首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unflashed geothermal waters in Iceland are invariably just saturated with calcite. Upon flashing the water always becomes supersaturated, especially during the early stages of flashing. Thus flashing will lead to calcite precipitation. It is believed that the rate of precipitation bears a positive relation to the degree of supersaturation and the water temperature. Accordingly, precipitation will always be most pronounced at the beginning of flashing. The degree of calcite supersaturation, which is produced by flashing, only depends on the temperature and the ionic strength of the unflashed water. Strongest supersaturation is produced at low temperature and at a high ionic strength of the water. Calcite precipitation is known to be troublesome for the exploitation of many geothermal fields in the world. The study of the factors which control the magnitude of this precipitation is therefore of interest to those engaged in the exploitation of geothermal fluids.  相似文献   

2.
热储温度评价是地热系统研究的关键内容.文章选取建设比较成熟的美国国家地热数据系统(National Geothermal Data System,NGDS),分别利用地球化学地热温度计、多矿物平衡法、冷热水混合模型及气体地热温度计对不同地热田的热储温度进行评价,确定不同热储温度评价方法的适用性和局限性,以期为热储温度评...  相似文献   

3.
A detailed study on the solute geothermometry of thermal water (18 springs and 8 drilled wells) of La Primavera geothermal field (LPGF) in Mexico has been carried out by employing a geochemical database compiled from the literature and by applying all the available solute geothermometers. The performance of these geothermometers in predicting the reservoir temperatures has been evaluated by applying a geochemometrics (geochemical and statistical) method. The springs of the LPGF are of bicarbonate type and the majority have attained partial-equilibrium chemical conditions and the remaining have shown non-equilibrium conditions. In the case of geothermal wells, water is dominantly of chloride-type and, among the studied eight geothermal wells, four have shown full-equilibrium chemical conditions and another four have indicated partial-equilibrium conditions. All springs of HCO3−​ type water have provided unreliable reservoir temperatures, whereas the only one available spring of SO42− type water has provided the reservoir temperature nearer to the average BHT of the wells. Contrary to the general expected behavior, spring water of non-equilibrium and geothermal well water of partial-equilibrium chemical conditions have indicated more reliable reservoir temperatures than those of partially-equilibrated and fully-equilibrated water, respectively. Among the chemical concentration data, Li and SiO2 of two springs, SO42− and Mg of four springs, and HCO3 and Na concentrations of two geothermal wells were identified as outliers and this has been reflected in very low reservoir temperatures predicted by the geothermometers associated with them (Li–Mg, Na–Li, Na–K–Mg, SiO2 etc.). Identification of the outlier data points may be useful in differentiating the chemical characteristics, lithology and the physico-chemical and geological processes at the sample locations of the study area.In general, the solute geothermometry of the spring waters of LPGF indicated a dominantly (94%) of underestimated deep reservoir temperatures, whereas in the case of the geothermal wells, many temperatures (54%) are underestimated, some are (43%) overestimated and a very small number (3%) are similar to an average bottom-hole temperatures (BHT) of the wells. 28 out of the total applied 29 geothermometers for spring waters have predicted the deep reservoir temperatures that are characterized by statistically significant large differences compared to the average BHTs of the geothermal wells. In the case of waters of the geothermal wells, 23 out of the total applied 28 geothermometers have predicted the reservoir temperatures similar (statistically no significant differences) to the BHTs of the corresponding geothermal wells.  相似文献   

4.
Subsurface reservoir temperatures of two important Mexican geothermal systems (Los Azufres and Las Tres Vírgenes) were estimated by applying all available solute geothermometers for 88 and 56 chemical data measurements of the spring waters and fluids of the deep geothermal wells, respectively. Most of the chemical data for spring water of these two geothermal fields are for HCO3 water, followed by SO4 and Cl types. For the Los Azufres geothermal field (LAGF), the reservoir temperatures estimated by Na-K geothermometers for springs of HCO3 and SO4 waters, and by Na-Li and Li-Mg geothermometers for Cl water, are close to the average bottom-hole temperature (BHT) of the geothermal wells. However, all reservoir temperatures for spring waters from the Las Tres Vírgenes geothermal field (LTVGF) estimated by all solute geothermometers indicated significantly large differences (low temperatures) compared to the BHT. Evaluation of inferred reservoir temperatures for spring waters of the LAGF and LTVGF suggests that not all springs nor all solute geothermometers provide reliable estimation of the reservoir temperatures. Even though chemical equilibrium probably was not achieved in the water–rock system, Na-K geothermometers for HCO3 water (peripheral water mainly of meteoric origin with little geothermal component) and SO4 water (geothermal steam heated) and Na-Li and Li-Mg geothermometers for Cl-rich spring water (fully mature geothermal water) of the LAGF indicated reservoir temperatures close to the BHT. However, in comparison with the geothermometry of spring water of the LAGF and LTVGF, fluid measurements from geothermal wells of these two fields indicated reservoir temperatures in close agreement with their respective BHTs. For the best use of the solute geothermometry for spring water, it is advisable to: (1) chemically classify the springs based on water types; (2) identify and eliminate the discordant outlier observations by considering each water type as a separate sampled population; (3) apply all available solute geothermometers employing a suitable computer program such as SolGeo instead of using some specific, arbitrarily chosen geothermometers; and (4) evaluate the temperatures obtained for each solute geothermometer by considering the subsurface lithology, hydrological conditions, and BHTs or static formation temperatures whenever available.  相似文献   

5.
The reservoir temperature and conceptual model of the Pasinler geothermal area, which is one of the most important geothermal areas in Eastern Anatolia, are determined by considering its hydrogeochemical and isotope properties. The geothermal waters have a temperature of 51 °C in the geothermal wells and are of Na–Cl–HCO3 type. The isotope contents of geothermal waters indicate that they are of meteoric origin and that they recharge on higher elevations than cold waters. The geothermal waters are of immature water class and their reservoir temperatures are calculated as 122–155 °C, and their cold water mixture rate is calculated as 32%. According to the δ13CVPDB values, the carbon in the geothermal waters originated from the dissolved carbon in the groundwaters and mantle-based CO2 gases. According to the δ34SCDT values, the sources of sulfur in the geothermal waters are volcanic sulfur, oil and coal, and limestones. The sources of the major ions (Na+, Ca2+, Mg2+, Cl?, and HCO3 ?) in the geothermal waters are ion exchange and plagioclase and silicate weathering. It is determined that the volcanic rocks in the area have effects on the water chemistry and elements like Zn, Rb, Sr, and Ba originated from the rhyolite, rhyolitic tuff, and basalts. The rare earth element (REE) content of the geothermal waters is low, and according to the normalized REE diagrams, the light REE are getting depleted and heavy REE are getting enriched. The positive Eu and negative Ce anomalies of waters indicate oxygen-rich environments.  相似文献   

6.
In this paper, the hydrochemical isotopic characteristics of samples collected from geothermal springs in the Ilica geothermal field, Eastern Anatolia of Turkey, are examined and described. Low-temperature geothermal system of Ilica (Erzurum, Turkey) located along the Eastern Anatolian fault zone was investigated for hydrogeochemical and isotopic characteristics. The study of ionic and isotopic contents shows that the thermal water of Ilica is mainly, locally fed by groundwater, which changes chemically and isotopically during its circulation within the major fault zone reaching depths. The thermal spring has a temperature of 29–39 °C, with electrical conductivity ranging from 4,000 to 7,510 µS/cm and the thermal water is of Na–HCO3–Cl water type. The chemical geothermometers applied in the Ilica geothermal waters yielded a maximum reservoir temperature of 142 °C according to the silica geothermometers. The thermal waters are undersaturated with respect to gypsum, anhydrite and halite, and oversaturated with respect to dolomite. The dolomite mineral possibly caused scaling when obtaining the thermal waters in the study area. According to the enthalpy chloride-mixing model, cold water to the thermal water-mixing ratio is changing between 69.8 and 75 %. The δ18O–δ2H compositions obviously indicate meteoric origin of the waters. Thermal water springs derived from continental precipitation falling on to higher elevations in the study area. The δ13C ratio for dissolved inorganic carbonate in the waters lies between 4.63 and 6.48 ‰. In low-temperature waters carbon is considered as originating from volcanic (mantle) CO2.  相似文献   

7.
Uttarakhand geothermal area, located in the central belt of the Himalayan geothermal province, is one of the important high temperature geothermal fields in India. In this study, the chemical characteristics of the thermal waters are investigated to identify the main geochemical processes affecting the composition of thermal waters during its ascent toward the surface as well as to determine the subsurface temperature of the feeding reservoir. The thermal waters are mainly Ca–Mg–HCO3 type with moderate silica and TDS concentrations. Mineral saturation states calculated from PHREEQC geochemical code indicate that thermal waters are supersaturated with respect to calcite, dolomite, aragonite, chalcedony, quartz (SI > 0), and undersaturated with respect to gypsum, anhydrite, and amorphous silica (SI < 0). XRD study of the spring deposit samples fairly corroborates the predicted mineral saturation state of the thermal waters. Stable isotopes (δ18O, δ2H) data confirm the meteoric origin of the thermal waters with no oxygen-18 shift. The mixing phenomenon between thermal water with shallow ground water is substantiated using tritium (3H) and chemical data. The extent of dilution is quantified using tritium content of thermal springs and non-thermal waters. Classical geothermometers, mixing model, and multicomponent fluid geothermometry modeling (GeoT) have been applied to estimate the subsurface reservoir temperature. Among different classical geothermometers, only quartz geothermometer provide somewhat reliable estimation (96–140 °C) of the reservoir temperature. GeoT modeling results suggest that thermal waters have attained simultaneous equilibrium with respect to minerals like calcite, quartz, chalcedony, brucite, tridymite, cristobalite, talc, at the temperature 130 ± 5 °C which is in good agreement with the result obtained from the mixing model.  相似文献   

8.
Edipsos area, situated in northern Euboea, has been well known since ancient times for the existence of thermal springs. In order to assess the hydrogeochemical conditions, thermal and cold water samples were collected and analyzed by ICP method for major and trace elements. The results revealed the direct impact of seawater, a process which is strongly related to the major tectonic structures of the area. Seawater impact was confirmed by the Cl/Br and Na/Cl ionic ratios, as well as from statistical processing and graphical interpretation of the analytical results, which classified the sampled waters into three groups (two for cold waters and one for the thermal ones). Trace element ranges for thermal waters are: As (44–84 ppb), Pb (23–154 ppb), Ag (1–2 ppb), Mn (31–680 ppb), Cu (61–97 ppb), Cs (66–244 ppb), Se (0–76 ppb), Li (732–3269 ppb), Fe (0–1126 ppb), Sr (14000–34100 ppb), B (4300–9600 ppb). Compared with the chemical composition of other thermal springs from the Hellenic Volcanic Arc, Edipsos thermal waters are enriched in Ca2+, Na+, Cl?, SO4 2?, Li, B and K+, reflecting the influence from seawater. Cold waters are free of heavy metals compared with other natural waters and are characterized by good quality based on the major element chemistry. Finally, several geothermometers were applied in order to assess the reservoir temperatures, but none of them appear to be applicable, mainly due to the impact of seawater on the initial hydrogeochemistry of the geothermal fluids.  相似文献   

9.
Mixing is a dominant hydrogeological process in the hydrothermal spring system in the Cappadocia region of Turkey. All springs emerge along faults, which have the potential to transmit waters rapidly from great depths. However, mixing with shallow meteoric waters within the flow system results in uncertainty in the interpretation of geochemical results. The chemical compositions of cold and warm springs and geothermal waters are varied, but overall there is a trend from Ca–HCO3 dominated to Na–Cl dominated. There is little difference in the seasonal ionic compositions of the hot springs, suggesting the waters are sourced from a well-mixed reservoir. Based on δ18O and δ2H concentrations, all waters are of meteoric origin with evidence of temperature equilibration with carbonate rocks and evaporation. Seasonal isotopic variability indicates that only a small proportion of late spring and summer precipitation forms recharge and that fresh meteoric waters move rapidly into the flow system and mix with thermal waters at depth. 3H and percent modern carbon (pmC) values reflect progressively longer groundwater pathways from cold to geothermal waters; however, mixing processes and the very high dissolved inorganic carbon (DIC) of the water samples preclude the use of either isotope to gain any insight on actual groundwater ages.  相似文献   

10.
Kangding geothermal area is located in the western Sichuan, belonging to southeastern margin of Tibetan Plateau. Similar to world-renowned south Tibetan and western Yunnan geothermal belt, western Sichuan has intensive surface thermal manifestations including boiling and hot springs. The emerging temperature of thermal waters ranges from 47 to 79 °C with total dissolved solids lying between 899 and 2550 mg/L. δ2H–δ18O isotopes indicate a meteoric source for the thermal waters and a significant positive oxygen-18 shift in the southern region. It is suggested that southern thermal waters experienced stronger water–rock interaction and are closer to thermodynamic equilibrium, which is also proved by the water type classification. The reservoir temperature calculated by empirical and theoretical chemical thermometry is 180–225 °C for the north and 225–310 °C for the south. Evidences of hydrogeochemistry, stable isotopes, geothermometry and radiocarbon dating indicate that southern region of Kangding area shows greater geothermal potential than the northern region. In addition, based on the hydrogeochemical modeling of mineral saturation, underlying problem of scaling is likely to occur in the study area. According to the results of reservoir temperature, south Kangding sub-district has greater potential in geothermal power generation and development than northern Kangding. Therefore, further exploration and drilling work should give priority to the south Kangding area.  相似文献   

11.
Geothermal water is plentiful in Changbai Mountain region, northeastern China, due to the volcanic activities and widespread faults. For the exploration of geothermal resources, this study uses quartz and cation geothermometer to estimate the temperatures of the geothermal reservoir and uses the tubular models to evaluate the thermal gradient. The hydrogeochemical characteristics of the geothermal resources were also evaluated by hydrogeochemical analysis. The results showed that the geothermal reservoir temperatures of the four major thermal springs in Changbai Mountain region range from 72 to 169 °C. The average geothermal reservoir temperatures of Jinjiang hot springs, Changbai hot springs I, Xianrenqiao hot springs, and Changbai hot springs II are 129.25, 169, 89, and 73.67 °C, respectively. The geothermal gradient values of the four major thermal springs have different characteristics. The geothermal gradient values of Jinjiang hot springs and Changbai hot springs I are 4.6 and 3.1 °C/100 m, respectively. The geothermal gradient values of Xianrenqiao thermal springs and Changbai thermal springs II are both lower than 1.5 °C/100 m, with the values of 1.1 and 1.4 °C/100 m. And the geothermal gradients are influenced by Changbai Mountain Tianchi volcano. In addition, the water chemical analyses showed that the geothermal water types are HCO3-Na with higher concentrations of Na+, Cl?, SO4 2?, TDS, and HCO3 ? than the non-thermal waters, which suggested a deep and long water cycle of the thermal water, and therefore a sufficient water-rock interaction.  相似文献   

12.
A computer programme has been developed to calculate the composition and aqueous speciation of geothermal reservoir waters including pH, redox potential and gas partial pressures. The programme is specifically suited to handle geochemical data from wet-steam wells, hot-water wells and boiling hot springs, but it may also be used for non-thermal waters. Solubility data for selected geothermal minerals are incorporated to facilitate the study of solutionmineral equilibria. The programme may also be used to study chemical changes in water chemistry accompanying boiling, variable degassing and cooling, and how these changes disturb solutionmineral equilibria.  相似文献   

13.
Tekkehamam geothermal field is located in the South of Menderes Graben (Aegean region) and is one of the most important geothermal sites of Western Anatolia. Umut geothermal field is a part of the Tekkehamam field. This study was conducted in order to determine the origin and hydrogeochemical properties of the geothermal waters. For this purpose, sampling was done in order to check the chemistry of the water, and 18O, 2H isotope analyses done at four wells, nine natural springs and three cold water sources. According to the results of the chemical analysis, the geothermal waters were determined to be of Na + K-SO4 type. Additionally, 14C and 3H analyses were done in selected well and spring waters for the purpose of age determination of groundwater; most of the waters were determined to be submodern. Geothermometer calculations show that the reservoir temperature for the Umut geothermal field ranges between 148 and 180 °C. Stable isotope results indicate that Umut geothermal waters are meteoric in origin. Mixing between shallow and deep waters is the dominant subsurface process that determines the physical and chemical character of the waters.  相似文献   

14.
Geothermal resources are very rich in Yunnan, China. However, source of dissolved solutes in geothermal water and chemical evolution processes remain unclear. Geochemical and isotopic studies on geothermal springs and river waters were conducted in different petrological-tectonic units of western Yunnan, China. Geothermal waters contain Ca–HCO3, Na–HCO3, and Na (Ca)–SO4 type, and demonstrate strong rock-related trace elemental distributions. Enhanced water–rock interaction increases the concentration of major and trace elements of geothermal waters. The chemical compositions of geothermal waters in the Rehai geothermal field are very complicated and different because of the magma chamber developed at the shallow depth in this area. In this geothermal field, neutral-alkaline geothermal waters with high Cl, B, Li, Rb Cs, As, Sb, and Tl contents and acid–sulfate waters with high Al, Mn, Fe, and Pb contents are both controlled by magma degassing and water–rock interaction. Geothermal waters from metamorphic, granite, and sedimentary regions (except in the Rehai area) exhibit varying B contents ranging from 3.31 mg/L to 4.49 mg/L, 0.23 mg/L to 1.24 mg/L, and <0.07 mg/L, respectively, and their corresponding δ11B values range from −4.95‰ to −9.45‰, −2.57‰ to −8.85‰, and −4.02‰ to +0.06‰. The B contents of these geothermal waters are mainly controlled by leaching host rocks in the reservoir, and their δ11B values usually decrease and achieve further equilibrium with its surrounding rocks, which can also be proven by the positive δ18O-shift. In addition to fluid–rock reactions, the geothermal waters from Rehai hot springs exhibit higher δ11B values (−3.43‰ to +1.54‰) than those yielded from other areas because mixing with the magmatic fluids from the shallow magma. The highest δ11B of steam–heated waters (pH 3.25) from the Zhenzhu spring in Rehai is caused by the fractionation induced by pH and the phase separation of coexisting steam and fluids. Given the strong water–rock interaction, some geothermal springs in western Yunnan show reservoir temperatures higher than 180 °C, which demonstrate potential for electricity generation and direct-use applications. The most potential geothermal field in western Yunnan is located in the Rehai area because of the heat transfer from the shallow magma chamber.  相似文献   

15.
The present study highlights the first evidence of hydrothermal mineral Thenardite (Na2SO4) from Puga geothermal area, North-western Himalayan belt in Ladakh Geothermal Province, India, which is unequivocal evidence for the presence of high-temperature hydrothermal fluid activity from one of the thickest crust areas of the Earth. The Puga geothermal belt illustrates a fault-bounded hydrothermal system with a clearly defined conductive zone, coinciding with Kiagar Tso fault typically exemplifying a shallow-level medium enthalpic geothermal reservoir. The hydrogeochemistry suggests that thermal and non-thermal waters are of Na-Cl-HCO3 and Ca-Mg-HCO3 type, respectively, with neutral to near alkaline pH. The silica and cation geothermometry reveal sub-surface temperatures around 150 °C and 250 °C, respectively, at shallow depth; however, >250 °C is anticipated at the deepest levels (~3 km). Stable isotope (δD and δ18O) studies explicate depletion of isotopic content for thermal waters over Puga river water and radiogenic isotope (3H) suggests matured thermal waters with ongoing water-rock interactions. The recharge altitude estimation and physiographic studies put forth that geothermal reservoir is recharged with the ice masses located at an altitude of 6458 m above mean sea level (msl) in the west of Puga valley, probably from the highest peak of Polokong La mountain. The two key processes participating in regulation of proportions of the dissolved salts in the thermal waters are silicate weathering and ion-exchange kinetics. The powder X-ray diffraction study reveals a major occurrence of hydrothermal mineral thenardite in the hot spring deposits for the first time along with huge encrustations of trona, borax, calcite and elemental sulfur. The high-temperature fluids encounter thenardite, pyrite, and jarosite-bearing minerals in basement rock causing enrichment of SO42− and Cl in geothermal waters. The temperature-dependent speciation modelling (50 °C–200 °C) for major ion Na+ reveals the composition of the reservoir fluid (~150 °C): Na+ > NaCO3 > NaSO4 > NaHCO3 > NaF > NaOH. A conceptual evolution model of thermal waters involving the recharge-deep circulation-mixing-discharge of thermal springs is hence put forth in the study using various hydrogeochemical insights.  相似文献   

16.
This study investigates the origin and chemical composition of the thermal waters of Platystomo and Smokovo areas in Central Greece as well as any possible relationships of them to the neighboring geothermal fields located in the south-eastern part of Sperchios basin. The correlations between different dissolved salts and the temperature indicate that the chemical composition of thermal waters are controlled by, the mineral dissolution and the temperature, the reactions due to CO2 that originates possibly by diffusion from the geothermal fields of Sperchios basin and the mixing of thermal waters with fresh groundwater from karst or shallow aquifers. Two major groups of waters are recognized on the basis of their chemistry: thermal waters of Na–HCO3–Cl type and thermal waters mixed with fresh groundwater of Ca–Mg–Na–HCO3 type. All thermal waters of the study area are considered as modified by water–rock interaction rainwater, heated in depth and mixed in some cases with fresh groundwater when arriving to the surface. Trace elements present low concentrations. Lithium content suggests discrimination between the above two groups of waters. Boron geochemistry confirms all the above remarks. Boron concentration ranges from 60 μg L?1 to 10 mg L?1, while all samples’ constant isotopic composition (δ11B ≈ 10 ‰) indicates leaching from rocks. The positive correlation between the chemical elements and the temperature clearly indicates that much of the dissolved salts are derived from water–rock interactions. The application of geothermometers suggests that the reservoir temperature is around 100–110 °C. Chalcedony temperatures are similar to the emergent temperatures and this is typical of convective waters in fault systems in normal thermal gradient areas.  相似文献   

17.
Thermal waters of the Usak area have temperatures ranging from 33 to 63°C and different chemical compositions. These waters hosted by the Menderes Metamorphic rocks emerge along fault lineaments from two geothermal reservoirs in the area. The first reservoir consists of gneiss, schists, and marbles of the Menderes Metamorphic rocks. The recorded reservoir is Pliocene lacustrine limestone. Hydrogeochemical studies indicate that thermal waters were mixed with surface waters before and/or after heating at depth. The results of mineral equilibrium modeling indicate that all the thermal waters are undersaturated at discharge temperatures for gypsum, anhydrite, and magnesite minerals. Calcite, dolomite, aragonite, quartz, and chalcedony minerals are oversaturated in all of the thermal waters. Water from the reservoir temperatures of the Usak area can reach upto120°C. According to δ18O and δ2H values, all thermal and cold groundwater are of meteoric origin.  相似文献   

18.
Fluorite solubility equilibria in selected geothermal waters   总被引:2,自引:0,他引:2  
Calculation of chemical equilibria in 351 hot springs and surface waters from selected geothermal areas in the western United States indicate that the solubility of the mineral fluorite, CaF2, provides an equilibrium control on dissolved fluoride activity. Waters that are undersaturated have undergone dilution by non-thermal waters as shown by decreased conductivity and temperature values, and only 2% of the samples are supersaturated by more than the expected error. Calculations also demonstrate that simultaneous chemical equilibria between the thermal waters and calcite as well as fluorite minerals exist under a variety of conditions.Testing for fluorite solubility required a critical review of the thermodynamic data for fluorite. By applying multiple regression of a mathematical model to selected published data we have obtained revised estimates of the pK (10,96), ΔGof (?280.08 kcal/mole), ΔHof (?292.59 kcal/mole), S° (16.39 cal/deg/mole) and CoP (16.16 cal/deg/mole) for CaF2 at 25°C and 1 atm. Association constants and reaction enthalpies for fluoride complexes with boron, calcium and iron are included in this review. The excellent agreement between the computer-based activity products and the revised pK suggests that the chemistry of geothermal waters may also be a guide to evaluating mineral solubility data where major discrepancies are evident.  相似文献   

19.
Given the vital importance of water and energy in desert regions, we undertook a study dealing with the deep reservoirs in Gabes area, which is located in the southeastern part of Tunisia. Geothermal resources are taken from the Intercalary Continental [or Continental Intercalaire (CI)], known as the largest deep aquifer in Tunisia and are used in a number of applications, mainly in agriculture. Previous investigations performed on the thermal waters of this area focused on the genesis of the deep waters with regard to the thermal features of geothermal reservoirs. A more detailed investigation has been carried out, considering both deep and shallow waters. In order to estimate the potential temperatures of deep reservoir in the Gabes area, we developed a synthetic study including chemical geothermometers, multiple mineral equilibrium approach, and other approaches. Chemical types of the thermal waters and effects of mixing between shallow cold waters with deep thermal waters were also discussed. In fact, the application of Na–K–Mg diagram relative to deep geothermal reservoir capitulate estimated temperatures (about 90°C). In addition, the multiple mineral equilibrium approach submits a similar estimated temperature ranging between 65 and 70°C, showing a disequilibrium status which indicates a possibly mixing with surface water. Indeed, wells exploiting the CI aquifer in the south part of the studied area showed the same characteristics, corroborating the reliability of the applied methods.  相似文献   

20.
Northeastern Morocco is characterised by a large number of surface geothermal manifestations. Thermal waters are hosted within sedimentary rocks, and in particular the Liassic dolomitic limestones act as a reservoir. The presence of geothermal waters is closely related to important fault systems. Meteoric water infiltrates along those fractures and faults, gets heated, and then returns to the surface through hydrothermal conduits. Most of the thermal waters are of Na–Cl and Ca–Mg–HCO3 types. In this paper different geochemical approaches were applied to infer the reservoir temperature. Na–K–Mg1/2 ternary diagram points to temperatures ranging from 100 to 180 °C. Cation geothermometers suggest an average reservoir temperature of about 100 °C. Mineral solution equilibria analysis yields temperatures ranging from 50 to 185 °C. The silica enthalpy mixture model gives an average value (about 110 °C) higher than that inferred from cation geothermometers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号