首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Deep Seabed Mining: Past Failures and Future Prospects   总被引:8,自引:0,他引:8  
The first attempt to exploit deep-sea manganese nodules ended in failure as a result of the collapse of world metal prices, the onerous provisions imposed by the U.N. Convention on the Law of the Sea (UNCLOS), and the overoptimistic assumptions about the viability of nodule mining. Attention then focused on Co-rich manganese crusts from seamounts. Since the mid-1980s, a number of new players have committed themselves to long-term programs to establish the viability of mining deep-sea manganese nodules. These programs require heavy subsidy by the host governments. Au-rich submarine hydrothermal deposits located at convergent plate margins are now emerging as a more promising prospect for mining than deep-sea manganese deposits.  相似文献   

2.
3.
Environment and Deep-Sea Mining: A Perspective   总被引:1,自引:0,他引:1  
As the quest for deep-sea mineral resources is gaining momentum, environment and ocean mining have become important aspects of study. Because many of these deposits occur in international waters, the concern for environmental conservation in view of the effects of deep-sea mining is resulting in these effects being studied in different oceans, and efforts to develop regulations governing this exploitation are also underway at national and international levels. The impact assessment of deep-sea mining needs to encompass a variety of subjects, including environmental, socioeconomic, technological, and legal aspects. At the same time, effects of in situ environmental conditions on mining activities also need to be considered for effecient performance by the mining system. Differences in the degree of impact have been noticed during the mining simulation experiments by different investigating agencies. Therefore, interparameter comparisons, standardization of methods, and improvement in mining design are important considerations for proper utilization of resources, conservation of environment, and cost efficiency of the mining operations.  相似文献   

4.
The morphological features associated with Co-rich manganese deposits, the size variations of nodules, and the occurrence of different substrates have been analyzed, to evaluate the influence of various seabed slope angles on the distribution of these features. The coverage and size of the crusts depend on their surface morphology and seabed topography, resulting in cobble-type, lineated, or step-like outcrops. Small nodules (1 - 4 cm in diameter) dominate all seabed slopes, with a few locations having nodules ranging from 1 to 8 or 1 to 10 cm. Sediments invariably occur as substrates for nodules and as cover for crusts, their coverage being inversely proportional to that of the nodules and crust outcrops. Steeper seafloor areas have large crust outcrops exposed with no or few nodules and sediments associated with them. The intermediate slopes have a combination of nodules, sediments, and crusts in various proportions, depending on topography and gradient. Large-scale nodule occurrences, followed by sediment fields and crust outcrops on seabed slopes of greater than 3 degrees, 3 - 7 degreees, and less than 15 degrees, respectively, represent typical morphological distribution zones of the Co-rich manganese deposits on a seamount in the central Pacific Ocean. A transition zone between nodule-dominated fields and large crust outcrops occurs for slopes from 7 degrees to 15 degrees. This detailed study on distribution of Co-rich deposits gives a better understanding for purposes of their exploitation.  相似文献   

5.
The rare earth element (REE) distribution in nine deep-sea ferromanganese nodules and their associated siliceous sediments from the Central Indian Ocean Basin (CIOB) have been studied to elucidate the REE relationship among them. Total REE concentration varies from 398-928 ppm in the nodules and 137-235 ppm in the associated sediments, suggesting two- to four-fold enrichment in the nodules compared to associated sediments. REE of nodules and their associated sediments show a positive correlation, suggesting REE are supplied from a common source such as seawater. The positive correlation between REE of nodules and sediments from the CIOB is contrary to the competitive scavenging of REE between nodules and sediment in the equatorial Pacific Ocean. REEs in the nodules are carried by Fe, P, and Ti, whereas in the sediment they are carried by P and Mn phases. A similar REE fractionation pattern with middle REE enrichment over heavy and light REE in both the nodules and their associated sediment suggest fractionation is independent of REE abundance and their carrier phases.  相似文献   

6.
Vast reserves of marine minerals are known to occur within the Mexican Exclusive Economic Zone. These reserves include: (1) heavy mineral placers rich in titanium and iron along the coast of San Antonio del Mar, Baja California and the southern States of Oaxaca and Guerrero; (2) phosphorites, which represent the only source for superphosphate fertilizers along the Pacific coast off the Baja California peninsula and the Gulf of Tehuantepec; and (3) manganese oxide deposits in nodule and crusts located adjacent to the Clarion-Clipperton Zone and containing high concentrations of Cu + Ni + Co (up to 1.9%), which are essential for the steel and super-alloy industries. Few but important efforts toward surveying these deposits have been carried out by Mexican and international researchers. Relevant data generated by these investigations are reviewed here and put together in a single document. Adequate knowledge of Mexican mineral resources is essential for the development of management strategies when offshore mining starts during this century. Thus, the review discusses the economics inherent to ocean mining in Mexico, setting baselines for future exploration and development activities in the Mexican Exclusive Economic Zone.  相似文献   

7.
Although, offshore mining for mineral wealth is not required at present, it may be the only alternative in the future due to the continuous growing demand for certain metals that have no or limited land deposits. Risk involved in deep-sea mining is not less than that in space missions. Limited groups of mining engineers and environmental scientists are conducting studies that influence the development of mining systems and subsystems for collection, screening, lifting, and transportation of deep-sea minerals. Accepting this challenge more than 20 years ago, the National Institute of Oceanography, Goa, started surveys and exploration for polymetallic nodules in the Indian Ocean and was the first to receive "Pioneer Status" recognition from the United Nations. Experiments have also been conducted to study the potential impacts of deep-seabed mining.  相似文献   

8.
随着各国对深海多金属硫化物勘探与开发的步伐逐渐加快,为确保并指导承包者在区域内开采多金属硫化物作业安全且符合保护环境规定,首先论述开采深海多金属硫化物的工艺技术,以此为基础结合加拿大鹦鹉螺和美国海王星矿业公司试采多金属硫化物案例,分析其作业过程所涉及的硫矿泄漏、结构失效、机械伤害、火灾爆炸等安全问题和破坏海底动植物群及其栖息地、排放采矿废水尾矿等环境影响,最后就作业安全与环境影响问题分别给出了针对性的对策与建议,可为工程实践提供参考。  相似文献   

9.
10.
Grain size and water content in box-core sediments from the Clarion-Clipperton fracture zone (C-C zone) in the northeast equatorial Pacific were analyzed in detail to understand the downcore variations across a hiatus between Quaternary and Tertiary layers. Grain-size distributions in the topmost core sediments show two modes: a coarse mode (peaked at 50 μm) and a fine mode (at 2-25 μm). The coarse mode disappears gradually with depth accompanied by the dissolution of siliceous fossil tests, whereas the fine mode coarsens due to the formation of authigenic minerals. Water content increases abruptly across a color boundary between an upper pale brown layer and a lower dark brown layer that is the hiatus between Quaternary and Tertiary layers. Abundant smectites and microvoid molds, which are created by the prolonged fossil dissolution in the underlying sediment, are attributed for the abrupt downcore variation of water content. Overall variations in grain size and water content in the topmost core sediments in the western C-C zone are possibly constrained by the dissolution of biogenic siliceous fossils. Variations in geotechnical properties related to these changes must be considered in the design of nodule collectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号