首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
大兴安岭南段晚中生代双峰式火山作用   总被引:52,自引:24,他引:52  
郭锋  范蔚茗等 《岩石学报》2001,17(1):161-168
大兴安岭南段晚中生代克头鄂博组山岩表现出双峰式特征,主要由玄武质安山岩、英安岩和流纹岩组成。基性火山岩属于代钾拉斑系列,轻微富集LREE,Eu异常不明显(Eu/Eu=0.99-1.04)和HREE无明显分馏的特征(Dy/YbcN=1.030-1.089);富集大离子亲石元素(LILE)而亏损高场强元素(HFSE),尤其是强烈亏损Nb,Ta。英安岩和流纹岩为钙碱性系列,在REE配分模式上为LREE富集型,其中英安岩为Eu弱负异常(Eu/Eu=0.81-1.01),流纹岩的Eu负异常明显(Eu^*/Eu=0.65-0.76);在微量元素蛛网图上,英安岩类似于基性火山岩,流纹岩除了具LILE富集和HFSE亏损特征外,还显示出Sr,P,Ti等元素的强烈亏损,可能与岩浆演化过程中斜长石、磷灰石的分离结晶作用相关。晚中生代双峰式火山岩分离结晶的结果。流纹岩表现出较高的La/Sm比值和很高的K/P、K/Ti比值,其成因可能与地壳混染作用或与大陆中、下地壳重熔作用有关。结合区域晚中生代盆岭构造格局特征、大兴安岭南段晚中生代双峰式火山岩形成于造山后阶段,是岩石圈快速伸展体制下导致受早期流体交代的岩石圈地幔发生减压部分熔融作用的产物。  相似文献   

2.
《Lithos》1986,19(2):95-111
The Lapland charnockitic complex is mainly composed of basic and intermediate granulites, with more restricted types including ultramafic rocks and one high-Mg enderbite occurrence. All these rocks are interbedded with or intrude the metasedimentary granulites (khondalites).The charnockites can be subdivided on the basis of their Y and REE contents into three groups. The first group is characterized by an increase in Y content with progressive differentiation and by fractionated LREE-enriched patterns quite similar to those of some Archean granulites. The REE distribution patterns of these rocks suggests an origin by partial melting of a LREE-enriched mantle source (metasomatism). The other groups and the high-Mg enderbite are depleted in Y and display strongly fractionated REE patterns either with U-shaped HREE and positive Eu anomalies similar to Archean TTG rocks despite more basic major element composition (group II and the high-Mg enderbite) or with strong HREE depletion (group III). The high-Mg enderbite approximates closely high-Mg andesites with respect to major and some trace elements and its REE pattern is identical to those of early Archean group III komatiites of the Onverwacht Group, South Africa. Parental magmas for group II rocks and the high-Mg enderbite are assumed to derive by partial melting of a garnet-enriched mantle source metasomatized by a LREE-enriched fluid, whereas those of group III could be produced by melting of quartz-eclogites or garnet-amphibolites with fractionated REE patterns similar to those of group I.The overall petrographical and geochemical features of the Lapland charnockitic complex are consistent with an evolution of the Belomorian fold belt according to a collision model.  相似文献   

3.
Most large Archean greenstone belts ( 2.7 Ga), comprise thick (12–15 km) mafic to felsic metavolcanics sequences which exhibit consistent but discontinuous geochemical patterns resulting from mantle-crust processes. In a typical Archean metavolcanic sequence, thick (5–8 km) uniform tholeiitic basalt is followed by geochemically evolved rock units (4–7 km thick) containing intermediate and felsic calc-alkaline rocks. This major geochemical discontinuity is marked by a change from LIL-element depleted basalts which show unfractionated REE abundance patterns, to overlying andesites with higher LIL-element contents, fractionated REE patterns and relatively depleted HREE. A less well marked discontinuity separates andesitic rocks from still later more felsic dacite-rhyolite extrusive assemblages and their intrusive equivalents, and is identified by a further increase in LIL element content and REE fractionation. The major geochemical discontinuity apparently separates rocks derived by partial melting of mantle (either directly or through shallow fractionation processes) from those which originated either by partial melting of mantle material modified by crustal interactions or by partial melting of crustal material.We suggest that accumulation of a great thickness of mantle derived volcanic rocks can lead to sagging and interaction of the lower parts of the volcanic piles with upper mantle material. The resulting modified mantle acts as a source for some of the geochemically evolved rocks observed in volcanic successions. Subsequent direct melting of the volcanic pile produces the felsic magmas observed in the upper parts of Archean volcanic successions. This process, termed sag-subduction, is the inferred tectonic process operating in the comparatively thin, hot Archean crustal regime. By this process, large masses of ultimately mantle-derived material were added to the crust.  相似文献   

4.
The Bulawayan Group in the Midlands greenstone belt can be divided into three formations. The Mafic Formation is composed principally of pillowed, low-K tholeiites and minor bedded chert. The Maliyami Formation and conformably overlying Felsic Formation are composed of calc-alkaline tholeiites, andesites, and dacites with andesites dominating in the Felsic Formation. Minor rhyolite quartz porphyries and ultramafic bodies also occur in the section. The Bulawayan Group near Que Que is perhaps the least altered and metamorphosed Archean greenstone succession known. The absence of andesite and related rocks, the association of bedded chert, and the consistently low K2O, Rb, and Sr contents of Mafic Formation tholeiites suggest that they represent Archean oceanic rise tholeiites. The compositions of tholeiites and andesites of the Maliyami Formation, however, suggest that they represent an emerging arc system. The Felsic Formation is interpreted as a more advanced stage in the evolution of this arc system.Trace-element model calculations favor an origin for Mafic Formation tholeiites involving about 30% partial melting of a lherzolite source. Similar calculations are consistent with an origin for Maliyami Formation tholeiites, Maliyami and Felsic Formation andesites, and Midlands rhyolites involving, respectively, 50, 20–30, and 10% equilibrium melting of eclogite or garnet amphibolite (of Mafic Formation tholeiite composition). The low K2O, Rb, and Sr contents of Mafic Formation tholeiites suggest that they were derived from an upper mantle source as depleted in these elements as the oceanic upper mantle is today.A plate tectonic model is proposed for the Bulawayan Group in which the Mafic Formation is derived from a depleted lherzolite source beneath a spreading center in a marginalsea basin and the Maliyami and Felsic Formations and associated rhyolites are produced by partial melting of eclogite in a descending slab located west of the basin.  相似文献   

5.
The Miocene Kitami rhyolite, consisting of orthopyroxene and plagioclase-phyric lavas and dikes, occurs on the back-arc side of the Kuril arc with coeval basalts and Fe-rich andesites. Temperatures estimated from orthopyroxene–ilmenite pairs exceed 900°C. Although the whole rock compositions of the Kitami rhyolite correspond to S-type granites (i.e., high K, Al, large ion lithophile elements, and low Ca and Sr), Sr–Nd isotope compositions are remarkably primitive, and similar to those of the coeval basalts and andesites. They are distinct from those of lower crustal metamorphic rocks exposed in the area. Comparison of chondrite-normalized rare earth element (REE) patterns between the rhyolite and the basalts and andesites show that the rhyolite is more light REE enriched, but has similar heavy REE contents than the basalts. All rhyolites show negative Eu anomalies. The geochemical data suggest that did not formed by simple dehydration melting of basaltic rocks or fractional crystallization of basaltic magmas. The features of slab-derived fluids expected from recent high pressure experimental studies indicates that mantle wedge is partly metasomatized with “rhyolitic” materials from subducted slabs; it is more likely that very low degree partial melting of the metasomatized mantle wedge formed the rhyolite magma.  相似文献   

6.
Khromykh  S. V.  Semenova  D. V.  Kotler  P. D.  Gurova  A. V.  Mikheev  E. I.  Perfilova  A. A. 《Geotectonics》2020,54(4):510-528

Studies of volcanic rocks in orogenic troughs of Eastern Kazakhstan were carried out. The troughs were formed at late-orogenic stages of evolution of Hercynian Altai collision system. Volcanic rocks are represented by basalts, andesites, dacites and rhyolites. Based on geochemical and isotopic data, the basalts and andesites derived from mafic magmas that formed as a result of partial melting of garnet peridotites in the upper mantle under the orogen. U–Pb zircon data prove two volcanic stages: more-scaled Middle Carboniferous (~311 Ma) and less-scaled Early Permian (297–290 Ma). Basalts and andesites in lower parts of the orogenic troughs and independent dacite-rhyolite structures were formed at the Middle Carboniferous stage. Parental mafic magmas were formed as a result of partial melting of mantle substrates in local transtensional zones along large shear faults. The formation of dacites and rhyolites could have been caused by partial melting of crustal substrates under effect of mafic magmas. Transtensional movements in the lithosphere of orogenic belts may indicate the beginning of collapse of orogens. A smaller volume of basalts and andesites formed at the Early Permian stage. Geochemical data prove the independent episode of partial melting in upper mantle. Synchronous basalts and andesites also appeared at wide territory in Tian Shan, Central Kazakhstan, and Central and Southern Mongolia. Early Permian volcanism indicates general extension of the lithosphere at the postorogenic stages. Large-scaled Early Permian mafic and granitoid magmatism in Central Asia has been interpreted in recent years as the Tarim Large Igneous Province caused by Tarim mantle plume activity. Thus, the extension of the lithosphere and associated volcanism in the Early Permian can be an indicator of the onset of the plume–lithosphere interaction process.

  相似文献   

7.
新疆新源县城南石炭纪火山岩岩石学和元素地球化学研究   总被引:14,自引:0,他引:14  
新疆新源县南部那拉提山北坡出露的石炭纪火山岩主要由玄武岩、玄武质粗面安山岩、粗面安山岩、安山岩、流纹岩和火山碎屑岩组成。该火山岩中玄武岩属于钙碱性系列,安山质岩石和流纹岩属于高钾钙碱性系列,其中轻稀土轻微富集而重稀土相对亏损,玄武岩富集大离子亲石元素、U、Th和Pb,亏损高场强元素。研究表明,该火山岩岩浆可能是由俯冲板片脱水产生的流体交代地幔楔后,地幔楔发生部分熔融的结果。微量元素模拟计算表明,该玄武岩岩浆可以由石榴石二辉橄榄岩经3%~6%的部分熔融得到;安山质岩浆可由玄武岩岩浆经15%-28%的分离结晶形成。  相似文献   

8.
Kent C. Condie 《Earth》1976,12(4):393-417
Progressive alteration, diagenesis, and low-grade metamorphism of Archean greenstone belts often leads to redistribution of alkali and related trace elements. Transition metals and rare earths are relatively resistant to these processes and hence are most useful in evaluating petrologic problems.Depleted Archean tholeiite (DAT) exhibits flat REE distributions and low LIL-element contents while enriched Archean tholeiite (EAT) exhibits slightly enriched REE patterns and moderate LIL-element contents. DAT is grossly similar to modern rise and are tholeiites and EAT to cale-alkaline and oceanic island tholeiites. Archean and esites fall into three categories: depleted Archean andesite (DAA) exhibits flat REE patterns, negative Eu anomalies and low LIL-element contents; low-alkali Archean andesite (LAA) shows minor light REE enrichment and low LIL-element contents; and high-alkali Archean andesite (HAA) shows light REE enrichment and high LIL-element contents. LAA is grossly similar to modern cale-alkaline andesites, but DAA and HAA do not have modern analogues. Archean depleted siliceous volcanics (DSV) exhibit depletion in heavy REE and Y compared to modern siliceous volcanics whereas undepleted varieties (USV) are similar to modern ones. Almost all Archean volcanic rocks, regardless of composition, are enriched in transition metals compared to modern varieties. Archean graywackes are similar in composition to Phanerozoic graywackes. Rock associations in Archean greenstones suggest the existence of two tectonic settings.Magma model studies indicate that partial melting has left the strongest imprint on trace-element distributions in greenstone volcanics. Three magma source rocks are necessary (listed in order of decreasing importance): ultramafic rock, eclogite, and siliceous granulite. Trace-element studies of Archean graywackes indicate a mixed volcanic—granitic provenance with minor ultramafic contributions.Alkali and related trace-element contents of Archean volcanics have been interpreted in terms of both undepleted and depleted upper mantle sources. Preferential enrichment of transition metals in Archean volcanics may have resulted from upward movement of immiscible liquid sulfide droplets with Archean magmas, depleting the source area in these elements. Initial Sr isotope distributions in Archean volcanics indicate the upper mantle during the Archean was heterogeneous in terms of its Rb/Sr ratio.  相似文献   

9.
《Precambrian Research》1986,34(2):175-203
The Archaean Nsuze Group in southeast South Africa represents an important volcano-sedimentary succession that is markedly different compositionally and lithologically from older and contemporaneous sequences elsewhere in southern Africa.The Nsuze volcanic rocks cropping out in the vicinity of the Pongola River in northern Natal display a complete spectrum of chemical compositions from basalt to rhyolite, with lavas of intermediate compositions predominant but ultramafic lavas absent. Flows of different compositions are complexly interdigitated. The uppermost rocks of the Nsuze Group reflect a gradual decrease in volcanic activity accompanied by an increase in sedimentation.The Nsuze lavas are tholeiitic with total Fe (as Fe2 O3) contents approaching 17% in the basaltic andesites. All lithologies are characterized by moderate to strong light rare earth element (REE) enrichment. Heavy REE slopes range from moderate in the basalts and basaltic andesites to flat in the rhyolites, with the exception of two basaltic andesites and a dacite which have flat heavy REE slopes. Basalts have small or no negative Eu anomalies but increasingly larger negative anomalies are a feature of the intermediate and acid lavas. Variations in Cr content appear to be related to stratigraphic position. Basalts and basaltic andesites in the lower part of the volcanic sequence have higher Cr contents (by a factor of six to eight times) than lavas with similar MgO abundances in the upper part of the sequence.Provisional modelling of the available chemical data favours low pressure, crystal fractionation from and evolved basaltic parent, that could be derived by initial non-modal melting of a garnet-lherzolite source. Variable degrees of crustal contamination of the evolved magmas are considered probable.  相似文献   

10.
The Thetford Mines complex is a complete ophiolite which is part of an ultramafic-mafic belt within Québec Appalachians. These allochtonous bodies were emplaced during the Early Ordovician. The Thetford Mines complex comprises a lower unit of metamorphic harzburgite (in which tabular, dyke-like, dunitic bodies occur) overlain successively by ultramafic cumulates, mafic cumulates, ophitic gabbros, diabase sills and dykes, and basaltic volcanic rocks. Field evidence, petrography and chemical data indicate that the tabular dunitic bodies formed when fractures in the metamorphic harzburgite (which constituted the floor of the magma chamber) filled with early cumulates (i.e., olivine±chromite). Representative rocks from all units were analyzed for major and rare earth elements (REE). Metamorphic harzburgite samples from Thetford Mines complex have U-shaped chondrite-normalized REE patterns. Pyroxenites and wehrlites of the cumulate sequence are all strongly light-REE depleted and have heavy REE ranging from 0.4 to 1.5 times chondrite. REE data from ultramafic and volcanic rocks of Thetford Mines complex and geochemical modelling indicate that the metamorphic harzburgite has the chemical characteristics of depleted upper mantle residues with U-shaped patterns, and that the ultramafic cumulates crystallized from magmas having different La/Yb ratios.  相似文献   

11.
The Archean Shawmere Anorthosite Complex, at the southern end of the Kapuskasing Structural Zone, consists dominantly of anorthosite (An65 –85) with minor gabbroic and ultramafic units, which are completely enclosed and cut by tonalites. Both the anorthosites and the tonalites are themselves cut by narrow dikes of gabbroic anorthosite. All of the rocks have undergone high grade metamorphism and are recrystallized so that few igneous textures remain.The anorthosites, gabbros and ultramafic rocks of this complex are cumulates which contain calcic plagioclase (An65–95) and have atomic Mg/(Mg + Fe2+) ratios (Mg#) greater than 0.6; less than 3 ppm Rb; 150–210 ppm Sr; and less than 60 ppm Ba. REE abundanees range from 0.2 to 10 times chondritic and exhibit both light-enriched and light-depleted REE patterns. The lower Mg# for the samples having more enriched light REE indicates substantial fractions of ferromagnesian minerals crystallized in addition to plagioclase during fractional crystallization, suggesting that the parent magma was basaltic, and not anorthositic. The ranges in Sr, Ba and REE abundances required for the magmas are typical of those for tholeiitic basalts from Archean greenstone belts. Thus the Shawmere Anorthosite Complex may represent cumulates of a crustal-level magma chamber which could have been the immediate source of basic Archean volcanics.One gabbroic anorthositic dike sample has a steeply fractionalted REE pattern with heavy REE abundances less than chondrites and a large positive Eu anomaly. The proposed interpretations is that this rock formed by partial melting of mafic cumulates, perhaps those of the Shawmere Anorthosite Complex itself.  相似文献   

12.
中国东部中生代火山岩比较发育,在冀北—辽西、山东、北淮阳、太行山等地区均有分布。在冀北的秦皇岛石门寨地区存在着一套分布广泛的中生代蓝旗组与孙家梁组火山岩,不整合在侏罗系北票组砾岩之上。蓝旗组与孙家梁组之间为整合关系,蓝旗组主体为碱玄岩和玄武粗安岩,孙家梁组主体为英安岩和流纹岩,前人研究认为其时代为晚侏罗世。本研究对该地区火山岩样品进行了全岩地球化学分析和锆石U- Pb定年。蓝旗组火山岩样品总体上以富K、Na和Al为特征,部分样品有较高的Mg和Fe含量,在微量元素组成上,粗面岩和玄武粗安岩富集大离子亲石元素和轻稀土元素,亏损高场强元素和重稀土元素,碱玄岩轻微亏损高场强元素,轻重稀土元素分馏较为明显,玄武岩无明显高场强元素异常,轻稀土无明显富集,重稀土不亏损。孙家梁组火山岩样品均为流纹岩,也以富K、Na和Al为特征,Mg和Fe含量较低,在微量元素组成上,富集轻稀土元素,亏损重稀土元素,具有强烈的Eu负异常。蓝旗组火山岩主要为钾玄岩系列,孙家梁组火山岩为高钾钙碱性系列,蓝旗组粗面岩和玄武粗安岩地球化学特征类似岛弧,可能与受上地壳俯冲脱水交代作用有关,碱玄岩地球化学特征类似HIMU型OIB,源区可能为受俯冲洋壳交代所形成的富集型软流圈地幔,玄武岩地球化学特征类似N- MORB,源区可能为亏损的软流圈地幔。孙家梁组流纹岩可能由早白垩世华北克拉通强烈的伸展作用导致幔源岩浆底侵下地壳,使其部分熔融或古太平洋板块俯冲后撤所导致俯冲洋壳岩石发生部分熔融产生。孙家梁组流纹岩中锆石的LA- ICP- MS U- Pb定年获得了23个颗粒的加权平均年龄1180±11 Ma,为早白垩世,可以与辽西地区义县组相对比。河北秦皇岛石门寨地区蓝旗组和孙家梁组火山岩的成因及形成时代对于探讨中生代华北克拉通减薄的机制与时限具有重要意义。  相似文献   

13.
胡军  王核  黄朝阳 《岩石学报》2016,32(6):1699-1714
甜水海地块西段的种羊场地区发育一套互层状产出的玄武岩-玄武安山岩-流纹岩,本文对其进行了岩石学、同位素年代学和地球化学研究。结果表明,流纹岩LA-ICP-MS锆石U-Pb定年获得三组年龄:343.5±4.1Ma表明火山岩的形成时代为早石炭纪,2439±26Ma和1988±36Ma说明甜水海地块存在前寒武纪结晶基底。其中玄武质岩石岩性从拉斑系列、钙碱性系列向碱性系列过渡,呈现出E-MORB(OIB)、大陆板内拉张和岛弧的混合特征,与典型弧后盆地Okinawa玄武岩有一定的差异,表明其可能是异常陆缘弧后盆地拉张裂解的产物。玄武质岩石和流纹岩的主量元素、稀土元素和微量元素比值对的差异表明它们不是同源岩浆演化的产物,玄武质岩石的源区为类似E-MORB(OIB)的岩石圈地幔,且发生了部分熔融,原始岩浆上升过程中经历了矿物分离结晶和地壳混染作用。流纹岩属于高硅高碱的钙碱性火山岩,是上地壳部分熔融的产物。种羊场早石炭纪火山岩可能代表了古特提洋西端早期扩张的记录,为西昆仑-喀喇昆仑地区晚古生代多岛洋格局提供了新的证据。  相似文献   

14.
The late Archaean volcanic rocks of the Rwamagaza area in the Sukumaland Greenstone Belt consists of basalts and basaltic andesites associated with volumetrically minor rhyodacites and rhyolites. Most basalts and basaltic andesites yield nearly flat patterns (La/SmCN = 0.89–1.34) indicating derivation by partial melting of the mantle at relatively low pressure outside the garnet stability field. On primitive mantle normalized trace element diagrams, the basalts and basaltic andesites can be subdivided into two groups. The first group is characterised by moderately negative Nb anomalies (Nb/Lapm = 0.51–0.73, mean = 0.61 ± 0.08) with slight enrichment of LREE relative to both Th and HREE. The second group is characterised by nearly flat patterns with no Nb anomalies (Nb/Lapm = 0.77 ± 0.39). The observed Nb and Th anomalies in the Rwamagaza basalts and basaltic andesites, cannot be explained by alteration, crustal contamination or melt–solid equilibria. Rather, the anomalies are interpreted, on the basis of Nb–Th–La–Ce systematics, as having formed by partial melting of a heterogeneous mantle consisting of variable mixtures of components derived from two distinct sources. These sources are depleted mantle similar to that generating modern MORB and an LREE-enriched and HFSE-depleted source similar to that feeding volcanism along modern convergent margins.The rhyolites are characterised by high Na2O/K2O ratios (>1) and Al2O3 (>15 wt.%), low HREE contents (Yb = 0.24–0.68 ppm) leading to highly fractionated REE patterns (La/YbCN = 18.4–54.7) and large negative Nb anomalies (Nb/Lapm = 0.11–0.20), characteristics that are typical of Cenozoic adakites and Archaean TTG which form by partial melting of the hydrated basaltic crust at pressures high enough to stabilize garnet ± amphibole. The Rwamagaza basalts and basaltic andesites are geochemically analogous to the Phanerozoic Mariana Trough Back Arc Basin Basalts and the overall geochemical diversity of Rwamagaza volcanic rocks is interpreted in terms of a geodynamic model involving the interaction of a depleted mantle, a melting subducting oceanic slab in a back arc setting.  相似文献   

15.
Late Miocene–Pliocene to Quaternary calc-alkaline lava flows and domes are exposed in southeast of Isfahan in the Urumieh Dokhtar magmatic belt in the Central Iran structural zone. These volcanic rocks have compositions ranging from basaltic andesites, andesites to dacites. Geochemical studies show these rocks are a medium to high K calc-alkaline suite and meta-aluminous. Major element variations are typical for calc-alkaline rocks. The volcanic rocks have SiO2 contents ranging between 53.8% and 65.3%. Harker diagrams clearly show that the dacitic rocks did not form from the basaltic andesites by normal differentiation processes. They show large ion lithophile elements- and light rare earth elements (LREE)-enriched normalized multielement patterns and negative Nb, Ti, Ta, and P. Condrite-normalized REE patterns display a steep decrease from LREE to light rare earth elements without any Eu anomaly. These characteristics are consistent with ratios obtained from subduction-related volcanic rocks and in collision setting. The melting of a heterogeneous source is possible mechanism for their magma genesis, which was enriched in incompatible elements situated at the upper continental lithospheric mantle or lower crust. The geochemical characteristics of these volcanic rocks suggested that these volcanic rocks evolved by contamination of a parental magma derived from metasomatized upper lithospheric mantle and crustal melts.  相似文献   

16.
The Archean greenstone belts of the Nyanzian System in western Kenya are composed principally of andesite with minor tholeiitic basalt and siliceous volcanics. The Nyanzian tholeiite is an intermediate-K tholeiite with a flat REE pattern. There are two chemically-distinct andesites: a low-K andesite (Andesite I) and a high-K andesite (Andesite II). The REE pattern of the Andesite II is enriched in light REE and depleted in heavy REE relative to Andesite I.Major and trace element calculations indicate an origin for the Nyanzian tholeiite by 35–40% equilibrium melting of a lherzolite source followed by 10% shallow fractional crystallization. Similar calculations best explain Andesite I and Andesite II by 20 and 5% melting, respectively, of an ecologite or garnet amphibolite source of Nyanzian tholeiite composition. The rhyolite may have formed either by 20–30% partial melting of a siliceous granulite or by 20–30% fractional crystallization of a granodiorite parent magma.With respect to total exposure areas, the Nyanzian volcanics have significantly less tholeiite and more Andesite and siliceous volcanics than other Archean greenstone belts. If these abundances are representative, two models are proposed to explain the anomalous abundances of Andesite and siliceous volcanics. The first model involves an Archaen upper mantle with a relatively low geothermal gradient beneath Kenya, while the second model involves a relatively cool mantle plume. Both models inhibit ascent of a significant amount of primary tholeiite to the surface and prevent formation of secondary tholeiite. Other Archean greenstone terranes with higher mantle geotherms or hotter mantle plumes would receive higher proportions of mafic and ultramafic magmas.  相似文献   

17.
The Rainy Lake area in northern Minnesota and southwestern, Ontario is a Late Archean (2.7 Ga) granite-greenstone belt within the Wabigoon subprovince of the Canadian Shield. In Minnesota the rocks include mafic and felsic volcanic rocks, volcaniclastic, chemical sedimentary rocks, and graywacke that are intrucded by coeval gabbro, tonalite, and granodiorite. New data presented here focus on the geochemistry and petrology of the Minnesota part of the Rainy Lake area. Igneous rocks in the area are bimodal. The mafic rocks are made up of three distinct suites: (1) low-TiO2 tholeiite and gabbro that have slightly evolved Mg-numbers (63–49) and relatively flat rare-earth element (REE) patterns that range from 20–8 x chondrites (Ce/YbN=0.8–1.5); (2) high-TiO2 tholeiite with evolved Mg-numbers (46–29) and high total REE abundances that range from 70–40 x chondrites (Ce/YbN=1.8–3.3), and (3) calc-alkaline basaltic andesite and geochemically similar monzodiorite and lamprophyre with primitive Mg-numbers (79–63), enriched light rare-earth elements (LREE) and depleted heavy rare-earth elements (HREE). These three suites are not related by partial melting of a similar source or by fractional crystallization of a common parental magma; they resulted from melting of heterogeneous Archean mantle. The felsic rocks are made up of two distinct suites: (1)low-Al2O3 tholeiitic rhyolite, and (2) high-Al2O3 calc-alkaline dacite and rhyolite and consanguineous tonalite. The tholeiitic felsic rocks are high in Y, Zr, Nb, and total REE that are unfractionated and have pronounced negative Eu anomalies. The calcalkaline felsic rocks are depleted in Y, Zr, and Nb, and the REE that are highly fractionated with high LREE and depleted HREE, and display moderate negative Eu anomalies. Both suites of felsic rocks were generated by partial melting of crustal material. The most reasonable modern analog for the paleotectonic setting is an immature island arc. The bimodal volcanic rocks are intercalated with sedimentary rocks and have been intruded by pre- and syntectonic granitoid rocks. However, the geochemistry of the mafic rocks does not correlate fully with that of mafic rocks in modern are evvironments. The low-TiO2 tholeiite is similar to both N-type mid-ocean-ridge basalt (MORB) and low-K tholeiite from immature marginal basins. The calc-alkaline basaltic andesite is like that of low-K calc-alkaline mafic volcanic rocks from oceanic volcanic arcs; however, the high-TiO2 tholeiite is most similar to modern E-type MORB, which occurs in oceanic rifts. The conundrum may be explained by: (1) rifting of a pre-existing immature arc system to produce the bimodal volcanic rocks and high-TiO2 tholeiite; (2) variable enrichment of a previously depleted Archean mantle, to produce both the low- and high-TiO2 tholeiite and the calc-alkaline basaltic andesite, and/or (3) enrichment of the parental rocks of the high-TiO2 tholeiite by crustal contamination.  相似文献   

18.
西乡群孙家河组为一套低绿片岩相浅变质火山-沉积岩系,主要由基性-中基性-酸性火山岩和凝灰岩、沉凝灰岩、泥岩、硅质岩组成,火山岩岩石类型包括玄武岩、安山岩、英安岩和流纹岩.LA-ICPMS锆石U-Pb定年揭示流纹岩形成时代为832.9±4.9Ma,辉石玄武岩的形成时代为845.0±17Ma,两者在误差范围内一致,属新元古代同期岩浆作用产物.元素地球化学研究表明,孙家河组玄武岩属拉斑玄武岩系列,具有受地壳混染的板内玄武岩的地球化学特点.玄武岩-安山岩-英安岩主量元素成分投点呈规律性变化、REE球粒陨石标准化及微量元素原始地幔标准化分配型式具有一致性并相互重叠,不相容元素Th和相容元素Cr相关模拟图中沿分离结晶线分布,证明玄武岩-安山岩-英安岩为同一基性岩浆分离结晶的产物.REE和微量元素分配型式以及微量元素比值对的显著差异,暗示流纹岩与玄武岩-安山岩-英安岩来源于不同源区.Sr-Nd同位素研究表明,玄武岩-安山岩-英安岩样品的ε_(Nd)(t)值均大于0以及在ε_(Nd)(t)-(~(87)Sr/~(86)Sr)_t图解中位于OIB成分区,表明其源区应为与洋岛玄武岩类似的地幔源区;流纹岩样品具有可与基性熔岩相比拟的ε_(Nd)(t)值,暗示流纹岩最有可能是初生玄武质地壳部分熔融而成.本文所研究的原划孙家河组火山岩系列的形成时代、构造环境的确定以及扬子陆块乃至世界上同一时间内普遍发育大陆裂谷岩浆岩组合的地质事实,说明原划孙家河组以及西乡群中的确存在新元古代的组成部分,它们应是新元古代大陆裂谷的产物,它和扬子地块820M8后造山裂解环境花岗岩均是新元古代晚期Rodinia超大陆裂解作用的岩浆响应.  相似文献   

19.
The Neogene quartz andesites from the Oa? and Gutâi Mountains (Romania) are mid-K calc-alkaline rocks and contain plagioclase-orthopyroxene-clinopyroxene-amphibole-magnetite phenocrysts as well as quartz crystals. They are associated with a volcanic sequence ranging from basalts and basaltic andesites to dacites and rhyolites, but form a separate magma group, mostly in respect to the trace elements. Based on the geochemical data combined with inferences from complex zoning patterns in plagioclase and pyroxene, the evolution of quartz andesites is interpreted in terms of fractional crystallization, AFC and magma mixing. A parental magma deriving from a MORB- or OIB-type source modified by fluids and melts originating from sediments is envisaged.  相似文献   

20.
《Precambrian Research》1986,34(1):37-68
The early Proterozoic supracrustal rocks of the Salida area of central Colorado consist of strongly bimodal sequences of volcanogenic rocks. The mafic rocks — basalts, basaltic volcaniclastics, and related gabbro sheets — are distinctly tholeiitic, display a strong iron-enrichment trend, and typically contain less than 50% SiO2. The felsites are rhyolites to dacites and contain more than 70% SiO2.Major and trace element modeling show that the mafic rocks underwent two stages of crystal fractionation, the first involving olivine and plagioclase, the second involving plagioclase and clinopyroxene. Fractionation occurred within individual injections as they rose toward the surface rather than in a single magma chamber at depth. Field relations and major element data support the derivation of the felsic rocks from a magma generated by anatexis of sialic crust. However, the low Sr and high heavy REE concentrations in these rocks are not compatible with a partial melting model and suggest that the felsic volcanic rocks could have been derived by extensive fractional crystallization of the mafic magma.Normalized trace element abundances and trace element ratios of the mafic rocks are most like continental flood basalts such as the Columbia River basalts. They also display some similarity to immature back-arc basin tholeiites developed on continental crust, such as those of the Sarmiento complex. The felsic rocks have strong chemical affinities to within-plate rhyolites rather than calc-alkaline rhyolites from orogenic areas. The chemical data, as well as the petrographic, stratigraphic, and regional field data all indicate that the early Proterozoic supracrustal rocks of the Salida area developed along a continental margin, probably within an immature back-arc basin underlain by sialic crust. Remnants of the arc system of similar age may lie to the south in northern New Mexico and southwestern Colorado.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号