首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixing is a dominant hydrogeological process in the hydrothermal spring system in the Cappadocia region of Turkey. All springs emerge along faults, which have the potential to transmit waters rapidly from great depths. However, mixing with shallow meteoric waters within the flow system results in uncertainty in the interpretation of geochemical results. The chemical compositions of cold and warm springs and geothermal waters are varied, but overall there is a trend from Ca–HCO3 dominated to Na–Cl dominated. There is little difference in the seasonal ionic compositions of the hot springs, suggesting the waters are sourced from a well-mixed reservoir. Based on δ18O and δ2H concentrations, all waters are of meteoric origin with evidence of temperature equilibration with carbonate rocks and evaporation. Seasonal isotopic variability indicates that only a small proportion of late spring and summer precipitation forms recharge and that fresh meteoric waters move rapidly into the flow system and mix with thermal waters at depth. 3H and percent modern carbon (pmC) values reflect progressively longer groundwater pathways from cold to geothermal waters; however, mixing processes and the very high dissolved inorganic carbon (DIC) of the water samples preclude the use of either isotope to gain any insight on actual groundwater ages.  相似文献   

2.
Minor and trace element investigations have been performed on groundwaters of Ischia Island, which is located at the western edge of the bay of Naples. Ischia is formed entirely of Quaternary volcanic rocks. Intense seismicity, widespread fumaroles and thermal springs witness the persistent state of activity of its magmatic system. Groundwater samples, 58 from shallow thermal wells and 15 from thermal springs, were analysed for 72 elements by ICP-MS; temperature, pH and electrical conductivity (EC) were measured at the sampling site. Analytical data indicate clearly that the concentrations in the water of some elements, such as As, Be, Cu, Fe, Mn, Sb, Se and Tl, are often higher and sometimes much higher than the intervention limits fixed by the Italian Law DM 471 (25/10/1999) for water. Worthy of mention are the very high As values, reaching >1,000 µg/l in some wells. By means of R-mode factor analysis, 30 of 72 analysed elements were grouped as elemental associations representative of lithological type, water composition and, possibly, mineralization. Ischia thermal groundwaters are the result of mixing, in variable amounts, of deep magmatic fluids that are rich in metallic elements, with marine and/or meteoric waters. R-mode factor analysis and elemental association factor score distributions of the four-factor model confirm the existence of flux of magmatic mineralised fluids with marine and/or meteoric waters. Recharge by seawater intrusions occurs mostly in the north-western area of the island whereas the influence and control of magmatic mineralised fluids is clearly accentuated in the areas of Panza-Citara, Porto di Forio-Fango and Citara-Lido dei Maronti fracture alignments. The observed compositional variability of the analysed groundwaters, even in wells lying close to one another, is due to the local hydrodynamic conditions, controlled mostly by complex fault and fracture systems, which may represent preferential thermal water outflow routes. In general, the average minor and trace element compositions of Ischia thermal waters, when compared with the composition of sea and river water, show an enrichment in metallic elements such as As, Sc, V, Cr, Zn, Mo, U, W, Au, Hg. This paper points out that, in addition to the anthropogenic source, natural contribution also plays an important role in determining the high concentrations of toxic elements in groundwaters, which create health and acceptability problems.  相似文献   

3.
《Applied Geochemistry》2000,15(4):455-474
Between 1987 and 1995 more than 100 chemical and isotopic analyses were carried out on the thermal fluids discharged at surface from wells and springs of the Euganean and Berician thermal district. Results for δD and δ18O in waters, δ13C in CO2 and in C1–C4 n-alkanes, δD in CH4, 3He/4He and 40Ar/36Ar ratios in natural gases were coupled with chemical analyses in an attempt to determine the main characteristics and evolutionary trends of thermal fluids emerging in the region. The isotopic and chemical composition of thermal waters has led to the postulation of a meteoric origin of discharged thermal fluids and of a “maturation” trend as water moves from the peripheral manifestations of the Berici Hills towards those of the Battaglia, Montegrotto and Abano springs in the inner part of the geothermal field. Numerical simulation suggested that the observed evolutionary path is consistent with differentiation due to processes of water–rock interaction.The results of bulk analyses have shown that the gases are made up mainly of N2 (65–95 vol%), CO2 (0.5–20.5 vol%) and CH4 (up to 10 vol%), with relatively high Ar and He contents (up to 1.5 vol% and 0.16 vol%, respectively) and detectable amounts of C2–C6 saturated hydrocarbons. The chemical and isotopic composition of the gases suggests that both the meteoric and crustal contributions to the natural discharges are significant, while any significant magmatic contribution, possibly related to vestiges of the volcanic activity that occurred in the Abano area during the Tertiary age, can be ruled out.  相似文献   

4.
The isotopic composition of meteoric water in Sicily, Italy was investigated from May 2004 until June 2006. Samples were sampled monthly from a network of 50 rain gauges. During the same period 580 groundwater samples were collected from springs and wells to obtain insight into the isotopic composition of the water circulating in the main aquifers of the area. The mean weighted precipitation values were used to define the weighted local meteoric water line for five different sectors of Sicily. The use of Geographical Information System tools, coupled with isotopic vertical gradients, allowed designing an isotopic contour map of precipitation in Sicily. The defined meteoric compositions were highly consistent with most of the groundwater samples in each sector. However, in some areas fractionation processes occurring during and after rainfall slightly modify the isotopic composition of the groundwater. The obtained data set defines the present day isotopic composition of meteoric water in the central Mediterranean area and provides baseline values for future climatic and/or isotope-based hydrology studies.  相似文献   

5.
This paper reports the results of our studies, the chemical analysis of thermal spring’s waters and their geological settings, the use of different statistical methods to evaluate the origin of the dissolved constituents of spring waters and the estimation of the reservoir temperature of the associated geothermal fields of the Guelma region, Algeria. A major component in 13 spring water samples was analyzed using various techniques. The waters of the thermal springs at Guelma basin vary in temperature between 20 and 94oC. Q-mode hierarchical cluster analysis suggests three groups. The water springs were classified as low, moderate and high salinity. Mineral saturation indices (SI) calculated from major ions indicate the spring waters are supersaturated with the most of the carbonate minerals, and all of the spring water samples are under-saturated with evaporite minerals. The thermal spring waters have a meteoric origin, and all samples are immature with strong mixing between warm and shallow waters, where the temperatures of reservoirs to which the thermal waters are related ranged between 64° and 124°C. The deep circulation of meteoric waters in the study area is supplied by the high geothermal gradient around 4.5°C per 100 m and reaches a high temperature before rising to the surface. The estimated circulation depths ranged from 1425 and 3542 m.  相似文献   

6.
In this paper, the hydrochemical isotopic characteristics of samples collected from geothermal springs in the Ilica geothermal field, Eastern Anatolia of Turkey, are examined and described. Low-temperature geothermal system of Ilica (Erzurum, Turkey) located along the Eastern Anatolian fault zone was investigated for hydrogeochemical and isotopic characteristics. The study of ionic and isotopic contents shows that the thermal water of Ilica is mainly, locally fed by groundwater, which changes chemically and isotopically during its circulation within the major fault zone reaching depths. The thermal spring has a temperature of 29–39 °C, with electrical conductivity ranging from 4,000 to 7,510 µS/cm and the thermal water is of Na–HCO3–Cl water type. The chemical geothermometers applied in the Ilica geothermal waters yielded a maximum reservoir temperature of 142 °C according to the silica geothermometers. The thermal waters are undersaturated with respect to gypsum, anhydrite and halite, and oversaturated with respect to dolomite. The dolomite mineral possibly caused scaling when obtaining the thermal waters in the study area. According to the enthalpy chloride-mixing model, cold water to the thermal water-mixing ratio is changing between 69.8 and 75 %. The δ18O–δ2H compositions obviously indicate meteoric origin of the waters. Thermal water springs derived from continental precipitation falling on to higher elevations in the study area. The δ13C ratio for dissolved inorganic carbonate in the waters lies between 4.63 and 6.48 ‰. In low-temperature waters carbon is considered as originating from volcanic (mantle) CO2.  相似文献   

7.
The compositions of rain, snow, melt, spring and geothermal waters from the rift zone of N.E. Iceland can be explained by seaspray addition, chemical fractionation at the seawater-air interface, burning of fossil fuel, farming activities, purification by partial melting of snow and ice, dissolution of basalts and buffering by alteration minerals. The dissolution of the rocks appears to be incongruent. During solute acquisition, spring compositions move through the stability fields of kaolinite and smectite to the laumontite and illite fields. All but four of the springs are undersaturated with respect to calcite. Silica concentrations are compatible with the solubility of basaltic glass. The reactions reflected in the spring waters appear to have taken place sealed off from atmospheric CO2 after initial saturation.The geothermal waters which are recharged by the spring waters are depleted in Mg and Ca but enriched in carbon and sulfur with respect to dissolution of primary rocks. Expressions are derived relating dissolution rates of rocks, age of groundwaters, physical properties of groundwaters and mass transfer. The characteristic rock particle radii in the cold water aquifers range from 0.2 to 2 cm and the characteristic crack openings are of the order 0.04 to 0.4 cm. Using laboratory studies on the Icelandic lavas as a guide, the residence times of the cold waters in the aquifers can be estimated at 60 days to 4 years. The average active surface area of the aquifers enclosing 1000 g of spring water is of the order of 0.6 to 6 m2 and these 1000 g of water have reacted with 0.1 to 1 g of basaltic rocks. The same mass of thermal water has interacted with 100 to 300 g of unaltered rocks.  相似文献   

8.
Jowshan geothermal system comprises 6 thermal springs with outlet temperatures ranging from 39.3 to 46.6°C. The thermal water of these springs is presently used for swimming and as a treatment for rheumatism, sinusitis and skin diseases. The pH value of these springs is slightly acidic to neutral and the electrical conductivities about 1500 μS/Cm. The presence of many faults in the area, the alignment of all springs along the Sirch Fault and the similar chemical and isotopic composition of all springs in combination with the hydrogeological setting and geochemistry of water samples indicate that these springs are associated with deep circulation of meteoric water. According to this heating mechanism, meteoric waters infiltrate through fault openings to depth and after heating by geothermal gradient rise to the ground surface due to the hydraulic and buoyancy forces, a mechanism which is common in the southern parts of Iran. The use of various chemical geothermometers and mineral equilibrium states suggests a range of temperature about 50–90°C for the reservoir of Jowshan geothermal system.  相似文献   

9.
Kinmen Island is principally composed of low permeable granitoid and covered by a very thin sedimentary layer. Both surface and groundwater resources are limited and water demand is increasing with time. The groundwater in the granitoid has been surveyed as an alternative water source for daily use. Two to five highly fractured zones in the granitoid aquifer for each site were first determined by geochemical well logging. Accordingly, ten samples were collected from three sites. Using environmental isotopes and geochemical modeling, geochemical processes occurring due to water–rock interaction in the granitoid aquifer can be quantitatively interpreted. The stable isotopes of oxygen and hydrogen in groundwaters cluster along Taiwan’s local meteoric waterline, indicating evaporation does not have considerable effect on groundwaters. Given such a high evaporation rate for Kinmen Island, this result implies that infiltration rate of groundwater is high enough to reduce retention time through a well-developed fracture zone. NetpathXL is employed for inverse geochemical modeling. Results determine gypsum as being the major source of sulfate for deep groundwaters. The contribution from pyrite is minor. In addition, the weathering of albite to kaolinite is the dominant water–rock interaction characterizing geochemical compositions of deep groundwater in Kinmen Island.  相似文献   

10.
The main results that derived from this study is the quantitative determination of subsurface water balance and the water loses along flow line during drought decade (before 2000–2009), with intense exploitation of groundwater from water wells. The hydrogeological data are presented as spatial distribution maps and three dimensional models. The results are correlated with the main hydrogeologic control points including (storage and transmissivity coefficients, groundwater depths, aquifers thickness, lateral extensions, well productivity) to determine the preferable hydrogeologic districts for development and exploitations, avoiding groundwater depletion as captured zone flow. Based on the isotope analysis of deuterium, oxygen-18, tritium, carbon-13, and carbon-14, the recharge of the aquifer is originated to direct infiltration of atmospheric water through exposure outcrops within Hauran catchments area. The isotope compositions also show that the groundwater is a mixture of an old groundwater with modern recharge in the areas adjacent to Rutba. The fact that the Mullusi aquifer is of major importance as the water supply of people in Rutba region, particularly, for increasing demand of water resources and sustainability assessment in the future, this study developed a reliable strategic suggested plan in groundwater supply, based on groundwater exploitation and amount of safe yield within Dhabaa basin.  相似文献   

11.
Hydrogeochemistry and environmental isotope data were utilized to understand origins and characteristics of the thermal springs in southern Gaoligong Mountains, China. The groundwater at the thermal springs has low values of total dissolved solids, and its main water types are Na-HCO3. The thermal springs are mainly recharged from meteoric precipitations. The recharge areas are located near the springs at an approximate elevation of 1,800 m. The groundwater of the thermal springs is immature and partially equilibrated with a strong mixture of the shallow cold waters during the flow process. The shallow cold water accounts for more than 90 %. The temperatures of thermal reservoir that feed the springs are between 146 and 260 °C, and the calculated groundwater circulation depths range from 2,000 to 5,700 m below ground surface.  相似文献   

12.
Thermal water chemistry from the Biga Peninsula (NW Turkey) was investigated in order to discriminate among hydrochemical facies, and isotopic groups and identify the major geochemical processes. A systematic hydrogeochemical survey was carried out, incorporating new data as well as results from the previous studies. Results were used to further develop hydrogeological and geochemical models. Thermal water compositions were classified into four groups and the processes affecting evolution of water compositions were interpreted. Types 1, 2 and 3 are representatives of water corresponding to sulfate dominant fluids (mainly NaSO4-type), chloride dominant fluids (mainly NaCl-type), and bicarbonate dominant fluids (Na- or CaHCO3-type), respectively. Group 4 comprises the fluids with compositions that are not dominated by any distinctive anion. Groundwater infiltrates and circulates through the marbles of the Paleozoic basement. The isotopic composition of thermal waters revealed that deep infiltration of meteoric water took place in periods of changed climatic conditions.  相似文献   

13.
《Applied Geochemistry》1986,1(2):189-197
The chemical and isotopic compositions of hot springs in the San Marcos region of Guatemala are internally consistent with a hydrologic model in which a deep 240°C reservoir and one or more shallow 195–200°C reservoirs are present. Variations in hot-spring water compositions results from a combination of boiling, mixing with cold, dilute water, and chemical re-equilibration with decreasing temperature. The recharge water for the deep 240°C reservoir is isotopically heavier than the local meteoric water and probably comes from many kilometers to the west or southwest. The water in the shallow reservoir is a mixture of the 240°C water with about 20 ± 5% of cold, locally derived meteoric water. After mixing, the water in the shallow reservoir re-equilibrates with reservoir rock at 195–200°C. In some places additional mixing with cold water occurs after water leaves the shallow reservoir.  相似文献   

14.
The Seferihisar-Bal?ova Geothermal system (SBG), Turkey, is characterized by temperature and hydrochemical anomalies along the faults: thermal waters in northern Bal?ova are heated meteoric freshwater, whereas the hot springs of the southern Seferihisar region have a strong seawater contribution. Previous numerical simulations of fluid flow and heat transport indicated that focused upsurge of hot water in faults induces a convective-like flow motion in surrounding units. Salt transport is fully coupled to thermally driven flow to study whether fault-induced convection cells could be responsible for seawater encroachment in the SBG. Isotope data are presented to support the numerical findings. The results show that fault-induced convection cells generate seawater plumes that extend from the seafloor toward the faults. At fault intersections, seawater mixes with rising hot thermal waters. The resulting saline fluids ascend to the surface along the fault, driven by buoyant forces. In Bal?ova, thick alluvium, minor faults and regional flow prevent ascending salty water from spreading at the surface, whereas the weak recharge flow in the thin alluvium of the southern SBG is not sufficient to flush the ascending hot salty waters. These mechanisms could develop in any faulted geothermal system, with implications for minerals and energy migration in sedimentary basins.  相似文献   

15.
In the spring of 1995, 24 samples were collected from a widely distributed system of municipal water wells in Albuquerque, N.M., and analyzed for hydrogen (δD) and oxygen (δ18O) isotopic compositions. δD values for 15 of these samples are largely similar to those reported by Yapp in 1985, but have locally become more negative by as much as 5 per mil (ö). δD–δ18O data define two endmembers that are well aligned along the familiar meteoric water line (MWL): (1) the eastern domain (mountain precipitation runoff), having δD>–86ö (similar to the criteria of Yapp) and δ18O>–12.1ö (this work); and (2) a central basin domain, which may be in part derived from water seepage from the Rio Grande, having δD<–95ö and δ18O<–13.2ö. Only a few wells across the basin have δD values near the "baseline" value of the Rio Grande, defined by Yapp as –92ö. The proximity of these wells to the Rio Grande is consistent with recharge by seepage from the river bed under baseline conditions. Extensive pumping in the eastern domain and West Mesa areas may be partly responsible for an apparent expansion of the central-basin regime of water more depleted in δD, much as a plume migrating in response to transient perturbations in original hydraulic gradients. Vertically stacked groundwater occurrences having limited interconnection are inferred from the significant differences in isotopic compositions of samples from two wells screened at multiple depths. The central and western parts of the basin are little influenced by contributions from the eastern domain. Some groundwaters from the western part of the basin plot below the MWL and clearly cannot be mixtures solely of the eastern domain and central basin endmembers. The origins of these western groundwaters and the most depleted central basin groundwaters are as yet unknown, but we speculate they may have received recharge under climatic conditions different from the present.  相似文献   

16.
The deposition of metal-rich black or reddish muds by many thermal springs in the Cordilleras and the Altiplano of Bolivia suggest that these geothermal waters may be related to those that once formed the world-class Bolivian tin, silver and gold mineralisation. The discharge temperatures of these springs are as high as 70 °C. According to δ18O, δD, tritium data and Ar/N2 ratios these waters are predominantly of meteoric origin. Less than 10% of the discharging thermal water represents deep-seated metal-rich thermal brines of at least 530 °C according to carbon exchange between CO2 and CH4. These brines ascend along tectonic faults and mix with low-temperature meteoric water in surface-near aquifers. The meteoric component of the thermal water is recharged in the high Cordilleras with residence times exceeding 50 years. The chemical composition of the thermal water is dominated by the rather inefficient low-temperature leaching of the surface-near aquifer rocks by meteoric water. The small fraction of metal-rich hot deep-seated water is not able to increase the metal content of the water mix to a level sufficient to classify these thermal waters as ore-bearing. Surface-near leaching is supported, e.g., by the B/Li ratios of the spring water of the Western Cordillera and Caleras/Pulacayo in the Eastern Cordillera that correspond very closely to that of the easily leachable glassy inclusions of the outcropping andesitic lavas. The often remarkable metal content of the muds deposited by the springs originate from efficient scavenging of heavy metals by ferric oxyhydroxides. Under the given arid to semi-arid climate the muds are additionally enriched in metals by wind-transported dust. The present study does support a relation of the actual thermal waters with neither the classical subduction-related Upper Tertiary tin, silver and gold mineralisation nor the supposed younger Sb mineralisation of Bolivia.  相似文献   

17.
Major element concentrations, stable (δ18O and δ2H) and radiogenic (3H, 14C) isotopes determined in groundwater provided useful initial tracers for understanding the processes that control groundwater mineralization and identifying recharge sources in semi-arid Cherichira basin (central Tunisia).Chemical data based on the chemistry of several major ions has revealed that the main sources of salinity in the groundwaters are related to the water–rock interaction such as the dissolution of evaporitic and carbonate minerals and some reactions with silicate and feldspar minerals.The stable isotope compositions provide evidence that groundwaters are derived from recent recharge. The δ18O and δ2H relationships implied rapid infiltration during recharge to both the Oligocene and Quaternary aquifers, with only limited evaporation occurring in the Quaternary aquifer.Chemical and isotopic signatures of the reservoir waters show large seasonal evolution and differ clearly from those of groundwaters.Tritium data support the existence of recent recharge in Quaternary groundwaters. But, the low tritium values in Oligocene groundwaters are justified by the existence of clay lenses which limit the infiltration of meteoric water in the unsaturated zone and prolong the groundwater residence time.Carbon-14 activities confirm that groundwaters are recharged from the surface runoff coming from precipitation.  相似文献   

18.
 Two karst areas within Permian and Triassic carbonate rocks of the Codru Moma Mountains in the northwestern part of Romania yield thermal waters. Major karst springs occur where groundwater flow is intercepted by hydraulic barriers, which also results in the movement of water from deeper levels. At Moneasa, thermal groundwater rises along faults and fractures associated with a thrust, and at Vascau Town, water rises along faults marginal to the Beius Basin. Geochemistry suggests that the thermal component of the Moneasa groundwaters is derived from dolomites and that at least a proportion of the Vascau thermal waters originates from deeply buried Permian sandstones. Received, August 1999 / Revised, March 2000 / Accepted, March 2000  相似文献   

19.
Concern over potential impact of shale gas development on shallow groundwater systems requires greater understanding of crustal scale fluid movement. We examined natural deeply circulating groundwater systems in northeastern British Columbia adjacent to a region of shale gas development, in order to elucidate origin of waters, depths of circulation, and controls on fluid flow. These systems are expressed as thermal springs that occur in the deformed sedimentary rocks of the Liard Basin. Stable isotope data from these springs show that they originate as meteoric water. Although there are no thermal anomalies in the region, outlet temperatures range from 30 to 56 °C, reflecting depth of circulation. Based on aqueous geothermometry and geothermal gradients, circulation depths up to 3.8 km are estimated, demonstrating connection of deep groundwater systems to the surface. Springs are also characterised by leakage of thermogenic gas from deep strata that is partly attenuated by methanotrophic microbial communities in the spring waters. Springs are restricted to anomalous structural features, cross cutting faults, and crests of fault-cored anticlines. On a regional scale they are aligned with the major tectonic features of the Liard Line and Larsen Fault. This suggests that while connection of surface to deep reservoirs is possible, it is rare and restricted to highly deformed geologic units that produce permeable pathways from depth through otherwise thick intervening shale units. Results allow a better understanding of potential for communication between deep shale gas units and shallow aquifer systems.  相似文献   

20.
Changes in the climatic conditions during the Late Quaternary and Holocene greatly impacted the hydrology and geochemical evolution of groundwaters in the Great Lakes region. Increased hydraulic gradients from melting of kilometer-thick Pleistocene ice sheets reorganized regional-scale groundwater flow in Paleozoic aquifers in underlying intracratonic basins. Here, we present new elemental and isotopic analyses of 134 groundwaters from Silurian-Devonian carbonate and overlying glacial drift aquifers, along the margins of the Illinois and Michigan basins, to evaluate the paleohydrology, age distribution, and geochemical evolution of confined aquifer systems. This study significantly extends the spatial coverage of previously published groundwaters in carbonate and drift aquifers across the Midcontinent region, and extends into deeper portions of the Illinois and Michigan basins, focused on the freshwater-saline water mixing zones. In addition, the hydrogeochemical data from Silurian-Devonian aquifers were integrated with deeper basinal fluids, and brines in Upper Devonian black shales and underlying Cambrian-Ordovician aquifers to reveal a regionally extensive recharge system of Pleistocene-age waters in glaciated sedimentary basins. Elemental and isotope geochemistry of confined groundwaters in Silurian-Devonian carbonate and glacial drift aquifers show that they have been extensively altered by incongruent dissolution of carbonate minerals, dissolution of halite and anhydrite, cation exchange, microbial processes, and mixing with basinal brines. Carbon isotope values of dissolved inorganic carbon (DIC) range from −10 to −2‰, 87Sr/86Sr ratios range from 0.7080 to 0.7090, and δ34S-SO4 values range from +10 to 30‰. A few waters have elevated δ13CDIC values (>15‰) from microbial methanogenesis in adjacent organic-rich Upper Devonian shales. Radiocarbon ages and δ18O and δD values of confined groundwaters indicate they originated as subglacial recharge beneath the Laurentide Ice Sheet (14-50 ka BP, −15 to −13‰ δ18O). These paleowaters are isolated from shallow flow systems in overlying glacial drift aquifers by lake-bed clays and/or shales. The presence of isotopically depleted waters in Paleozoic aquifers at relatively shallow depths illustrates the importance of continental glaciation on regional-scale groundwater flow. Modern groundwater flow in the Great Lakes region is primarily restricted to shallow unconfined glacial drift aquifers. Recharge waters in Silurian-Devonian and unconfined drift aquifers have δ18O values within the range of Holocene precipitation: −11 to −8‰ and −7 to −4.5‰ for northern Michigan and northern Indiana/Ohio, respectively. Carbon and Sr isotope systematics indicate shallow groundwaters evolved through congruent dissolution of carbonate minerals under open and closed system conditions (δ13CDIC = −14.7 to−11.1‰ and 87Sr/86Sr = 0.7080-0.7103). The distinct elemental and isotope geochemistry of Pleistocene- versus Holocene-age waters further confirms that surficial flow systems are out of contact with the deeper basinal-scale flow systems. These results provide improved understanding of the effects of past climate change on groundwater flow and geochemical processes, which are important for determining the sustainability of present-day water resources and stability of saline fluids in sedimentary basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号