首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cold Bay and Amak Island, two Quaternary volcanic centers in the eastern Aleutians, are orthogonal relative to the trench and separated by ~50 km. Sr, Nd and Pb isotopic compositions of the calc-alkaline andesite magmas show no sign of contamination from continental crust (average 87Sr86Sr = 0.70323, 143Nd144Nd = 0.51301, 206Pb204Pb = 18.82, 207Pb204Pb = 15.571). These samples plot within the mantle arrays for Sr-Nd and for Pb and are similar to arcs such as the Marianas and New Britain (Sr-Nd) and Marianas and Tonga (Pb). Incompatible element ratios for the Aleutian andesites (K/Rb ~ 332, K/Cs ~ 10,600, K/Sr ~ 22.4, K/Ba ~ 18.3, Ba/La ~ 60) are within the range reported for arc basalts, despite the difference in degree of fractionation.Average K content, K/Rb, K/Ba and K/Sr are approximately the same for basalts from arcs and from oceanic islands (OIB); K/Cs is a factor of 4 lower and Ba/La almost 3 times higher in arcs. Abundance ratio correlations indicate that arcs are enriched in Cs and depleted in La relative to OIB, with other incompatible element abundances very similar. Histograms of Sr and Nd isotopic compositions for MORB, OIB, and intraoceanic arcs show remarkably similar peaks and distribution patterns for intraoceanic arcs and OIB.A “plum pudding” model for the upper mantle best accommodates a) geochemical coherence of OIB and IAV, b) the existence of mantle plumes at some oceanic islands, and c) the presence of a MORB-type source at back arc spreading centers. In this model, OIB plums are imbedded in a MORB matrix; small degrees of melting generate OIB-type magmas while larger degrees of melting dilute the OIB magma with MORB matrix melts.OIB plums are merely less robust lower mantle plumes (i.e., blobs) which are distributed throughout the upper mantle by convection. The existence of at least two types of OIB, as indicated by Sr, Nd, and Pb isotopes, suggests that nuggets of recycled oceanic lithosphère may coexist with lower-mantle plums and that both may be tapped in arcs and intraplate environments.  相似文献   

2.
Olivine tholeiites, the youngest Tertiary units (about 8–11 m.y. old) at five widely spaced localities in northeastern Nevada, are geologically related to the basalts of the Snake River Plain, Idaho, to the north and are similar in major element and alkali chemistry to mid-ocean ridge basalts (MORB) and island arc tholeiites. The measured K (1250–3350 ppm), Rb (1·9–6·2 ppm) and Sr (140–240 ppm) concentrations overlap the range reported for MORB. Three of the five samples have low, unfractionated rare earth element (REE) patterns, the other two show moderate light-REE enrichment. Barium concentration is high and variable (100–780 ppm) and does not correlate with the other LIL elements. The rocks have 87Sr/86Sr = 0·7052–0·7076, considerably higher than MORB (~0·702–0·703). These samples are chemically distinct (i.e. less alkalic) from the olivine tholeiites from the adjacent Snake River Plain, but their Sr isotopic compositions are similar. They contain Sr that is distinctly more radiogenic than the basalts from the adjacent Great Basin. About 10 b.y. would be required for the mean measured Rb/Sr (~ 0·02) of these samples to generate, in a closed system, the radiogenic Sr they contain. The low alkali content of these basalts makes crustal contamination an unlikely mechanism. If the magma is uncontaminated, the time-averaged Rb/Sr of the source material must have been ~0·04. A significant decrease in Rb/Sr of the source material (a factor 2?) thus most probably occurred in the relatively recent (1?09 yr) past. Such a decrease of Rb/Sr in the mantle could accompany alkali depletion produced by an episode of partial melting and magma extraction. In contrast, low 87Sr86Sr ratios indicate that the source material of the mid-ocean ridge basalts may have been depleted early in the Earth's history.  相似文献   

3.
New analyses of K, Rb, Sr and Ba contents and the 87Sr86Sr ratios of eight amphiboles, one phlogopite, two diopsides and one host alkalic basalt for an amphibole are reported: The samples are mostly inclusions in alkalic basalts and occur in association with peridotite inclusions. Two of the samples are from alpine-type peridotite bodies — one from the Etang de Lhers massif in the French Pyrenees and the other from the Finero massif in the Ivrea zone in northern Italy. The kaersutites come from the following localities: Hoover Dam, Arizona; Deadman Lake, California; Massif Central, France; Queensland; Spring Mountain, New South Wales.The data indicate that kaersutitic amphiboles are genetically unrelated to their host basalts. The isotopic and trace element data of these amphiboles further strengthens the suggestion of BASU and MURTHY (1977) that kaersutites play a significant role in ocean ridge basalt genesis. In addition, pargasitic amphibole with higher 87Sr86Sr ratios, if present, may be important in the source regions of alkalic basalts.The bulk amphibole lherzolite from Lherz has the KRbratio and 87Sr86Sr ratio appropriate for source material of ridge tholeiites. If the diopside and the amphibole in this rock had isotopically equilibrated under upper mantle conditions, the data show the time of last equilibration to be approximately 735 m.y., in contrast to the young emplacement age of the ultramafic massif.The coexisting phlogopite and diopside in the spinel lherzolite inclusion from Kilbourne Hole, New Mexico, show, surprisingly, isotopic equilibration under upper mantle conditions despite their drastically different RbSr ratios. The data show that the phlogopite must have formed very recently in the upper mantle. This phlogopite also has a high KRb ratio (1133), contrary to the commonly held view that mantle phlogopites have low KRb ratios. The coexisting diopside shows high K content (778 ppm) and a lower KRb ratio than the phlogopite. This phlogopite lherzolite has trace elemental and isotopic characteristics that may be adequate for the origin of alkalic basalts upon partial melting.  相似文献   

4.
Combined elemental and Sr, Nd, Pb and O isotopic data for late Cenozoic olivine tholeiite lavas from the northwestern Great Basin indicate derivation from at least two chemically and isotopically distinct mantle source regions with no significant modification by interaction with continental crust. The lack of crustal involvement is a direct reflection of the extensional tectonic environment which favors rapid ascent of magmas, minimal residence time in crustal magma chambers and scattered fissure eruptions.The observed chemical and isotopic variations in the tholeiite suite are attributed to mixing between depleted oceanic type mantle (87Sr86Sr ~ 0.7030 and 143Nd144Nd ~ 0.51305) and old, chemically heterogeneous, isotopically enriched subcontinental mantle (87Sr86Sr ~ 0.7078 and 143Nd144Nd ~ 0.51233). Model incompatible element concentrations suggest strong similarities between the depleted mantle and the mantles beneath normal oceanic ridge segments and back-arc basins and between the enriched mantle and the mantle beneath enriched oceanic ridge segments such as the Azores. Superimposed upon the characteristics derived from the two component mixing model may be the effects of a third mantle source which is identifiable only by its apparent radiogenic 206Pb204Pb ratios. If present, this third source may reflect a component derived from the downgoing slab of an ancient subduction zone.  相似文献   

5.
Morphological, mineralogical, chemical and RbSr isotopic studies have been made on Fesmectites (nontronites) from southern Pacific red clays cored near the Marquisas Islands. These minerals have at the top of the core, an 87Sr86Sr ratio of 0.70917 ± 0.00007, which indicates an authigenic origin in isotopic equilibrium with seawater. Weak leaching experiments with 1N HCl show that the nontronites also contain a volcanic component with a lower 87Sr86Sr ratio which, combined with the morphology of the particles, suggests a transportation by bottom currents of clay formed elsewhere.During burial, the nontronites experience diagenetic modifications resulting in an increase in Fe, K and Rb contents, a concomitant decrease of Mg, Ca, Ti, Na and Sr, and a preferential migration of radiogenic 87Sr from the clays into the surrounding pore waters.The 87Sr86Sr ratio of the Sr adsorbed on the outermost surfaces of the nontronites does not change with depth in the core, and is, therefore, independent of diagenetic influence, which is rather characterized by the 87Sr86Sr ratios of the interstitial waters. The isotopic composition of both the adsorbed Sr and that of the pore fluids may yield useful information on the crystallization environment and subsequent history of deep sea red clays.  相似文献   

6.
Major-element, trace-element and isotopic compositions of approximately 1200 basalts (< 53 wt. % SiO2) from intra-oceanic island arcs have been compiled to assess the nature and possible sources of primitive island-arc basalts (IAB). The chemical characteristics of IAB are examined with reference to those of mid-ocean ridge basalts (MORB) and intraplate oceanic basalts (IPB). Major-element compositions of primitive [Mg(Mg +Fe2+) > 65] IAB and MORB are similar, but differ significantly from IPB. In general, IAB do not have higher Al2O3, lower TiO2 or a lack of Fe enrichment compared to primitive MORB but many do have greater K2O contents. Differences in major- and minor-element contents between more evolved IAB and MORB result from the dominance of plagioclase + olivine crystal fractionation in MORB magmas vs. clinopyroxene + olivine controlled fractionation in IAB suites. This difference in crystallization history may be related to the higher PH2O or greater depth of crystallization of IAB magmas compared to those inferred for MORB.IAB are characteristically enriched in large-ion-lithophile (LIL) elements and depleted in high-field-strength ions (e.g., Zr, Nb and Hf) relative to normal MORB (N-type) and IPB. The enrichment of some LIL elements (e.g., Sr, Rb, Ba and Pb) relative to the rare-earth elements in IAB is difficult to explain by simple partial melting alone and suggests a multistage petrogenesis involving an LIL-enriched component. Low abundances of high-field-strength ions in evolved IAB are explicable in terms of fractional crystallization, but the cause for consistently low abundances in primitive IAB remains problematic.Island-arc lavas contain greater concentrations of volatiles and have higher CO2H2O and Cl/F ratios than either MORB or IPB, suggesting involvement of a slab-derived volatile component. However, this is not consistent with 3He4He data which indicate that only near-trench volcanics have been significantly affected by dehydration of the oceanic crust.Sr-, Nd-, Pb- and O-isotopic data, in conjunction with the trace-element data, clearly indicate that IAB are derived from heterogeneous, LIL-depleted mantle sources most similar to those which give rise to enriched MORB (E-type). The marked shift towards higher 87Sr86Sr in IAB compared to oceanic lavas with similar 143Nd144Nd values cannot be explained simply by the addition of radiogenic Sr from the slab. Variable degrees of contamination from a crustally-derived sedimentary component is consistent with the isotopic and trace-element data from a number of arcs. However, the lack of correlation between LIL/REE ratios and more radiogenic isotopic ratios suggests that this enrichment/contamination process is complex. A multi-stage petrogenetic model involving subducted oceanic crust (± sediments), dehydration/volatile transfer, and partial melting of metasomatized mantle beneath island arcs is considered the most reasonable, although least constrained, method to generate a variety of primitive IAB.  相似文献   

7.
Twelve samples of mid-Tertiary felsic volcanic rocks from Zacatecas and San Luis Potosí (both belonging to the Sierra Madre Occidental) and one sample of Lower Tertiary porphyritic andesite from Zacatecas are analyzed for 87Sr86Sr, K, Rb, and Sr. Eight selected samples are also analyzed for 143Nd144Nd. A linear regression of the present-day 87Sr86Srand87Rb86Sr of the felsic volcanic rocks in Zacatecas gives an approximate date of 30 ± 8 Ma. The initial 87Sr86Sr ratios are high and widely distributed (from 0.705 to 0.712 or higher) whereas the initial 143Nd144Nd ratios are somewhat low and show a narrow range (0.5125–0.5127). The available isotopic and trace-element data are best explained in terms of a binary mixing model in which the magmas derived from a slightly depleted-mantle fractionate and mix with varying proportions of the overlying middle/upper continental crust and undergo further shallow-level fractional crystallization before eruption. This model is also compatible with the trace-element and Sr isotopic data published from other areas of the Sierra Madre Occidental for which a purely mantle origin has been proposed.  相似文献   

8.
9.
Sixty-three samples from the granitic core of the Vredefort ring structure have been analyzed for K, Rb, and Sr. The Sr87Sr86 ratios were determined for thirteen of these. An isochron yielding an age of 2.85 × 109 yr was obtained. The RbSr and KRb ratios exhibit a ‘bulls-eye’ pattern in the granite suggesting the central portion has been extruded from depth. Diapiric flow and subsequent erosion has exposed a section of the continental crust within the Vredefort core.  相似文献   

10.
New isotope dilution results are presented for Rb and Sr concentrations in U.S.G.S. standard rocks and NBS-70a K-feldspar. The results (based on at least five analyses of each rock), are generally accurate to ± 0.5% and resolve discrepancies in previously published data. X-ray fluorescence analyses of the same samples yield Rb and Sr determinations which are only accurate to ± 5%, but Rb/Sr ratios which are as precise and in excellent agreement with the isotope dilution values. It is concluded that X.R.F. determination of Rb/Sr ratios is perfectly suitable for whole-rock Rb1bSr geochronology.87Sr86Sr ratios have been determined on G-2, GSP-1, BCR-1 and AGV-1 as well as the Eimer and Amend SrCO3 standard.  相似文献   

11.
Nine samples of metavolcanic rock from the lower parts of greenstone belts in central French Guiana (the Paramaca series) and 14 granitic samples from the intrusive gneisses (the Degrad Roche and Arawa gneisses) were selected for Sm—Nd and Rb—Sr analysis.The Sm—Nd results from the metavolcanic series (including two tholeiites, five peridotitic komatiites and two andesites) yield an isochron age of 2.11±0.09 (2 σ) Ga with an initial 143Nd144Nd ratio (INd) of 0.51002±9 (2 σ), corresponding to ?Nd(T) = + 2.1 ± 1.8. This isochron is interpreted as representing the age of initial volcanism of the Paramaca series. Acid intrusives were dated by the Rb—Sr method. A whole rock Rb—Sr isochron, including data points from both the Degrad Roche and Arawa gneisses, yields an age of 2.00±0.07 (2 σ) Ga with initial 87Sr86Sr ratio (ISr value) of 0.7019±4 (2 σ). This result is considered to be the time of emplacement of the orthogneiss protoliths.The positive εNd value (+ 2.1 ± 1.8) obtained from the metavolcanic rocks of French Guiana suggests that their mantle sources have evolved in reservoirs slightly depleted in Light Rare Earth Elements (LREE). This result confirms the possible existence of ancient LREE-depleted reservoirs within the lower Proterozoic mantle. Moreover, the high εNd(T) value for these rocks excludes any significant crustal contamination during magma genesis.The French Guianese orthogneisses yield a low ISr value (0.7019±4 (2 σ)) which, together with geochemical considerations, suggests that their granitic protoliths could have originated by partial melting of short-lived crustal precursors of basaltic to granodioritic composition.The present geochronological and isotopic study suggests that the Guiana Shield may represent a major continental accretion event during the lower Proterozoic.  相似文献   

12.
Allan G. Krill 《Lithos》1983,16(2):85-93
The Saetra Nappe, consisting of feldspathic psammite cut by pre-tectonic dolerite dikes, is a distinctive tectonostratigraphic unit of the Western Gneiss Region of Norway. Although the rocks were metamosphosed at amphibolite facies, RbSr whole-rock sf three well preserved dikes a date of 745 ± 37 Ma with initial 87Sr/86Sr = .7046, interpreted to record the dike intrusion. Analysis of small psammite samples collected in rows parallel to the foliation and in columns perpendicular to it, indicate that the RbSr isotopic systems were not equilibrated on the whole-rock scale. The Strata Nappe provides evidence of a strong Caledonian deformation/metamorphic event in the Western Gneiss Region of Norway.  相似文献   

13.
Clinopyroxenes in the metamorphic alpine peridotites from Ronda, Béni Bouchera, Lanzo and Othris have 87Sr86Sr ratios in the range of 0.70228 – 0.70370, similar to ocean ridge tholeiitic rock. Insofar as these lherzolites represent mantle sources, the present data allows simple evolutionary models relating basalt genesis and alpine peridotite. The highly radiogenic Sr reported in many whole rock alpine peridotites may be due to contamination in olivine and thus, earlier models that deny a simple relationship between alpine peridotite and the oceanic gabbros and basalts need a re-evaluation.  相似文献   

14.
87Sr86Sr ratios have been determined in fifteen volcanic rocks from the northwestern part of the Hellenic arc. They range from 0.7041 to 0.7134. There is no apparent correlation of strontium isotope values with any major chemical component or with Rb/Sr ratios. The 87Sr86Sr ratios appear to increase in a general way with increasing depth to the Benioff zone. The strontium isotope ratios are higher than from most island arcs; this is believed to be due to contamination.  相似文献   

15.
Rapid sea floor spreading has taken place over the last 8 Myr behind the South Sandwich island arc, producing a regular set of magnetic lineations. Suites of fresh basalts have been dredged from four widely separated localities along the spreading axis. Dredges 20 and 23 yielded sub-alkaline olivine tholeiites, dredge 22 recovered vesicular tholeiites with minor normative olivine, while dredge 24 contained a fractionated suite of highly vesicular quartz-normative basalts with higher FeMg. The concentrations of the incompatible elements Ti, P, Zr, Hf, Nb, Ta, Y and the REE increase systematically from dredge 24 through dredges 22 and 20 to dredge 23 and there is a comparable increase in CeNYbN. Quantitative modelling suggests that all the basalts can be derived from an essentially similar mantle source (with respect to these elements) through varying degrees of partial melting, but involving some residual clinopyroxene. Basalts from dredge 24 have unusually low concentrations of Ti, P, Zr, Nb, Y, REE and Ni, similar to the values in arc tholeiites, and the more primitive dredge 24 liquids seem to have been generated through high degrees of partial melting (~ 30%) leaving a dunitic residue. Transitional arc tholeiite characteristics are also apparent in the relatively high K, Rb, Ba contents and 87Sr86Sr ratios of dredge 24 and 22 basalts, though Nd isotope ratios are uniform. It is considered that fluids derived from the dehydrating subducted slab may have locally penetrated the source regions of the back-arc basalts, carrying K, Rb, Ba and seawater-enriched 87Sr, and producing conditions of magma generation similar to that of arc tholeiites. However, it is unlikely that the sources for these and other marginal basin basalts differ fundamentally from the range of mantle sources feeding normal mid-ocean ridges.  相似文献   

16.
17.
The isotopic composition of Pb and Sr and the abundances of Rb, Sr, U, Th, and Pb were determined for whole rock samples from all major volcanic centres of the Cenozoic alkaline volcanism of Central and South Italy, together with some samples from the contemporaneous anatectic Tuscan volcanism. The Sr and Pb isotopic compositions of the alkaline rocks show a negative correlation combined with a regional trend: the 87Sr86Sr ratios decrease from 0.711 in the north-west to 0.704 in the south-east, while the 206Pb204Pb ratios increase from 18.7 to 20.0. Variations in both isotopic compositions are generally small throughout erupted rock sequences for any volcanic centre.The Pb and Sr isotopic abundance variations are interpreted on the basis of two alternative models, which correspond to two groups of geological processes: variations can result (i) from a time dependent development in subsystems with different RbSr or U(Th)Pb ratios or, (ii) from mixing of Sr or Pb with different isotopic compositions. Combining both Pb and Sr isotope abundance measurements it is shown that the source of each volcanic centre is formed by various degrees of mixing between two components. One component and the most southern Tuscan anatectic rocks most likely have a common source, whereas the other component of the mixing process is suggested to be a liquid fraction derived from a small degree of partial fusion of a hydrous mantle. Thus at least a two-stage evolution of the Italian alkaline rocks is indicated: first a mixing process leading to the formation of the parental material followed by differentiation processes leading to the formation of the erupted rock sequences.The geodynamic model which explains the data best is that of a lateral inhomogeneous mantle. The lateral inhomogeneities in the mantle would be the result of mixing between originally mantle and crustal derived material. The mixing process itself would not have any primary connection with the Quarternary volcanic activity.  相似文献   

18.
RbSr whole rock analyses have been performed on 2 CI and 3 CM chondrites. Four of these stones (Ivuna, Orgueil, Cold Bokkeveld and Erakot) were previously studied in this laboratory and were shown to be discordant from a 4.6 Gyr isochron. The fifth, Murchison, was not previously studied. The new data support the discordance of the first four stones, and indicate that Murchison is also discordant. Studies of Sr isotope ratios in unspiked Orgueil show that the discordance is not due to inhomogeneities in the Sr84Sr86 ratio caused by incomplete mixing of nucleosynthesis products.In order to gauge the effects of weathering, two leaching experiments were performed on fresh, interior samples of Murchison; one for a period of 1.5 hr and the other for 117 hr. The results indicate that the relative solubility of nonradiogenic Sr is approximately twice that of Rb and radiogenic Sr is more soluble than the nonradiogenic Sr. This gives the residue a lower model age than the whole rock both by increasing the RbSr ratio and by decreasing the Sr87Sr86 ratio. This result is in contrast to that expected from studies of ordinary chondrite finds, which generally show higher model ages than falls. The constancy of KRb and KSr ratios between the two leaching experiments, and their difference from the unaltered whole rock ratios suggest that the bulk ratios are produced by dissolution of a single phase, and the higher radiogenic Sr content by selective leaching of other phases.  相似文献   

19.
The isotopic composition of strontium of pore water and of authigenic minerals leached from the sediment of core 119K with hot aqua regia is similar to that of the brine in the Discovery deep and differs from that of normal seawater. The average 87Sr86Sr ratio of strontium removed by acid leaching is 0.7077 ± 0.0007 (1σ) compared to a value of 0.70904 for the Red Sea. The detrital silicate fraction exhibits an approximate inverse correlation between 87Sr86Sr ratios and strontium concentrations which provides tentative support for a model in which the detrital silicate fraction of deep-sea sediment is considered to be a mixture of terrigenous dust of sialic composition enriched in radiogenic 87Sr and of volcanogenic material of basaltic composition and low 87Sr abundance. The 87Sr86Sr ratios of the shells of foraminifers and pteropods, expressed as δ 87Sr‰ relative to 0.70904 for seawater, decrease from ?0.23 ± 0.17‰ at 90 cm to ?0.82 ± 0.17‰ at 273 cm and remain constant at this value to a depth of 450 cm. The lowering of the δ 87Sr values is attributed both to the presence of aragonite overgrowths on pteropod shells and to possible isotope exchange with strontium in the connate fluid.  相似文献   

20.
Weathered quartz grus and stream transported quartz of the Harney Peak Granite, Black Hills, South Dakota, contain low concentrations of Rb (generally 0.3–6.8 ppm) and Sr (0.2–2.0 ppm) and variable Sr isotopic ratios (0.759–1.070).Six of seven single grains of large composite quartz grus which recently entered the weathering environment define an apparent isochron age (about 1800 Myr) and initial 87Sr86Sr ratio (0.7066) that approximate the whole-rock isochron age (1707 Myr) and initial ratio (0.7143) of the Harney Peak Granite. Apparently the Rb-Sr systematics of these grains were not significantly altered during initial weathering. Leached fluid inclusion material from a ca. 2 g aggregate of composite quartz grains contains very little Rb or Sr (0.019 and 0.17 μg, respectively) and has a very low 87Sr86Sr ratio (0.739). The Rb and Sr content of the quartz grains appears to be concentrated in minute, heterogeneously-distributed mineral inclusions.Five aggregates of more completely weathered, small non-composite quartz grains produce a widely scattered pattern on an isochron diagram with all samples plotting below the 1707 Myr isochron. Examination by SEM of these grains shows solution and precipitation features on their relatively large effective surface areas. The differential precipitation of Rb is believed to have been the major perturbating chemical process during weathering.Three aggregates of stream quartz grains define an apparent isochron age of 1777 Myr and an initial 87Sr86Sr ratio of 0.720 that suggest the initial ‘igneous’ Rb-Sr characteristics of the stream quartz were re-attained during their transportation, probably as a result of removal of the outer weathered surface by abrasion. The apparent resistance to chemical weathering of stream quartz and quartz which has just entered the weathering environment suggests that this mineral may be extremely useful in studies of provenance and the geochronology of strongly weathered terranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号