气候变暖的响应更敏感,主要体现在白天温度增高以及冰冻和霜冻日数减少,而半湿润区主要为夜间增暖。相比1960-2003年,2004-2017年流域平均温度升高1.75℃,暖夜/暖昼日数增加10.99/6.79 d,而霜冻/冷夜日数减少8.71/2.35 d。分析发现地形条件是影响流域极端气温空间差异的重要因素。在流域半干旱区,冷夜和冷昼日数的快速减少,有利于农作物的生长。而在相对湿度较大的半湿润区,随着夏季连续高温天气增多,高温热浪事件的危害更大。  相似文献   

17.
基于北方地区 404 个气象站 1960—2017 年逐日最高气温、最低气温资料,应用线性倾向估 计法、Mann-Kendall 法、滑动 t 检验法、累积距平法和相关分析法,分析了极端气温的时空变化特 征,并探讨了气温指数的影响因素。研究表明:极端气温暖指数和极值指数呈上升趋势,冷指数和 气温日较差呈下降趋势;变化幅度中冷指数大于暖指数,夜指数大于昼指数,西北地区极端气温指 数变化幅度最大,东北地区最小。突变时间上,极端气温指数突变主要发生在 20 世纪 80 年代和 90 年代,暖指数和极高值指数晚于冷指数和极低值指数,东北地区极端气温指数突变时间最早,西北 地区最晚,突变后极端暖事件和气温极值事件进入多发阶段,极端冷事件进入少发阶段。1988— 2012 年极端气温指数的变化响应了全球变暖停滞现象。多数极端气温指数与经纬度、海拔高度显 著相关。北极涛动(AO)指数对极端气温的影响最强,对冷指数影响最明显。气溶胶光学厚度与多 数冷指数呈负相关,而与多数暖指数呈正相关。  相似文献   

18.
Groundwater in front of warm‐based glaciers is likely to become a more integrated part of the future proglacial hydrological system at high latitudes due to global warming. Here, we present the first monitoring results of shallow groundwater chemistry and geochemical fingerprinting of glacier meltwater in front of a warm‐based glacier in Southeast Greenland (Mittivakkat Gletscher, 65° 41′ N, 37° 48′ W). The groundwater temperature, electrical conductivity and pressure head were monitored from August 2009 to August 2011, and water samples were collected in 2009 and analyzed for major ions and water isotopes (δD, δ18O). The 2 yrs of monitoring revealed that major outbursts of glacier water during the ablation season flushed the proglacial aquifer and determined the groundwater quality for the next 2–8 weeks until stable chemical conditions were reached again. Water isotope composition shows that isotopic fractionation occurs in both groundwater and glacier meltwater, but fractionation due to evaporation from near‐surface soil moisture prior to infiltration has the most significant effect. This study shows that groundwater in Low Arctic Greenland is likely to possess a combined geochemical and isotopic composition, which is distinguishable from other water sources in the proglacial environment. However, the shallow groundwater composition at a given time is highly dependent on major outbursts of glacier water in the previous months.  相似文献   

19.
依托2012 年第五次北极科学考察分析了夏季挪威-格陵兰海域营养盐和光合色素的分布情况, 探讨 水团输送对该海域营养盐分布及对该海域浮游植物群落结构分布的影响。结果显示挪威海和格陵兰海域调 查站位上层(200 m)水体中AT 断面的硝酸盐、磷酸盐及硅酸盐平均浓度分别为9.0(±5.0)、0.65(±0.29)和 1.8(±1.6) μmol·L–1, BB 断面的硝酸盐、磷酸盐及硅酸盐平均浓度分别为8.9(±3.8)、0.71(±0.22)和1.8(± 1.6) μmol·L–1。挪威海和格陵兰海域上层水体中硅酸盐相对于硝酸盐远远不足, 且呈显著硅限制, 该限制随 纬度的升高有所减轻, 表现为北冰洋入流水的硅酸盐输送。光合色素与温度和营养盐的关系表现为: 与温度 呈正相关, 与营养盐呈负相关。光合色素的分布结果表明, 挪威-格陵兰海域浮游植物群落表层以硅藻或硅 藻和定鞭金藻为主, 次表层(叶绿素最大层)则以硅藻为优势种, 并且硅藻更易聚集于混合层下方温跃层上 方, 定鞭金藻在表层水体低营养盐的条件下更具竞争力。此外, 由于受大西洋入流分支的影响, 浮游植物向挪 威-大西洋流流经区域聚集(温度更高且营养盐充分), 形成区域浮游植物分布差异。  相似文献   

20.
In this study, we used 30 years of an operational sea surface temperature (SST) product, the NOAA Optimum Interpolation (OI) SST Version 2 dataset, to examine variations in Arctic SSTs during the period December 1981–October 2011. We computed annual SST anomalies and interannual trends in SST variations for the period 1982–2010; during this period, marginal (though statistically significant) increases in SSTs were observed in oceanic regions poleward of 60°N. A warming trend is evident over most of the Arctic region, the Beaufort Sea, the Chuckchi Sea, Hudson Bay, the Labrador Sea, the Iceland Sea, the Norwegian Sea, Bering Strait, etc.; Labrador Sea experienced higher temperature anomalies than those observed in other regions. However, cooling trends were observed in the central Arctic, some parts of Baffin Bay, the Kara Sea (south of Novaya Zemlya), the Laptev Sea, the Siberian Sea, and Fram Strait. The central Arctic region experienced a cooling trend only during 1992–2001; warming trends were observed during 1982–1991 and 2002–2010. We also examined a 30-yr (1982–2011) record of summer season (June–July–August) SST variations and a 29-yr (1982–2010) record of September SST variations, the results of which are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号