首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Stream and rainfall gauging and runoff sampling were used to determine changes in hydrology and export of nutrients and suspended sediment from a June 2004 wildfire that burned 3010 ha in chaparral coastal watersheds of the Santa Ynez Mountains, California. Precipitation during water year 2005 exceeded average precipitation by 200–260%. Burned watersheds had order of magnitude higher peak discharge compared with unburned watersheds but similar annual runoff. Suspended sediment export of 181 mt ha?1 from a burned watershed was approximately ten times greater than from unburned watersheds. Ammonium export from burned watersheds largely occurred during the first three storms and was 32 times greater than from unburned watersheds. Nitrate, dissolved organic nitrogen, and phosphate export from burned watersheds increased by 5.5, 2.8, and 2.2 times, respectively, compared with unburned chaparral watersheds. Storm runoff and peak discharge increase in burned compared with unburned sites were greatest during early season storms when enhanced runoff occurred. As the winter progressed, closely spaced storms and above average precipitation reduced the fire‐related impacts that resulted in significant increases in annual post‐fire runoff and export in other studies in southern California chaparral. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Bracketing the uncertainty of streamflow and agricultural runoff under climate change is critical for proper future water resource management in agricultural watersheds. This study used the Soil and Water Assessment Tool (SWAT) in conjunction with a Latin hypercube climate change sampling algorithm to construct a 95% confidence interval (95CI) around streamflow, sediment load, and nitrate load predictions under changes in climate for the Sacramento and San Joaquin River watersheds in California's Central Valley. The Latin hypercube algorithm sampled 2000 combinations of precipitation and temperature changes based on Intergovernmental Panel on Climate Change projections from multiple General Circulation Models. Average monthly percent changes of the upper and lower 95CI limits compared to the present‐day simulation and a statistic termed the “r‐factor” (average width of the 95CI band divided by the standard deviation of the 95CI bandwidth) were used to assess watershed sensitivities. 95CI results indicate that streamflow and sediment runoff in the Sacramento River watershed are more likely to decrease under climate change compared to present‐day conditions, whereas the increase and decrease for nitrate runoff were found to be equal. For the San Joaquin River watershed, streamflow slightly decreased under climate change, whereas sediment and nitrate runoff increased compared to present‐day climate. Comparisons of watershed sensitivities indicate that the San Joaquin River watershed is more sensitive to climate changes than the Sacramento River watershed, which is largely caused by the high density of agricultural land. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
《水文研究》2017,31(1):35-50
A methodology based on long‐term dynamical downscaling to analyse climate change effects on watershed‐scale precipitation during a historical period is proposed in this study. The reliability and applicability of the methodology were investigated based on the long‐term dynamical downscaling results. For an application of the proposed methodology, two study watersheds in Northern California were selected: the Upper Feather River watershed and the Yuba River watershed. Then, precipitation was reconstructed at 3‐km spatial resolution and hourly intervals over the study watersheds for 141 water years from 1 October 1871 to 30 September 2012 by dynamically downscaling a long‐term atmospheric reanalysis dataset, 20th century global reanalysis version 2 by means of a regional climate model. The reconstructed precipitation was compared against observed precipitation, in order to assess the applicability of the proposed methodology for the reconstruction of watershed‐scale precipitation and to validate this methodology. The validation shows that the reconstructed precipitation is in good agreement with observation data. Moreover, the differences between the reconstructed precipitation and the corresponding observations do not significantly change through the historical period. After the validation, climate change analysis was conducted based on the reconstructed precipitation. Through this analysis, it was found that basin‐average precipitation has increased significantly over both of the study watersheds during the historical period. An upward trend in monthly basin‐average precipitation is not significant in wet months except February while it is significant in dry months of the year. Furthermore, peak values of basin‐average precipitation are also on an upward trend over the study watersheds. The upward trend in peak basin‐average precipitation is more significant during a shorter duration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Developing models to predict on‐site soil erosion and off‐site sediment transport at the agricultural watershed scale represent an on‐going challenge in research today. This study attempts to simulate the daily discharge and sediment loss using a distributed model that combines surface and sub‐surface runoffs in a small hilly watershed (< 1 km2). The semi‐quantitative model, Predict and Localize Erosion and Runoff (PLER), integrates the Manning–Strickler equation to simulate runoff and the Griffith University Erosion System Template equation to simulate soil detachment, sediment storage and soil loss based on a map resolution of 30 m × 30 m and over a daily time interval. By using a basic input data set and only two calibration coefficients based, respectively, on water velocity and soil detachment, the PLER model is easily applicable to different agricultural scenarios. The results indicate appropriate model performance and a high correlation between measured and predicted data with both Nash–Sutcliffe efficiency (Ef) and correlation coefficient (r2) having values > 0.9. With the simple input data needs, PLER model is a useful tool for daily runoff and soil erosion modeling in small hilly watersheds in humid tropical areas. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Changes in precipitation and temperature have direct effects on crop water use, water stress, crop yield, evapotranspiration, water nutrient dynamics and other indicators. This study, built on a modelling framework with the Soil and Watershed Assessment Tool (SWAT) model for the Raccoon River Watershed in central Iowa, a typical US Midwestern agricultural watershed, examines the watershed response to changes in meteorological inputs from an ensemble of ten global climate models under the A1B scenario. Changes in climate were directly applied to observations (the delta change method) assuming that the estimates of climate change are reliable even if the simulated current climate may be biased. The ensemble average for the mid‐century (1946–1965) predicted 0.7% increase in daily precipitation (monthly variation from ?11.3% to +19.5%) and 2.78 °C increase in average temperature over the entire watershed. These predictions were translated through a well‐calibrated SWAT modelling setup into 22% decrease in snowfall, 16% decrease in surface runoff, 18% decrease in baseflow, 8% increase in evapotranspiration and 17% decrease in total water yield. The spatial impact at the subwatershed level revealed a wide variation (but no defined trend) with decrease in water yield that ranged from 10% to 23%. Flow near the watershed outlet (Van Meter, Iowa) is expected to decline by 17% on an average annual basis with the highest impact occurring during summer months with a maximum 39% reduction in August. Changes in climate were found to have a clear and significant impact signal of decreasing streamflow at the watershed outlet with far‐reaching implication for drinking water supplies for the central Iowa communities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Physiography and land cover determine the hydrologic response of watersheds to climatic events. However, vast differences in climate regimes and variation of landscape attributes among watersheds (including size) have prevented the establishment of general relationships between land cover and runoff patterns across broad scales. This paper addresses these difficulties by using power spectral analysis to characterize area‐normalized runoff patterns and then compare these patterns with landscape features among watersheds within the same physiographic region. We assembled long‐term precipitation and runoff data for 87 watersheds (first to seventh order) within the eastern Piedmont (USA) that contained a wide variety of land cover types, collected environmental data for each watershed, and compared the datasets using a variety of statistical measures. The effect of land cover on runoff patterns was confirmed. Urban‐dominated watersheds were flashier and had less hydrologic memory compared with forest‐dominated watersheds, whereas watersheds with high wetland coverage had greater hydrologic memory. We also detected a 10–15% urban threshold above which urban coverage became the dominant control on runoff patterns. When spectral properties of runoff were compared across stream orders, a threshold after the third order was detected at which watershed processes became dominant over precipitation regime in determining runoff patterns. Finally, we present a matrix that characterizes the hydrologic signatures of rivers based on precipitation versus landscape effects and low‐frequency versus high‐frequency events. The concepts and methods presented can be generally applied to all river systems to characterize multiscale patterns of watershed runoff. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Climate models project warmer temperatures for the north‐west USA, which will result in reduced snowpacks and decreased summer streamflow. This paper examines how groundwater, snowmelt, and regional climate patterns control discharge at multiple time scales, using historical records from two watersheds with contrasting geological properties and drainage efficiencies. In the groundwater‐dominated watershed, aquifer storage and the associated slow summer recession are responsible for sustaining discharge even when the seasonal or annual water balance is negative, while in the runoff‐dominated watershed subsurface storage is exhausted every summer. There is a significant 1 year cross‐correlation between precipitation and discharge in the groundwater‐dominated watershed (r = 0·52), but climatic factors override geology in controlling the inter‐annual variability of streamflow. Warmer winters and earlier snowmelt over the past 60 years have shifted the hydrograph, resulting in summer recessions lasting 17 days longer, August discharges declining 15%, and autumn minimum discharges declining 11%. The slow recession of groundwater‐dominated streams makes them more sensitive than runoff‐dominated streams to changes in snowmelt amount and timing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
This paper analyses measured data from two small tropical watersheds: one in a semiarid (Aiuaba, Brazil, 12·0 km2, 5 years of measurements) and another in a humid environment (Jaruco, Cuba, 43·5 km2, 21 years of measurements). The watersheds are similar with respect to catchment area (tens of km2), potential evaporation (2·1–2·6 m year?1), temperature (22–30 °C) and relief (mild hillslope steepness); but show considerable hydrological discrepancies: average precipitation in the humid watershed is two times higher; average river discharge (mm year?1) is five times higher; and surface water availability (mm year?1) is 14 times higher than in the semiarid watershed. Long‐term operation of hypothetical surface reservoirs in both basins is simulated. The analysis shows that 73% of the average river discharge are available (with 90% annual reliability) in the humid watershed, against only 28% in the semiarid. The main cause of this difference is the excess evaporation, which consumes 55% of the stored water in the semiarid reservoir, but only 12% in the humid one. The research concludes that: (1) although precipitation indicators are higher in the humid area, they are of the same order of magnitude as in the semiarid; and (2) fluvial‐regime and water‐availability variables are more than one order of magnitude higher in the humid basin, which shows a multiplication effect of these hydrological processes. Such major hydrological differences, despite the similarities between the two tropical watersheds, show the importance of further investigations in the field of comparative hydrology. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Mountain and lowland watersheds are two distinct geographical units with considerably different hydrological processes. Understanding their hydrological processes in the context of future climate change and land use scenarios is important for water resource management. This study investigated hydrological processes and their driving factors and eco-hydrological impacts for these two geographical units in the Xitiaoxi watershed, East China, and quantified their differences through hydrological modelling. Hydrological processes in 24 mountain watersheds and 143 lowland watersheds were simulated based on a raster-based Xin'anjiang model and a Nitrogen Dynamic Polder (NDP) model, respectively. These two models were calibrated and validated with an acceptable performance (Nash-Sutcliffe efficiency coefficients of 0.81 and 0.50, respectively) for simulating discharge for mountain watersheds and water level for lowland watersheds. Then, an Indicators of Hydrological Alteration (IHA) model was used to help quantify the alterations to the hydrological process and their resulting eco-hydrological impacts. Based on the validated models, scenario analysis was conducted to evaluate the impacts of climate and land use changes on the hydrological processes. The simulation results revealed that (a) climate change would cause a larger increase in annual runoff than that under land use scenario in the mountain watersheds, with variations of 19.9 and 10.5% for the 2050s, respectively. (b) Land use change was more responsible for the streamflow increment than climate change in the lowland watersheds, causing an annual runoff to increase by 27.4 and 16.2% for the 2050s, respectively. (c) Land use can enhance the response of streamflow to the climatic variation. (d) The above-mentioned hydrological variations were notable in flood and dry season in the mountain watersheds, and they were significant in rice season in the lowland watersheds. (e) Their resulting degradation of ecological diversity was more susceptible to future climate change in the two watersheds. This study demonstrated that mountain and lowland watersheds showed distinct differences in hydrological processes and their responses to climate and land use changes.  相似文献   

10.
The Tagus River basin is an ultimately important water source for hydropower production, urban and agricultural water supply in Spain and Portugal. Growing electricity and water supply demands, over‐regulation of the river and construction of new dams, as well as large inter‐basin and intra‐basin water transfers aggravated by strong natural variability of climate in the catchment, have already imposed significant pressures on the river. The substantial reduction of discharge is observed already now, and projected climatic change is expected to alter the water budget of the catchment further.In this study, we address the effects of projected climate change on the water resources availability in the Tagus River basin and influence of potential changes on hydropower generation of the three important reservoirs in the basin. The catchment‐scale, process‐based eco‐hydrological model soil and water integrated model was set up, calibrated and validated for the entire Tagus River basin, taking into account 15 large reservoirs in the catchment. The future climate projections were selected from those generated within the Inter‐Sectoral Impact Model Intercomparison Project. They include five bias‐corrected climatic datasets for the region, obtained from global circulation model runs under two emissions scenario – moderate and extreme ones – and covered the whole century. The results show a strong agreement among model runs in projecting substantial decrease of discharge of the Tagus River discharge and, consequently, a strong decrease in hydropower production under both future climate scenarios. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Erosion and sediment yield from large and small watersheds exhibit different laws. Variations in surface runoff and sediment yield because of landuse change in four watersheds of different scales from 1 km2 to 73 km2 were analyzed. Due to reforestation and farmland terracing, surface runoff and sediment yield reduced by 20-100% and 10-100% respectively. Reductions in surface runoff were differed significantly under different precipitation regimes. For the large watershed (73 km2) landuse change had similar effects on surface runoff regardless of changing of precipitation. For the small watershed (1 km2) landuse change had fewer effects on surface runoff under high precipitation. The relative changes of sediment yield in the four watersheds under reforestation and farmland terracing decreased as precipitation increased from 350 mm to 650 mm, then increased as precipitation increased from 650 mm to 870 mm. Where initial forest coverage rate was below 45%, sediment yield decreased dramatically as forest coverage rate increased. Watershed management with aiming at reducing both surface runoff and sediment yield should be conducted both on sloping surfaces and in channels in large watersheds.  相似文献   

12.
The paper describes a hydrological model for agricultural water intervention in a community watershed at Kothapally in India, developed through integrated management and a consortium approach. The impacts of various soil and water management interventions in the watershed are compared to no‐intervention during a 30‐year simulation period by application of the calibrated and validated ARCSWAT 2005 (Version 2.1.4a) modelling tool. Kothapally receives, on average, 800 mm rainfall in the monsoon period. 72% of total rainfall is converted as evaporation and transpiration (ET), 20% is stored by groundwater aquifer, and 8% exported as outflow from the watershed boundary in current water interventions. ET, groundwater recharge and outflow under no‐intervention conditions are found to be 64, 9, and 19%, respectively. Check dams helped in storing water for groundwater recharge, which can be used for irrigation, as well minimising soil loss. In situ water management practices improved the infiltration capacity and water holding capacity of the soil, which resulted in increased water availability by 10–30% and better crop yields compared to no‐intervention. Water outflows from the developed watershed were more than halved compared to no‐intervention, indicating potentially large negative downstream impacts if these systems were to be implemented on a larger scale. On the other hand, in the watershed development program, sediment loads to the streams were less than one‐tenth. It can be concluded that the hydrological impacts of large‐scale implementation of agricultural water interventions are significant. They result in improved rain‐fed agriculture and improved productivity and livelihood of farmers in upland areas while also addressing the issues of poverty, equity, and gender in watersheds. There is a need for case‐specific studies of such hydrological impacts along with other impacts in terms of equity, gender, sustainability, and development at the mesoscale. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Floods in small mountainous watersheds cover a wide spectrum of flow. They can range from clear water flows and hyperconcentrated flows to debris floods and debris flows, and calculation of the peak discharge is crucial for predicting and mitigating such hazards. To determine the optimal approach for discharge estimation, this study compared water flow monitoring hydrographs to investigate the performance of five hydrological models that incorporate different runoff yields and influx calculation methods. Two of the models performed well in simulating the peak discharge, peak time, and total flow volume of the water flood. The ratio (γ) of the monitored debris flood discharge (Qd) to the simulated water flow discharge (Qw) was investigated. Qualitatively, γ initially increased with Qw but then decreased when Qw exceeded a certain threshold, which corresponded to rainfall of 95 and 120 mm in a 6- and 24-h event with a normal distribution of precipitation, respectively. The decrease might be attributable to a threshold of sediment availability being reached, beyond which increased flow rate is not matched by increased sediment input in the large watershed. Uncertainty of hydrological calculation was evaluated by dividing the catchment into sub-basins and adopting different rainfall time steps as input. The efficiency of using a distributed simulation exhibited marginal improvement potential compared with a lumped simulation. Conversely, the rainfall time step input significantly affected the simulation results by delaying the peak time and decreasing the peak discharge. This research demonstrates the applicability of a discharge estimation method that combines a hydrological water flow simulation and an estimation of γ. The results were verified on the basis of monitored flow densities and videos obtained in two watersheds with areas of 2.34 and 32.4 km2.  相似文献   

14.
Annual streamflows have decreased across mountain watersheds in the Pacific Northwest of the United States over the last ~70 years; however, in some watersheds, observed annual flows have increased. Physically based models are useful tools to reveal the combined effects of climate and vegetation on long‐term water balances by explicitly simulating the internal watershed hydrological fluxes that affect discharge. We used the physically based Simultaneous Heat and Water (SHAW) model to simulate the inter‐annual hydrological dynamics of a 4 km2 watershed in northern Idaho. The model simulates seasonal and annual water balance components including evaporation, transpiration, storage changes, deep drainage, and trends in streamflow. Independent measurements were used to parameterize the model, including forest transpiration, stomatal feedback to vapour pressure, forest properties (height, leaf area index, and biomass), soil properties, soil moisture, snow depth, and snow water equivalent. No calibrations were applied to fit the simulated streamflow to observations. The model reasonably simulated the annual runoff variations during the evaluation period from water year 2004 to 2009, which verified the ability of SHAW to simulate the water budget in this small watershed. The simulations indicated that inter‐annual variations in streamflow were driven by variations in precipitation and soil water storage. One key parameterization issue was leaf area index, which strongly influenced interception across the catchment. This approach appears promising to help elucidate the mechanisms responsible for hydrological trends and variations resulting from climate and vegetation changes on small watersheds in the region. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
16.
The Soil and Water Assessment Tool (SWAT) is a physically‐based hydrologic model developed for agricultural watersheds, which has been infrequently validated for forested watersheds, particularly those with deep overwinter snow accumulation and abundant lakes and wetlands. The goal of this study was to determine the applicability of SWAT for modelling streamflow in two watersheds of the Ontonagon River basin of northern Michigan which differ in proportion of wetland and lake area. The forest‐dominated East Branch watershed contains 17% wetland and lake area, whereas the wetland/lake‐dominated Middle Branch watershed contains 26% wetland and lake area. The specific objectives were to: (1) calibrate and validate SWAT models for the East Branch and Middle Branch watersheds to simulate monthly stream flow, and (2) compare the effects of wetland and lake abundance on the magnitude and timing of streamflow. Model calibration and validation was satisfactory, as determined by deviation of discharge D and Nash and Sutcliffe coefficient values E that compared simulated monthly mean discharge versus measured monthly mean discharge. Streamflow simulation discrepancies occurred during summer and fall months and dry years. Several snow melting parameters were found to be critical for the SWAT simulation: TIMP (snow temperature lag factor) and SMFMX and SMFMN (melting factors). Snow melting parameters were not transferable between adjacent watersheds. Differences in seasonal pattern of long‐term monthly streamflow were found, with the forest‐dominated watershed having a higher peak flow during April but a lower flow during the remainder of the year in comparison to the wetland and lake‐dominated watershed. The results suggested that a greater proportion of wetland and lake area increases the capacity of a watershed to impound surface runoff and to delay storm and snow melting events. Representation of wetlands and lakes in a watershed model is required to simulate monthly stream flow in a wetland/lake‐dominated watershed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Investigating the changes in streamflow regimes in response to various influencing factors contributes to our understanding of the mechanisms of hydrological processes in different watersheds and to water resource management strategies. This study examined streamflow regime changes by applying the indicators of hydrologic alteration method and eco-flow metrics to daily runoff data (1965–2016) from the Sandu, Hulu and Dali Rivers on the Chinese Loess Plateau, and then determined their responses to terracing, afforestation and damming. The Budyko water balance equation and the double mass curve method were used to separate the impacts of climate change and human activities on the mean discharge changes. The results showed that the terraced and dammed watersheds exhibited significant decreases in annual runoff. All hydrologic metrics indicated that the highest degree of hydrologic alteration was in the Sandu River watershed (terraced), where the monthly and extreme flows reduced significantly. In contrast, the annual eco-deficit increased significantly, indicating the highest reduction in streamflow among the three watersheds. The regulation of dams and reservoirs in the Dali River watershed has altered the flow regime, and obvious decreases in the maximum flow and slight increases in the minimum flow and baseflow indices were observed. In the Hulu River watershed (afforested), the monthly flow and extreme flows decreased slightly and were categorized as low-degree alteration, indicating that the long-term delayed effects of afforestation on hydrological processes. The magnitude of the eco-flow metrics varied with the alteration of annual precipitation. Climate change contributed 67.47% to the runoff reduction in the Hulu River watershed, while human activities played predominant roles in reducing runoff in the Sandu and Dali River watersheds. The findings revealed distinct patterns and causes of streamflow regime alteration due to different conservation measures, emphasizing the need to optimize the spatial allocation of measures to control soil erosion and utilize water resources on the Loess Plateau.  相似文献   

18.
The Arctic hydrologic cycle is intensifying, as evidenced by increased rates of precipitation, evapotranspiration, and riverine discharge. However, the controls on water fluxes from terrestrial to aquatic systems in upland Arctic landscapes are poorly understood. Upland landscapes account for one third of the Arctic land surface and are often drained by zero‐order geomorphic flowpath features called water tracks. Previous work in the region attributed rapid runoff response at larger stream orders to water tracks, but models suggest water tracks are hydrologically disconnected from the surrounding hillslope. To better understand the role of water tracks in upland landscapes, we investigated the surface and subsurface hydrologic responses of 6 water tracks and their hillslope watersheds to natural patterns of rainfall, soil thaw, and drainage. Between storms, both water track discharge and the water table in the hillslope watersheds exhibited diel fluctuations that, when lagged by 5 hr, were temporally correlated with peak evapotranspiration rate. Water track soils remained saturated for more of the summer season than soils in their surrounding hillslope watersheds. When rainfall occurred, the subsurface response was nearly instantaneous, but the water tracks took significantly longer than the hillslopes to respond to rainfall, and longer than the responses previously observed in nearby larger order Arctic streams. There was also evidence for antecedent soil water storage conditions controlling the magnitude of runoff response. Based on these observations, we used a broken stick model to test the hypothesis that runoff production in response to individual storms was primarily controlled by rainfall amount and antecedent water storage conditions near the water track outlet. We found that the relative importance of the two factors varied by site, and that water tracks with similar watershed geometries and at similar landscape positions had similar rainfall–runoff model relationships. Thus, the response of terrestrial water fluxes in the upland Arctic to climate change depends on the non‐linear interactions between rainfall patterns and subsurface water storage capacity on hillslopes. Predicting these interactions across the landscape remains an important challenge.  相似文献   

19.
Infiltration excess overland flow has been identified as the dominant flow pathway in recently reclaimed surface mined watersheds as a result of compaction and sorting during the reclamation procedure. Therefore, there could be a fairly direct relationship between runoff generated from the hillslopes to that measured at the watershed outlet. A 3‐year study was initiated in 1993 to determine how well surface runoff at a watershed scale could be predicted from 1‐m2 runoff frames placed on hillslopes in two reclaimed surface‐mined watersheds in central Alberta. Runoff from the hillslope frames suggests outlet discharge should be high from the 3\4‐ha Sandy Subsoil Watershed and much less for the 9\8‐ha West Watershed, but the opposite occurred. Most of the hillslope runoff from the Sandy Subsoil Watershed infiltrated once it reached the channel and depression storage played an insignificant role in determining runoff. In contrast, most of the runoff from the West Watershed originated from rain falling directly on the saturated channel (depression storage) or near‐channel saturated areas, rather than the hillslopes. Neither watershed runoff magnitude nor timing could be predicted from the same parameters for hillslope runoff frames for either reclaimed watershed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
Watershed mean transit times (MTTs) are used to characterize the hydrology of watersheds. Watershed MTTs could have important implications for water quality, as relatively long MTTs imply lengthier water retention, thereby allowing more time for pollutant transformation and more moderate release of pollutants into streams. Although estimates of MTTs are common for undisturbed watersheds, only a few studies to date have applied MTT models to urbanized watersheds. In the present study, we use δ18O to compare estimates of MTTs for paired suburban‐industrial and agricultural watersheds in Toronto, Canada. Although differences in precipitation δ18O between the two watersheds were negligible, there were significant differences in stream δ18O, suggesting differences in water transport pathways. Less damping between input precipitation δ18O and output stream δ18O in the suburban‐industrial watershed indicated a larger streamflow contribution from quick‐flow transport pathways. We applied three transit time models to quantify MTTs. Considering overall model fit, root mean square error, and uncertainty in model parameters, the exponential model performed the best of the three models. Optimized MTTs using this distribution across the suburban‐industrial subwatersheds ranged from 2.1 to 2.9 months, whereas those in the agricultural subwatersheds ranged from 2.7 to 7.5 months. The relatively small difference between urban and agricultural MTTs coincides with observations elsewhere. Model efficiencies could potentially be improved, and MTTs estimated more reliably, with a higher sampling frequency that captures a greater volume of overall discharge. Overall, this work provides a distinct first glimpse into the separation of MTTs between paired watersheds with such a large contrast in their land use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号