首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The ionization quotients of aqueous carbon dioxide (carbonic acid) have been precisely determined in NaCl media to 5 m and from 50° to 300°C using potentiometric apparatus previously developed at Oak Ridge National Laboratory. The pressure coefficient was also determined to 250°C in the same media. These results have been combined with selected information in the literature and modeled in two ways to arrive at the best fits and to derive the thermodynamic parameters for the ionization reaction, including the equilibrium constant, activity coefficient quotients, and pressure coefficients. The variation with temperature of the two fundamental quantities ΔV?o and ΔC?op were examined along the saturation vapor pressure curve and at constant density. The results demonstrated again that for reactions with minimal electrostriction changes the magnitudes and variations of ΔC?op and ΔV?o with temperature are small and, in addition, ΔC?p and ΔV? are approximately independent of salt concentration.The results have also been applied to an examination of the solubility of calcite as a function of pH (in a given NaCl medium) for the neutral to acidic region both for systems with fixed CO2 pressure and systems where the calcium ion concentration equals the concentration of carbon. The pH of saturated solutions of calcite with PCO2 of 12 bars increases from 5.1 to 5.5 between 100° and 300°C.  相似文献   

2.
If the temperature of ground water is below 75°C and the partial pressure of CO2 in the aquifer is above 10?4 atm, a chemical steady-state between water and felsic rocks (rather than chemical equilibrium) may be maintained. The temperature of water in the aquifer may be estimated using a modified form of the Na-K-Ca geothermometer from, I = ?1.36 ?0.253 log Pco2. where the departure of the steady-state from equilibrium, I, is a function of Pco2: I = ?1.36 ?0.253 log Pco2.  相似文献   

3.
In a soil developed on the Cretaceous chalk of the Eastern Paris basin, calcite dissolution begins at the surface. The soil water is rapidly saturated in calcite. Calcite dissolution follows two different pathways according to seasonal pedoclimatic conditions.During winter: the soil is only partly saturated in water and the CO2 partial pressure is low (Ca 10?3 atm.). As a consequence total inorganic dissolved carbon (TIDC) is a hundred times the carbon content of the gaseous phase. Equilibrium is usually observed between the two phases. It is a closed system. The measured carbon 14 activity (87,5%) and 13C content (δtidc13C = ?12,2%0) of the drainage water are very close to theoretical values calculated for an ideal mixing system between gaseous and mineral phases (respectively characterized by the following isotopic values: δG13C = ?21,5%0; AG14C = 118%; δM13C = +2,9%0; AM14C = 28%).During spring and summer: the soil moisture decreases, the input of biogenic CO2 induces an increase of the soil CO2 partial pressure (Ca from 3.10?3 atm to 7.10?3 atm). The carbon content of the gaseous phase is higher by an order of magnitude compared to winter conditions. Therefore the aqueous phase is undersaturated in CO2 with respect to the latter. This disequilibrium occurs as a result of unbalanced rates of CO2 dissolution and CO2 effusion toward atmosphère. It is an open system. The carbon isotopic ratio of the aqueous phase is regulated by that of the gaseous phase, as demonstrated by the agreement between measured and calculated isotopic compositions (respectively δL mes = from ?9,4%0 to ?11,5%0, δl calc = from ?9,8%0 to ?13,9%0 AL mes = 119%, AL calc = from 119% to 125%).The solutions originating from both systems (open and closed) move downwards without significant mixing together. It has also been observed that no significant variation of the TIDC isotopic composition occurs during precipitation of secondary calcite.  相似文献   

4.
Dissolution rate as a function of degree of undersaturation was measured on shells of individual species of coccoliths and foraminifera, various size fractions of sediment from the Ontong-Java Plateau and the Rio Grande Rise, a collection of large pteropods, and on synthetic calcite and aragonite powder.Results of the study indicate that all biogenic and synthetic calcium carbonate follows the rate law R% = k%(1 ? Ω)n where Ω  [Ca2+][CO32?]/K'sp and K'sp is the apparent solubility product of calcite or aragonitic seawater. In the case of all calcite samples, nc = 4.5, while for aragonitic samples na = 4.2. The ‘rate constant’, k%, varies widely between samples and in many cases is inversely correlated with grain size. However, the individual species of coccoliths, E. huxleyi and C. neohelis, which were cultured in the laboratory appear not to follow this rule, with dissolution rates an order to magnitude lower than expected.  相似文献   

5.
The stability of the amphibole pargasite [NaCa2Mg4Al(Al2Si6))O22(OH)2] in the melting range has been determined at total pressures (P) of 1.2 to 8 kbar. The activity of H2O was controlled independently of P by using mixtures of H2O + CO2 in the fluid phase. The mole fraction of H2O in the fluid (XH2O1fl) ranged from 1.0 to 0.2.At P < 4 kbar the stability temperature (T) of pargasite decreases with decreasing XH2O1fl at constant P. Above P ? 4 kbar stability T increases as XH2O1fl is decreased below one, passes through a T maximum and then decreases with a further decrease in XH2O1fl. This behavior is due to a decrease in the H2O content of the silicate liquid as XH2O1fl decreases. The magnitude of the T maximum increases from about 10°C (relative to the stability T for XH2O1fl= 1) at P = 5 kbar to about 30°C at P = 8 kbar, and the position of the maximum shifts from XH2O1fl ? 0.6 at P = 5 kbar to XH2O1fl? 0.4 at P = 8 kbar.The H2O content of liquid coexisting with pargasite has been estimated as a function of XH2O1fl at 5 and 8 kbar P, and can be used to estimate the H2O content of magmas. Because pargasite is stable at low values of XH2O1fl at high P and T, hornblende can be an important phase in igneous processes even at relatively low H2O fugacities.  相似文献   

6.
We have calculated the total individual ion activity coefficients of carbonate and calcium, γTCO32? and γTCa2+, in seawater. Using the ratios of stoichiometric and thermodynamic constants of carbonic acid dissociation and total mean activity coefficient data measured in seawater, we have obtained values which differ significantly from those widely accepted in the literature. In seawater at 25°C and 35%. salinity the (molal) values of γTCO23? and γTCa2+ are 0.038 ± 0.002 and 0.173 ± 0.010, respectively. These values of γTCO32? and γTCa2+ are independent of liquid junction errors and internally consistent with the value γTCl? = 0.651. By defining γTCa2+ and γTCO32? on a common scale (γTCl?), the product γTCa2+γTCO32? is independent of the assigned value of γCl? and may be determined directly from thermodynamic measurements in seawater. Using the value γTCa2+γTCO32? = 0.0067 and new thermodynamic equilibrium constants for calcite and aragonite, we show that the apparent constants of calcite and aragonite are consistent with the thermodynamic equilibrium constants at 25°C and 35%. salinity. The demonstrated consistency between thermodynamic and apparent constants of calcite and aragonite does not support a hypothesis of stable Mg-calcite coatings on calcite or aragonite surfaces in seawater, and suggests that the calcite critical carbonate ion curve of Broecker and Takahashi (1978, Deep-Sea Research25, 65–95) defines the calcite equilibrium boundary in the oceans, within the uncertainty of the data.  相似文献   

7.
The 13C12C fractionation factors (CO2CH4) for the reduction of CO2 to CH4 by pure cultures of methane-producing bacteria are, for Methanosarcina barkeri at 40°C, 1.045 ± 0.002; for Methanobacterium strain M.o.H. at 40°C, 1.061 ± 0.002; and, for Methanobacterium thermoautotrophicum at 65°C, 1.025 ± 0.002. These observations suggest that the acetic acid used by acetate dissimilating bacteria, if they play an important role in natural methane production, must have an intramolecular isotopic fractionation (CO2HCH3) approximating the observed CO2CH4 fractionation.  相似文献   

8.
Calculations based on approximately 350 new measurements (CaT-PCO2) of the solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C indicate the following values for the log of the equilibrium constants KC, KA, and KV respectively, for the reaction CaCO3(s) = Ca2+ + CO2?3: Log KC = ?171.9065 ? 0.077993T + 2839.319T + 71.595 log TLog KA = ?171.9773 ? 0.077993T + 2903.293T +71.595 log TLog KV = ?172.1295 ? 0.077993T + 3074.688T + 71.595 log T where T is in oK. At 25°C the logarithms of the equilibrium constants are ?8.480 ± 0.020, ?8.336 ± 0.020 and ?7.913 ± 0.020 for calcite, aragonite and vaterite, respectively.The equilibrium constants are internally consistent with an aqueous model that includes the CaHCO+3 and CaCO03 ion pairs, revised analytical expressions for CO2-H2O equilibria, and extended Debye-Hückel individual ion activity coefficients. Using this aqueous model, the equilibrium constant of aragonite shows no PCO2-dependence if the CaHCO+3 association constant is Log KCahco+3 = 1209.120 + 0.31294T — 34765.05T ? 478.782 log T between 0 and 90°C, corresponding to the value logKCahco+3 = 1.11 ± 0.07 at 25°C. The CaCO03 association constant was measured potentiometrically to be log KCaCO03 = ?1228.732 ? 0.299444T + 35512.75T + 485.818 log T between 5 and 80°C, yielding logKCaCO03 = 3.22 ± 0.14 at 25°C.The CO2-H2O equilibria have been critically evaluated and new empirical expressions for the temperature dependence of KH, K1 and K2 are log KH = 108.3865 + 0.01985076T ? 6919.53T ? 40.45154 log T + 669365.T2, log K1 = ?356.3094 ? 0.06091964T + 21834.37T + 126.8339 log T — 1684915.T2 and logK2 = ?107.8871 ? 0.03252849T + 5151.79/T + 38.92561 logT ? 563713.9/T2 which may be used to at least 250°C. These expressions hold for 1 atm. total pressure between 0 and 100°C and follow the vapor pressure curve of water at higher temperatures.Extensive measurements of the pH of Ca-HCO3 solutions at 25°C and 0.956 atm PCO2 using different compositions of the reference electrode filling solution show that measured differences in pH are closely approximated by differences in liquid-junction potential as calculated by the Henderson equation. Liquid-junction corrected pH measurements agree with the calculated pH within 0.003-0.011 pH.Earlier arguments suggesting that the CaHCO+3 ion pair should not be included in the CaCO3-CO2-H2O aqueous model were based on less accurate calcite solubility data. The CaHCO+3 ion pair must be included in the aqueous model to account for the observed PCO2-dependence of aragonite solubility between 317 ppm CO2 and 100% CO2.Previous literature on the solubility of CaCO3 polymorphs have been critically evaluated using the aqueous model and the results are compared.  相似文献   

9.
CaCO3Ca(OH)2CaS serves as a model system for sulfide solubility in carbonatite magmas. Experiments at 1 kbar delineate fields for primary crystallization of CaCO3, Ca(OH)2 and CaS. The three fields meet at a ternary eutectic at 652°C with liquid composition (wt%): CaCO3 = 46.1%, Ca(OH)2 = 51.9%, CaS = 2.0%. Two crystallization sequences are possible for liquids that precipitate calcite, depending upon whether the liquid is on the low-CaS side, or the high-CaS side of the line connecting CaCO3 to the eutectic liquid. Low-CaS liquids precipitate no sulfide until the eutectic temperature is reached leading to sulfide enrichment. The higher-CaS liquids precipitate some sulfide above the eutectic temperature, but the sulfide content of the melt is not greatly depleted as the eutectic temperature is approached. Theoretical considerations indicate that sulfide solubility in carbonate melts will be directly proportional to ?S212 and inversely proportional to ?O212; it also is likely to be directly proportional to melt basicity, defined here by aCO32??CO2. A strong similarity exists in the processes which control sulfide solubility in carbonate and in silicate melts. By analogy with silicates, ferrous iron, which was absent in our experiments, may also exert an important influence on sulfide solubility in natural carbonatite magmas.  相似文献   

10.
The apparent constants (K'i) for the ionization of carbonic acid in seawater at various salinities (S,%.) have been fit to equations of the form ln K'i = ln Ki + AiS12 + BiSwhereKi is the thermodynamic ionization constant in water, Ai, and Bi are adjustable parameters. The temperature dependence (TK) of Ki, Ai and Bi were of the form, a0 + a1/T + a3 ln T. Equations of similar forms have been used to analyze the ionization constants for water and boric acid and the solubility product of calcite in seawater. The effect of pressure on the apparent constants (KpiKoi) have been fit to equations of the form ln (KpiKoi) = ? (ΔVP + 0.5 ΔK P2)/RT where the volume (ΔV) and compressibility (ΔK) changes are polynomial functions of temperature. The equations generated for various açids in seawater have been used to examine the carbonate system in seawater. Equations relating the NBS and Tris pH scales have been derived as well as equations of pH as a function of temperature and pressure. The equations from Hansson (1972, Ph.D. Thesis, University of Göteborg, Sweden) and Mehrbachet al. (1973, Limnol. Oceanogr.18, 897–907) have been used to examine the components of the carbonate system. At a fixed total alkalinity and total carbon dioxide, differences of ±0.01 m-equiv kg?1 in HCO?3 and CO2?3 were found; however, the [CO2] and Pco2 are nearly the same. The contribution of borate ion, B(OH)?4 determined from the equations of Hansson (1972, Ph.D. Thesis, University of Göteborg, Sweden) and Lyman (1957, Ph.D. Thesis, University of California, Los Angeles) differ by ±0.01 m-equiv kg?1 for waters with the same salinity and temperature.  相似文献   

11.
12.
The effect of presure on the solubility of minerals in water and seawater can be estimated from In
(KPspK0sp) + (?ΔVP + 0.5ΔKP2)RT
where the volume (ΔV) and compressibility (ΔK) changes at atmospheric pressure (P = 0) are given by
ΔV = V?(M+, X?) ? V?[MX(s)]ΔK = K?(M+, X?) ? K?[MX(s)]
Values of the partial molal volume (V?) and compressibilty (K?) in water and seawater have been tabulated for some ions from 0 to 50°C. The compressibility change is quite large (~10 × 10?3 cm3 bar?1 mol?1) for the solubility of most minerals. This large compressibility change accounts for the large differences observed between values of ΔV obtained from linear plots of In Ksp versus P and molal volume data (Macdonald and North, 1974; North, 1974). Calculated values of KPspKosp for the solubility of CaCO3, SrSO4 and CaF2 in water were found to be in good agreement with direct measurements (Macdonald and North, 1974). Similar calculations for the solubility of minerals in seawater are also in good agreement with direct measurements (Ingle, 1975) providing that the surface of the solid phase is not appreciably altered.  相似文献   

13.
Experimentally reversed quartz solubilities at 250°C and at 250, 500 and 1000 bars yield values of the logarithm of the molality of aqueous silica of ?2.126, ?2.087 and ?2.038, respectively. Extrapolation of quartz solubility to the saturation pressure of water at 250°C results in a log molality of aqueous silica of-2.168. These solubility determinations and analyses of fluid pressures in geothermal systems indicate that pressure is significant when calculating quartz equilibrium temperatures from silica concentrations in waters of deep thermal reservoirs.The results of this investigation, combined with other reported quartz solubility measurements, yielded a pressure-sensitive “silica geothermometer” for fluids that have undergone adiabatic steam loss of t°C = 874 ? 0.156P(log mSi(OH)4 · 2H2O)2 + 411 log mSi(OH4 · 2H2O + 51 (log mSi(OH)4 · 2H2O)2 where P is the fluid pressure in bars and mSi(OH)4 · 2H2O represents the molality of aqueous silica measured in surface samples. The geothermometer is applicable to solutions in equilibrium with quartz from 180°C to 340°C and fluid pressures from H2O saturation to 500 bars.  相似文献   

14.
The chemical composition of gas mixtures emerging in thermal areas can be used to evaluate the deep thermal temperatures. Chemical analyses of the gas compositions for 34 thermal systems were considered and an empirical relationship developed between the relative concentrations of H2S, H2, CH4 and CO2 and the reservoir temperature. The evaluated temperatures can be expressed by: t°C = 24775α + β + 36.05 ?273 where α = 2 logCH4CO2 ?log H2CO2?3 log H2SCO2 (concentrations in % by volume) and β = 7 logPco2  相似文献   

15.
Megacrysts and polymineralic fragments of extraordinary diversity from a Tertiary monchiquitic dyke of Ubekendt Ejland comprise three groups: (1) Cr-diopside-fassaitic diopside + olivine, Fo90.5?81.5 + CrAl spinels. (II) Fassaitic salite-ferrisalite + KTi-pargasite-ferropargasite + apatite + AlTi-magnetite, (III) Scapolite + hyalophane + potassium feldspar + nepheline + analcime. By comparison with mineralogy and phase relations in the host rock and experimental data from alkaline rocks the megacrysts are related to a sequence of crystallization from primitive monchiquitic to potassic phonolitic magmas rich in H2O and CO2 at 5–11 kb. Group I megacrysts formed at temperatures of 1300-1150°C and group II between ? 1150–?800°C and fo2 < 10?9 bar at the latter temperature. High Pco2 may have stabilized the scapolite in the more evolved liquid and K-feldspar and nepheline began to crystallize at ca. 800°C possibly together with the ferrisalite.  相似文献   

16.
Natural malachite is a well defined solid demonstrating reproducible solubility behavior over a wide range of pH. The following equilibrium constants associated with the malachite dissolution equilibrium at 25°C, 1 atm were determined:
Ksp = a2cu2+aCO32?K2wa2H+ = 3.5 ± 0.6 × 10?34
(infinite dilution)
K1sp = [Cu2+]2[CO2?3]K2wa2H+ = 10. ± 0.2 × 10?32
(0.72 ionic strength)
K′sp = m2Cu2+mCOsu2?3K2wa2H+ = 1.3 ± 0.1 × 10?28
(36.9‰ salinity seawater). The temperature dependence of a “mixed” equilibrium constant, Ksp+, of the form:
K2sp = [Cu2+]2mCO2?3K2wa2H+
has been measured at I = 0.72, yielding the relationship:
log K2sp = (? 9.8 ± 0.03) × 104(1T°K) + (1.52 ± 0.09)
within a 5–25°C temperature range. The effect of pressure on the solubility of malachite in water and seawater was estimated from partial molar volume and compressibility data. For 25 °C at infinite dilution K'sp (1000 bar)K'sp(0) = 240 and in seawater K′sp(1000)K'sp(0) = 44.Comparison of stoichiometric and apparent malachite equilibrium constants has been used to estimate the extent of copper(II) ion interaction at the ionic strength of seawater. In dilute carbonate medium (total alkalinity, TA = 2.4 meq/kg H2O, pH 8.3), 2.9% of total dissolved copper exists as the free copper(II) ion and in seawater (S = 36.9%., TA = 2.3 meq/kg H2O, pH = 8.1), [Cu2+]T(Cu) is 3.1%.Total dissolved copper levels of approximately 450–750 nMol/Kg are necessary to attain malachite saturation conditions in the open ocean. Observations of malachite particles suspended in seawater must be explained by precipitation or solid phase substitution reactions from localized environments rather than by direct precipitation from bulk seawater.  相似文献   

17.
A study was undertaken with the thermophilic green alga Cyanidium caldarium which grows optimally at low pH and high concentrations of CO2. Carbon-isotope fractionation was not found to be a simple linear function of temperature. Maximum enrichment of 12C in cellular material occurred under optimum growth conditions (at approximately pH 2 and at temperatures between 40–50°C in a CO2 atmosphere). A maximum measured fractionation of ?24‰ may account for low values (δ 13C < ?30‰ PDB) in Precambrian kerogen presumably derived from algal mats.  相似文献   

18.
The coprecipitation of Na and K was experimentally investigated in aragonite. The distribution functions were determined at pH 6.8 and 8.8 over aqueous Na and K concentrations of between 5 × 10?4and 2.0 M and temperatures of between 25 and 75°C.The mole fractions of Na and K in aragonite are related to the aqueous ratios of Na and Ca by a function of the form
log XNa2CO3,K2CO3 = C0 + C1loga2Na ? ,K?aCa2+
where C0 and C1 are constants at a given temperature. This equation was derived by a statistical model assuming a heterogeneous energy distribution for the sites of incorporation. The independence of the coprecipitation process from aqueous anion activities suggests that carbonate is the only anionic species in the solid solution.  相似文献   

19.
Diffusion of ions in sea water and in deep-sea sediments   总被引:3,自引:0,他引:3  
The tracer-diffusion coefficient of ions in water, Dj0, and in sea water, Dj1, differ by no more than zero to 8 per cent. When sea water diffuses into a dilute solution of water, in order to maintain the electro-neutrality, the average diffusion coefficients of major cations become greater but of major anions smaller than their respective Dj1 or Dj0 values. The tracer diffusion coefficients of ions in deep-sea sediments, Dj,sed., can be related to Dj1 by Dj,sed. = Dj1 · αθ2, where θ is the tortuosity of the bulk sediment and a a constant close to one.  相似文献   

20.
The partial molal volume of silicic acid (V?(Si(OH)4)) in 0.725 M NaCl at 1°C was calculated from the measured volume change (ΔV?n) due to the neutralization of anhydrous sodium metasilicate with HCl and the V?(HCl) and V?(NaCl) obtained from the literature. V?(Si(OH)4) = 59.0 cm3mol ? 1, determined under experimental conditions of pH = 2.2, compares favorably with V?(Si(OH)4) = 58.9 cm3 mol?1 calculated from the measured volume change due to the hydrolysis of the meta-silicate salt at pH = 11 and from the partial molal volume due to electrostriction (V?elect) of water by charged Si species present in the solution at the high pH. This agreement lends support to a semiempirical model for calculating V?elect in developed by Millero (1969). V?(NaOH) = ? 5.45 cm3 mol?1 in 0.725 M NaCl needed for this calculation was also determined in this work. The rate of polymerization of Si(OH)4 at 1°C was monitored to insure that the monomer Si(OH)4 was the main Si species present during the determination of V?(Si(OH)4) by neutralization of the alkali silicate. V?(Si(OH)4) determined in this study compares favorably with the value calculated from high pressure solubility measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号