首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We analysed in detail three earthquakes recorded in a small-aperture accelerometric array in Mexico City, using the correlation of the records as a function of time along the accelerogram and frequency. Ground response is strongly conditioned by the fundamental period of the soft soils at the site of the array (T0). Energy at periods longer than 2T0 is guided by the crustal structure (with a thickness of 45 km). The wave field at periods between T0 and 2T0 also consists of surface waves but guided by the upper 2–3 km of volcanic sediments in central Mexico. For periods smaller than T0, ground motion is uncorrelated among the stations. Our results indicate that seismic response of Mexico City, including its very long duration, results from deeply guided surface waves (between 2 and 45 km depth) interacting with the very local response of the soft surficial clay layer.  相似文献   

2.
Based on digital teleseismic P-wave seismograms recorded by 28 long-period seismograph stations of the global seismic network, source process of the November 14, 2001 western Kunlun Mountain M S=8.1 (M W=7.8) earthquake is estimated by a new inversion method. The result shows that the earthquake is a very complex rupture event. The source rupture initiated at the hypocenter (35.95°N, 90.54°E, focal depth 10 km, by USGS NEIC), and propagated to the west at first. Then, in several minutes to a hundred minutes and over a large spatial range, several rupture growth points emerged in succession at the eastern end and in the central part of the finite fault. And then the source rupture propagated from these rupture growth points successively and, finally, stopped in the area within 50 km to the east of the centroid position (35.80°N, 92.91°E, focal depth 15 km, by Harvard CMT). The entire rupture lasted for 142 s, and the source process could be roughly separated into three stages: The first stage started at the 0 s and ended at the 52 s, lasting for 52 s and releasing approximately 24.4% of the total moment; The second stage started at the 55 s and ended at the 113 s, lasting for 58 s and releasing approximately 56.5% of the total moment; The third stage started at the 122 s and ended at the 142 s, lasting for 20 s and releasing approximately 19.1% of the total moment. The length of the ruptured fault plane is about 490 km. The maximum width of the ruptured fault plane is about 45 km. The rupture mainly occurred within 30 km in depth under the surface of the Earth. The average static slip in the underground rocky crust is about 1.2 m with the maximum static slip 3.6 m. The average static stress drop is about 5 MPa with the maximum static stress drop 18 MPa. The maximum static slip and the maximum stress drop occurred in an area within 50 km to the east of the centroid position. Foundation item: Joint Seismological Science Foundation of China (103066) and Foundation of the Seismic Pattern and Digital Seismic Data Application Research Office of Institute of Earthquake Science of the China Earthquake Administration.  相似文献   

3.
A new modified magnitude scale M S (20R) is elaborated. It permits us to extend the teleseismic magnitude scale M S (20) to the regional epicenter distances. The data set used in this study contains digital records at 12 seismic stations of 392 earthquakes that occured in the northwest Pacific Ocean in the period of 1993–2008. The new scale is based on amplitudes of surface waves of a narrow range of the periods (16–25 s) close to the period of 20 s, for distances of 80–3000 km. The digital Butterworth filter is used for processing. On the basis of the found regional features concerning distance dependence for seismic wave attenuation, all the stations of the region have been subdivided into two groups, namely, “continental” and “island-arc.” For each group of stations, its own calibration function is proposed. Individual station corrections are used to compensate for the local features.  相似文献   

4.
Body-wave Attenuation in the Region of Garda, Italy   总被引:1,自引:0,他引:1  
We analyzed the spectral amplitude decay with hypocentral distance of P and S waves generated by 76 small magnitude earthquakes (ML 0.9–3.8) located in the Garda region, Central-Eastern Alps, Italy. These events were recorded by 18 stations with velocity sensors, in a distance range between 8 and 120 km. We calculated nonparametric attenuation functions (NAF) and estimated the quality factor Q of both body waves at 17 different frequencies between 2 and 25 Hz. Assuming a homogeneous model we found that the Q frequency dependence of P and S can be approximated with the functions Q P = 65 f 0.9 and Q S = 160 f 0.6 , respectively. At 2 Hz the Q S /Q P ratio reaches the highest value of 2.8. At higher frequencies Q S /Q P varies between 0.7 and 1.7, suggesting that for this frequency band scattering may be an important attenuation mechanism in the region of Garda. To explore the variation of Q in depth, we estimated Q at short (r ≤ 30 km) and intermediate (35–90 km) distance paths. We found that in the shallow crust P waves attenuate more than S (1.3 < Q S /Q P < 2.5). Moreover, P waves traveling along paths in the lower crust (depths approximately greater than 30 km) attenuate more than S waves. To quantify the observed variability of Q in depth we considered a three-layer model and inverted the NAF to estimate Q in each layer. We found that in the crust Q increases with depth. However, in the upper mantle (~40–50 km depth) Q decreases and in particular the high frequency Q S (f > 9 Hz) has values similar to those estimated for the shallow layer of the crust.  相似文献   

5.
Based on the latest displacement of Huoshan piedmont fault, Mianshan west-side fault and Taigu fault obtained from the beginning of 1990‘s up to the present, the characteristics of distribution and displacement of surface rupture zone of the 1303 Hongtong M = 8 earthquake, Shanxi Province are synthesized and discussed in the paper. If Taigu fault, Mianshan west-side fault and Huoshan piedmont fault were contemporarily active during the 1303 Hongtong M = 8 earthquake, the surface rupture zone would be 160 km long and could be divided into 3 segments, that is, the 50-km-long Huoshan piedmont fault segment, 35-km-long Mianshan west-side fault segment and 70-km-long Taigu fault segment, respectively. Among them, there exist 4 km and 8 km step regions. The surface rupture zone exhibits right-lateral features. The displacements of northern and central segments are respectively 6~7 m and the southern segment has the maximum displacement of 10 m. The single basin-boundary fault of Shanxi fault-depression system usually corresponds to M ≈ 7 earthquake, while this great earthquake (M = 8) broke through the obstacle between two basins. It shows that the surface rupture scale of great earthquake is changeable.  相似文献   

6.
In 2007/08, a study was undertaken on the sediment dynamics in shallow Lake Markermeer (the Netherlands). Firstly, sediment characteristics were determined at 49 sites in the lake. Parameters such as median grain size and loss on ignition showed a spatial as well as water depth related pattern, indicating wind-induced sediment transport. Highly significant correlations were found between all sediment parameters. Lake Markermeer sediment dynamics were investigated in a sediment trap field survey at two permanent stations in the lake. Sediment yields, virtually all coming from sediment resuspension, were significantly correlated with average wind speeds, though periods of extreme winds also played a role. Sediment resuspension rates for Lake Markermeer were high, viz. on average ca. 1,000 g m−2 day−1. The highly dynamic nature of Lake Markermeer sediments must be due to the overall shallowness of the lake, together with its large surface area (dynamic ratio = [√(area)]/[average depth] = 7.5); wind-induced waves and currents will impact most of the lake’s sediment bed. Indeed, near-bed currents can easily reach values >10 cm/s. Measurements of the thickness of the settled “mud” layer, as well as 137Cs dating, showed that long-term deposition only takes place in the deeper SE area of the lake. Finally, lake sediment dynamics were investigated in preliminary laboratory experiments in a small “micro-flume”, applying increasing water currents onto five Lake Markermeer sediments. Sediment resuspension started off at 0.5–0.7 cm/s and showed a strongly exponential behaviour with respect to these currents.  相似文献   

7.
Specimens of Nassarius nitidus were collected in seven stations of the Venice Lagoon to assess the levels of tributyltin (TBT) and its metabolites monobutyltin and dibutyltin in the tissues and monitor their effect on organisms, in particular the phenomenon of imposex (superimposition of male sexual characteristics on females). The following values of population indices were found: vas deferens sequence: 1.2 ± 0.7–4.0 ± 0.5; relative penis length: 6–47%. The least impacted station was situated in the northern part of the Lagoon, where females without imposex were found and Butyltin (BuTs) concentrations in the organisms (average sum of BuTs = 43 ± 14 ng Sn g−1 w.) were significantly lower than in the other stations (range of average sum of BuTs: 101 ± 22–217 ± 27 ng Sn g−1 d.w.). Population indices were found to be related to the TBT content in the tissues. In particular VDSI had a significant logarithmic correlation: r = 0.95, n = 8, p < 0.05.  相似文献   

8.
On 22 September 2002, the largest UK earthquake (mb4.3) of the last 10 years occurred near the town of Dudley in the West Midlands. Here we determine the earthquake focal mechanism and depth using data from stations at regional and teleseismic distances. Short-period teleseismic seismograms are interpreted in terms of P and surface reflections pP and sP. This analysis suggests that the source depth is deeper than the 9.7 km initially determined by the British Geological Survey (BGS). The relative amplitude method is applied to four teleseismic seismograms to support our interpretation of the surface reflections, and constrain the focal mechanism. Our preferred focal mechanism, a near vertical strike-slip with s = 94°, = 88° and = –179°, is in reasonable agreement with a moment tensor determined by the Swiss Seismological Service. Synthetic regional surface wave seismograms match the observed seismograms for a model focal depth of 19.5 (±3.0) km and scalar moment, M0, of 3.2 × 1015 N m. Our results emphasize that due to the well-known trade-off between depth and M0 from inversions of long period (0.02–0.1 Hz) surface waves, it is preferable to combine long- and short-period data to constrain reliably the depth and hence estimate M0. Our focal mechanism and depth are further validated by generating short-period synthetic seismograms that match the observations.  相似文献   

9.
孙冬军  刘芳  毕波 《中国地震》2022,38(1):112-119
本文选取2013年芦山地震和2017年九寨沟地震波形,重新量取垂直向振幅,计算宽频带面波震级MS(BB),分析各台站实测震级出现方向性差异的原因。其中,通过572个宽频带台站实测芦山地震震级MS(BB)7.1,通过603个宽频带台站实测九寨沟地震震级MS(BB)6.9。芦山地震实测震级大于MS(BB)7.3的台站呈现WN-ES向分布,与断层倾向一致;实测震级小于MS(BB)7.0的台站呈现NE-WS向分布,与其所在断层走向一致。九寨沟地震实测震级大于MS(BB)7.0的台站分布呈现NE向分布,与断层倾向一致;实测震级小于MS(BB)6.8的台站总体分布较为离散,大体呈现NW-SE向分布,与树正断裂走向一致。实测震级偏大的台站方向性分布与多普勒效应和P波辐射花样联系不明显。对比分析芦山地震和九寨沟地震,去除场地响应和仪器自身影响,台站实测震级差异性仍然存在,因此,台站实测震级差异性是由于受到了多普勒效应、辐射花样、仪器和场地响应之外的因素影响。综合考虑地震震级涉及的影响因素,芦山地震和九寨沟地震的台站实测震级差异性可能与地震波的传播路径有关。  相似文献   

10.
A great earthquake of M S=8.1 took place in the west of Kunlun Pass on November 14, 2001. The epicenter is located at 36.2°N and 90.9°E. The analysis shows that some main precursory seismic patterns appear before the great earthquake, e.g., seismic gap, seismic band, increased activity, seismicity quiet and swarm activity. The evolution of the seismic patterns before the earthquake of M S=8.1 exhibits a course very similar to that found for earthquake cases with M S≥7. The difference is that anomalous seismicity before the earthquake of M S=8.1 involves in the larger area coverage and higher seismic magnitude. This provides an evidence for recognizing precursor and forecasting of very large earthquake. Finally, we review the rough prediction of the great earthquake and discuss some problems related to the prediction of great earthquakes.  相似文献   

11.
Rupture process of the 19 August 1992 Susamyr, Kyrgyzstan, earthquake   总被引:2,自引:2,他引:0  
The Susamyr earthquake of August 19, 1992 in Kyrgyzstan is one of the largest events (Ms = 7.4, Mb = 6.8) of this century in this region of Central Asia. We used broadband and long period digital data from IRIS and GEOSCOPE networks to investigate the source parameters, and their space-time distribution by modeling both body and surface waves. The seismic moment (M0 = 6.8 × 1019 N m) and the focal mechanism were determined from frequency-time analysis (FTAN) of the fundamental mode of long period surface waves (100–250 s). Then, the second order integral moments of the moment-rate release were estimated from the amplitude spectra of intermediate period surface waves(40–70 s). From these moments we determined a source duration of 11–13 s, major and minor axes of the source of 30 km and 10–22 km, respectively; and an instant centroid velocity of 1.2 km/s. Finally, we performed a waveform inversion of P and SH waves at periods from 5–60 s. We found a source duration of 18–20 s, longer than the integral estimate from surface wave amplitudes. All the other focal parameters inverted from body waves are similar to those obtained by surface waves ( = 87° ± 6°, = 49° ± 6°, = 105° ± 3°, h = 14 ± 2 km, and M0 = 5.8 ± 0.7 × 1019 N m). The initial rupture of this shallow earthquake was located at the south-west border of Susamyr depression in the western part of northern Tien Shan. A finite source analysis along the strike suggests a westward propagation of the rupture. The main shock of this event was preceded 2 s earlier by small foreshock. The main event was almost immediately followed by a very strong series of aftershocks. Our surface and body wave inversion results agree with the general seismotectonic features of the region.  相似文献   

12.
The compression wavefield is efficiently converted to shear-wave energy at post-critical angles in areas of high impedance contrast at the sea floor. We have analysed mode-converted shear waves in a data set acquired with a hybrid marine/land geometry in Isfjorden, Svalbard. Through a kinematic 2D ray-tracing modellingV p/Vs ratios for part of the uppermost 5km of the crust are obtained. Low values (V p /V s =1.65) are tentatively associated with the section of Devonian sandstones which appears to attain a minimum thickness of 1.5km below 3 km depth about 10km west of Kapp Thorden.  相似文献   

13.
Using 116 earthquakes over M_L3.8 in the Inner Mongolia region from 2008 to 2015, the local earthquake magnitude M_L and surface wave magnitude M_S are remeasured. Based on norm linear regression(SR1 and SR2) and norm(OR) orthogonal regression method, we established the conversion relationship between M_L and M_S. The results were tested with Gaussian disturbance. The result shows that the orthogonal regression method(OR) result has the best fitting curve, and the conversion relation is M_S=0.96 M_L-0.10. The difference between our result and Guo Lücan's(M_S=1.13 M_L-1.08) may be caused by regional tectonic characteristics. M_(S Inner Mongolia) value is significantly higher than the M_(S empirical) value, with an average difference of 0.23, the difference distribution of empirical relation and the rectified relation is in the range of 0.2-0.3.  相似文献   

14.
21 earthquakes recorded by a temporary seismic network in the Changbaishan Tianchi volcanic area in Northeast China operated during the summer of 2002 and 2003 were analyzed to estimate the S coda attenuation. The attenuation quality factor Qc was estimated using the single scattering attenuation model of Sato (1977) in the frequency band from 4 to 24 Hz. All the events studied in this paper occurred at depths from 2 to 6 km with ML of 1.4–2.8. The epicentral distances are less than 25 km. For all events which occurred near the Tianchi Lake (caldera), the Qc patterns obtained at the stations near the lake are similar, and the Qc values are relatively small. At the stations located about 15 km east of the Tianchi Lake, however, the average Qc is significantly higher. For an event which occurred 25km from the lake to the west, Qc patterns derived at the stations near the lake are quite similar to the above mentioned Qc for stations located in the east. Further study shows that Qc value in the north and central areas of the volcano is relatively lower than that in the surrounding area. Compared to other volcanic areas in the world, the average Qc of the Changbaishan Tianchi volcanic area is obviously lower. The deep seismic sounding and teleseismic receiver function studies indicated more than one lower velocity layer in the crust. The MT studies suggested the presence of high conductive bodies beneath the area. We interpret the strong attenuation of coda waves near the Changbaishan Tianchi volcano as being possibly related to high temperature medium caused by shallow magma chambers.  相似文献   

15.
This paper describes the PREI (Posidonia oceanica Rapid Easy Index), a method used to assess the ecological status of seawater along Mediterranean French coasts. The PREI was drawn up according to the requirements of the Water Framework Directive (WFD 2000/60/EC) and was tested on 24 and 18 stations in PACA (Provence-Alpes-Côtes d’Azur) and Corsica, respectively. The PREI is based on five metrics: shoot density, shoot leaf surface area, E/L ratio (epiphytic biomass/leaf biomass), depth of lower limit, and type of this lower limit. The 42 studied stations were classified in the first four levels of status: high, good, moderate and poor. The PREI values ranged between 0.280 and 0.847; this classification is in accordance with our field knowledge and with our knowledge of the literature. The PREI was validated regarding human pressure levels (r2 = 0.74). (http://eurex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2000:327:0001:0072:EN:PDF).  相似文献   

16.
柴达木盆地东部地震地面运动放大效应   总被引:1,自引:1,他引:0       下载免费PDF全文
柴达木盆地是青藏高原东北部大型断陷山间盆地,该地区的流动观测记录了2008年11月10日发生于大柴旦附近的M_W6.3地震。和附近的基岩上的记录相比,盆地内部的记录显示出非常显著的地面运动放大效应,表现为峰值速度的增大、持续时间的延长,其呈现出长持续时间的后续震相。傅里叶频谱分析表明盆地内部显著的后续震相的频率和直达波相比较低,地面质点运动轨迹图显示后续震相为面波运动特征。为了解释地面运动的差异,构建二维模型,通过交错网格高阶有限差分方法计算了地震波在盆地内部的传播过程,结果显示盆地内部低速层的存在造成直达波的放大以及多次反射与转换,盆地边缘结构造成的波的相干叠加产生了强烈的次生面波,其低频、大振幅、长持续时间的特征是盆地内部地面运动放大的主要原因。  相似文献   

17.
On the basis of the airgun source signals recorded by the stations from January, 2016 to June, 2017, we use cross-correlation detection technology to obtain the characteristics of the stable phase travel time change of each station. We used the Yunlong MS5.0 and Yangbi MS5.1 earthquakes as samples. According to regional characteristics, 13 stations with high signal-to-noise ratios and complete data were selected (including 3 fixed stations and 10 active source stations). They are divided into four regions, and on the basis of the GNSS baseline data, the characteristics of regional wave velocity changes before and after the earthquake are analyzed. The results show that the station phase travel time change and the regional stress characteristics represented by the GNSS baseline data have good correlation in the short-term. Due to different degrees of regional stress, there are differences in the travel time changes of different stations in the four regions. Before the Yunlong MS5.0 and Yangbi MS5.1 earthquakes, with regional stress adjustment, there is an upward trend in the travel time changes of related stations in the adjacent areas of up to 0.02s. The difference is that there are differences in the time nodes and duration of the travel time anomalies, and there is a reverse descent process after the Yangbi MS5.1 earthquake. There are different degrees of travel time fluctuations in the relevant stations before and after the two earthquakes, but the fluctuation range before and after the earthquake was small. Compared with the water level change of the reservoir, the adjustment of the regional stress is more likely to have a substantial impact on the travel time changes of the relevant stations.  相似文献   

18.
In this research four earthquakes, which are considered to compose two earthquake doublets, recorded prior to and after a magnitudeM s =5.0 and a magnitudeM s =4.8 event in W. Greece are used to derive temporal variations ofP-wave attenuation in the region.Spectral ratios at four stations are computed and the results indicated a variation (increase) ofQ of the order of 15–20%. To confirm that this variation is not an artifact due to changes of the source parameters, a smaller event which occurred at the same hypocentre was used as a Green function and the deconvolution proved that the earthquakes of one of the doublet possessed the same source parameters.The outcome of this research verifies the possible role of the migration of fluids in the crust in the focal region and their effect on the attenuation of seismic waves.  相似文献   

19.
    
Based on the long period surface wave data recorded by the China Digital Seismograph Network (CDSN), theQ R of fundamental mode Rayleigh wave with periods from 10 s to 146 s is determined for the eastern Sino-Korean paraplatform in this paper. TheQ β models of the crust and upper mantle are respectively obtained for the 4 paths, with the aid of stochastic inverse method. It shows that in the eastern Sino-Korean paraplatform, the average crustalQ β is about 200, and that there exists a weak attenuation layer in the middle crust (about 10–20 km deep) which is possibly related to earthquake-prone layer. A strong attenuation layer (lowQ) of 70 km thick extensively exists in the uppermost mantle, with the buried depth about 80 km. The averageQ R of fundamental mode Rayleigh wave is between the value of stable tectonic region and that of active tectonic region, and much close to the latter. Contribution No. 96A0001, Institute of Geophysics, SSB, China. Funded by the Chinese Joint Seismological Science Foundation.  相似文献   

20.
Chin Array is a dense portable broadband seismic network to cover the entire continental China, and the Phase I is deployed along the north-south seismic belt in southwest China. In this study, we analyze seismic data recorded on the Chin Array following the February 15,2013 Chelyabinsk(Russia) meteor. This was the largest known object entering the Earth's atmosphere since the1908 Tunguska meteor. The seismic energy radiated from this event was recorded by seismic stations worldwide including the dense Chin Array that are more than 4000 km away. The weak signal from the meteor event was contaminated by a magnitude 5.8 Tonga earthquake occurred *20 min earlier. To test the feasibility of detecting the weak seismic signals from the meteor event, we compute vespagram and perform F-K analysis to the surface-wave data. We identify a seismic phase with back azimuth(BAZ) of 329.7° and slowness of 34.73 s/deg, corresponding to the surface wave from the Russian meteor event(BAZ *325.97°). The surface magnitude(MS) of the meteor event is 3.94 ± 0.18. We also perform similar analysis on the data from the broadband array F-net in Japan, and find the BAZ of the surface waves to be316.61°. With the different BAZs of Chin Array and F-net,we locate the Russian meteor event at 58.80°N, 58.72°E.The relatively large mislocation(*438 km as compared with 55.15°N, 61.41°E by others) may be a result of thebending propagation path of surface waves, which deviates from the great circle path. Our results suggest that the dense Chin Array and its subarrays could be used to detect weak signals at teleseismic distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号