首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simulation experiment for optimal design hyetograph selection   总被引:1,自引:0,他引:1  
The aim of this work is to assess the accuracy of literature design hyetographs for the evaluation of peak discharges during flood events. Five design hyetographs are examined in a set of simulations, based upon the following steps: (i) an ideal river basin is defined, characterized by a Beta distribution shaped unit hydrograph (UH); (ii) 1000 years of synthetic rainfall are artificially generated; (iii) a discharge time‐series is obtained from the convolution of the rainfall time‐series and the UH, and the reference T‐years flood is computed from this series; (iv) for the same return period T, the parameters of the intensity–duration–frequency (IDF) curve are estimated from the 1000 years of synthetic rainfall; (v) five design hyetographs are determined from the IDF curves and are convolved with the discrete UH to find the corresponding design hydrographs; (vi) the hydrograph peaks are compared with the reference T‐years flood and the advantages and drawbacks of each of the five approaches are evaluated. The rainfall and UH parameters are varied, and the whole procedure is repeated to assess the sensitivity of results to the system configuration. We found that all design hyetographs produce flood peak estimates that are consistently biased in most of the climatic and hydrologic conditions considered. In particular, significant underestimation of the design flood results from the adoption of any rectangular hyetograph used in the context of the rational formula. In contrast, the Chicago hyetograph tends to overestimate peak flows. In two cases it is sufficient to multiply the result by a constant scaling factor to obtain robust and nearly unbiased estimates of the design floods. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Synchronously and accurately estimating the flood discharges and dynamic changes in the fluid density is essential for hydraulic analysis and forecasting of flash floods, as well as for risk assessment. However, such information is rare for steep mountain catchments, especially in regions that are hotspots for earthquakes. Therefore, six hydrological monitoring sites were established in the main stream and tributaries of the 78.3‐km2 Longxi River catchment, an affected region of the Wenchuan earthquake region in China. Direct real‐time monitoring equipment was installed to measure the flow depths, velocities, and fluid total pressures of the flood hydrographs. On the basis of field measurements, real‐time mean cross‐sectional velocities during the flood hydrographs could be derived from easily obtainable parameters: cross‐sectional maximum velocities and the calibrated dimensionless parameter Kh . Real‐time discharges were determined on the basis of a noncontact method to establish the effective rating curves of this mountainous stream, ranging from 1.46 to 386.34 m3/s with the root mean square errors of ≤10.22 m3/s. Compared with the traditional point‐velocity method and empirical Manning's formula, the proposed noncontact method was reliable and safe for monitoring whole flood hydrographs. Additionally, the real‐time fluid density during the flood hydrographs was calculated on the basis of the direct monitoring parameters for fluid total pressures and water depths. During the flood hydrograph, transient flow behaviour with higher fluid density generally occurred downstream during the flood peak periods when the flow was in the supercritical flow regime. The observed behaviour greatly increased the threat of damage to infrastructure and human life near the river. Thus, it is important to accurately estimate flood discharge and identify for fluid densities so that people at risk from an impending flash flood are given reliable, advanced warning.  相似文献   

3.
洪泽湖历史洪水分析(1736-1992年)   总被引:8,自引:2,他引:6  
姜加虎  袁静秀  黄群 《湖泊科学》1997,9(3):231-237
根据1736-1911年文献记载的洪泽湖年最高水位及1914-1992年湖区水文测站的水位,流量资料,进行了长,短序列的入湖洪峰流量及不同时段洪量的频主分析,进而推求出不同重现期的设计入湖洪量和洪水年份相当的重现期,并分析洪水的灾害特征,结果:1)洪泽湖历史上洪水发生频繁,1786,1851,1906年均发生过特大洪水,高堰志桩分别至16.3,23.4,16.1尺。2)1953年建库后,湖水位上升  相似文献   

4.
To design and review the operation of spillways, it is necessary to estimate design hydrographs, considering their peak flow, shape and volume. A hybrid method is proposed that combines the shape of the design hydrograph obtained with the UNAM Institute of Engineering Method (UNAMIIM) with the peak flow and volume calculated from a bivariate method. This hybrid method is applied to historical data of the Huites Dam, Sinaloa, Mexico. The goal is to estimate return periods for the maximum discharge flows (that account for the damage caused downstream) and the maximum levels reached in the dam (measure of the hydrological dam safety) corresponding to a given spillway and its management policy. Therefore, to validate the method, the results obtained by the flood routing of the 50-year hydrograph are compared with those obtained by the flood routing of the three largest historical floods. Both maximum flow and elevation were in the range of values observed within 37.5–75 years corresponding to the length of the historical record.  相似文献   

5.
Projecting changes in the frequency and intensity of future precipitation and flooding is critical for the development of social infrastructure under climate change. The Mekong River is among the world's large-scale rivers severely affected by climate change. This study aims to define the duration of precipitation contributing to peak floods based on its correlation with peak discharge and inundation volume in the Lower Mekong Basin (LMB). We assessed the changes in precipitation and flood frequency using a large ensemble Database for Policy Decision-Making for Future Climate Change (d4PDF). River discharge in the Mekong River Basin (MRB) and flood inundation in the LMB were simulated by a coupled rainfall-runoff and inundation (RRI) model. Results indicated that 90-day precipitation counting backward from the day of peak flooding had the highest correlation with peak discharge (R2 = .81) and inundation volume (R2 = .81). The ensemble mean of present simulation of d4PDF (1951–2010) showed good agreement with observed extreme flood events in the LMB. The probability density of 90-day precipitation shifted from the present to future climate experiments with a large variation of mean (from 777 to 900 mm) and SD (from 57 to 96 mm). Different patterns of sea surface temperature significantly influence the variation of precipitation and flood inundation in the LMB in the future (2051–2110). Extreme flood events (50-year, 100-year, and 1,000-year return periods) showed increases in discharge, inundation area, and inundation volume by 25%–40%, 19%–36%, and 23%–37%, respectively.  相似文献   

6.
《国际泥沙研究》2022,37(6):715-728
Rainfall-induced floods may trigger intense sediment transport on erodible catchments, especially on the Loess Plateau in China, which in turn modifies the floods. However, the role of sediment transport in modifying floods has to date remained poorly understood. Concurrently, traditional hydrodynamic models for rainfall-induced floods typically ignore sediment transport, which may lead to inaccurate results for highly erodible catchments. Here, a two-dimensional (2D) coupled shallow water hydro-sediment-morphodynamic (SHSM) model, based on the Finite Volume Method on unstructured meshes and parallel computing, is proposed and applied to simulate rainfall-induced floods in the Zhidan catchment on the Loess Plateau, Shaanxi Province, China. For six historical floods of return periods up to 2 years, the numerical results compare well with observations of discharge hydrographs at the catchment outlet. The computed runoff-sediment yield relation is quantitatively reasonable as compared with other catchments under similar geographical conditions. It is revealed that neglecting sediment transport leads to underestimation of peak discharge of the flood by 14%–45%, whilst its effect on the timing of the peak discharge varies for different flood events. For 18 design floods with return periods of 10–500 years, sediment transport may lead to higher peak discharge by around 9%–15%. The temporal pattern of concentrated rainfall in a short period may lead to a larger exponent value of the power function for the runoff-sediment yield relation. The current finding leads us to propose that incorporating sediment transport in rainfall-induced flood modeling is warranted. The SHSM model is applicable to flood and sediment modeling at the catchment scale in support of risk management and water and soil management.  相似文献   

7.
As an alternative to the commonly used univariate flood frequency analysis, copula frequency analysis can be used. In this study, 58 flood events at the Litija gauging station on the Sava River in Slovenia were analysed, selected based on annual maximum discharge values. Corresponding hydrograph volumes and durations were considered. Different bivariate copulas from three families were applied and compared using different statistical, graphical and upper tail dependence tests. The parameters of the copulas were estimated using the method of moments with the inversion of Kendall's tau. The Gumbel–Hougaard copula was selected as the most appropriate for the pair of peak discharge and hydrograph volume (Q‐V). The same copula was also selected for the pair hydrograph volume and duration (V‐D), and the Student‐t copula was selected for the pair of peak discharge and hydrograph duration (Q‐D). The differences among most of the applied copulas were not significant. Different primary, secondary and conditional return periods were calculated and compared, and some relationships among them were obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The reconstruction of past flash floods in ungauged basins leads to a high level of uncertainty, which increases if other processes are involved such as the transport of large wood material. An important flash flood occurred in 1997 in Venero Claro (Central Spain), causing significant economic losses. The wood material clogged bridge sections, raising the water level upstream. The aim of this study was to reconstruct this event, analysing the influence of woody debris transport on the flood hazard pattern. Because the reach in question was affected by backwater effects due to bridge clogging, using only high water mark or palaeostage indicators may overestimate discharges, and so other methods are required to estimate peak flows. Therefore, the peak discharge was estimated (123 ± 18 m3 s–1) using indirect methods, but one‐dimensional hydraulic simulation was also used to validate these indirect estimates through an iterative process (127 ± 33 m3 s–1) and reconstruct the bridge obstruction to obtain the blockage ratio during the 1997 event (~48%) and the bridge clogging curves. Rainfall–Runoff modelling with stochastic simulation of different rainfall field configurations also helped to confirm that a peak discharge greater than 150 m3 s–1 is very unlikely to occur and that the estimated discharge range is consistent with the estimated rainfall amount (233 ± 27 mm). It was observed that the backwater effect due to the obstruction (water level ~7 m) made the 1997 flood (~35‐year return period) equivalent to the 50‐year flood. This allowed the equivalent return period to be defined as the recurrence interval of an event of specified magnitude, which, where large woody debris is present, is equivalent in water depth and extent of flooded area to a more extreme event of greater magnitude. These results highlight the need to include obstruction phenomena in flood hazard analysis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
An increasing impervious area is quickly extending over the Wu‐Tu watershed due to the endless demands of the people. Generally, impervious paving is a major result of urbanization and more recently has had the potential to produce more enormous flood disasters than those of the past. In this study, 40 available rainfall–runoff events were chosen to calibrate the applicable parameters of the models and to determine the relationships between the impervious surfaces and the calibrated parameters. Model inputs came from the outcomes of the block kriging method and the non‐linear programming method. In the optimal process, the shuffled complex evolution method and three criteria were applied to compare the observed and simulated hydrographs. The tendencies of the variations of the parameters with their corresponding imperviousness were established through regression analysis. Ten cases were used to examine the established equations of the parameters and impervious covers. Finally, the design flood routines of various return periods were furnished through use of approaches containing a design storm, block kriging, the SCS model, and a rainfall‐runoff model with established functional relationships. These simulated flood hydrographs were used to compare and understand the past, present, and future hydrological conditions of the watershed studied. In the research results, the time to peak of flood hydrographs for various storms was diminished approximately from 11 h to 6 h in different decrements, whereas peak flow increased respectively from 127 m3 s?1 to 629 m3 s?1 for different storm intensities. In addition, this study provides a design diagram for the peak flow ratio to help engineers and designers to construct hydraulic structures efficiently and prevent possible damage to human life and property. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Geomorphological evidence and recent trash lines were used as stage indicators in a step-backwater computer model of high discharges through an ungauged bedrock channel. The simulation indicated that the peak discharge from the 26.7 m2 catchment was close to 150m3s?1 during the passage of Hurricane Charlie in August 1986. This estimate can be compared with an estimate of 130–160 m3s?1 obtained using the Flood Studies Report (FSR) unit hydrograph methodology. Other palaeostage marks indicate that higher stages have occurred at an earlier time associated with a discharge of 200 m3s?1. However, consideration of both the geometry of a plunge pool and transport criteria for bedrock blocks in the channel indicates that floods since 1986 have not exceeded 150 m3s?1. Given that the estimated probable maximum flood (PMF) calculated from revised FSR procedure is at least 240 m3s?1, it is concluded that compelling evidence for floods equal to the PMF is lacking. Taking into consideration the uncertainty of the discharge estimation, the 1986 flood computed using field evidence has a minimum return period of 100 years using the FSR procedure. This may be compared with a return period for the same event in the neighbouring gauged River Greta of > 100 years and a rainfall return period of 190 years. In as much as discharges of similar order to FSR estimates are indicated, it is concluded (a) that regional geomorphological evidence and flood simulation within ungauged catchments may be useful as a verification for hydrological estimates of recent widespread flood magnitude and (b) that palaeohydraulic computation can be useful in determining the magnitude of the local maximum [historic] flood when determining design discharges for hydraulic structures within specific catchments.  相似文献   

11.
A Ashfaq  P Webster 《水文研究》2000,14(7):1217-1233
This study presents an investigation of the time to peak of unit response functions for design flood studies. It is based on an empirical analysis of observed rainfall–runoff data for 49 basins in the UK and explores the relationship between unit response time to peak (tp) and flood peak magnitude (Qp). The results show that tp varies significantly between events but suggest a systematic relationship between tp and Qp. The relationships which have been developed suggest that tp decreases with flood magnitude and approaches to an asymptotic value for very large values of Qp. These findings confirm numerous physical and field investigations and also support the reduction in response time for probable maximum flood (PMF) recommended in the Soil Conservation Services method, the Flood Studies Report method and the Flood Estimation Handbook. The findings also suggest that tp should be modified in unit hydrograph methods of design flood analysis for return periods that differ from those used in deriving unit hydrographs. A simple correction curve has been developed for adjusting tp according to the design flood return period. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
基于二次重现期的多变量洪水风险评估   总被引:4,自引:2,他引:2  
黄强  陈子燊 《湖泊科学》2015,27(2):352-360
由于洪水是一种具有多个特征属性的随机事件,频率分析成为洪水风险评估的一种有效手段,多变量重现期与设计值的定义与计算则是洪水频率分析中的重点和难点.本文通过构造洪水历时、洪峰与洪量的联合分布,介绍了一种新的多变量重现期定义——二次重现期,并探讨了"或"重现期、"且"重现期和二次重现期对安全与危险域识别的差异性,以及在洪水风险管理与工程设计中的合理性与可靠性.传统的"或"和"且"多变量重现期对安全与危险域的识别存在局限性,利用Kendall函数定义的二次重现期则提供了更加合理的安全与风险域识别,避免了对安全事件与危险事件的错误判定,更有利于指导洪水风险的管理.在给定的二次重现期条件下,依据出现概率最大原则推算的历时、洪峰与洪量设计值组合可以满足工程设计以较低成本承受较大风险的追求,相比于单变量设计值,考虑了洪水多个属性联合特征的多变量设计值提供了更加全面和可靠的参考信息.  相似文献   

13.
Bankfull discharge is a key parameter in the context of river engineering and geomorphology, as an indicator of flood discharge capacity in alluvial rivers, and varying in response to the incoming flow and sediment regimes. Bankfull channel dimensions have significantly adjusted along the Lower Yellow River (LYR) due to recent channel degradation, caused by the operation of the Xiaolangdi Reservoir, which has led to longitudinal variability in cross‐sectional bankfull discharges. Therefore, it is more representative to describe the flood discharge capacity of the LYR, using the concept of reach‐averaged bankfull discharge. Previous simple mean methods to estimate reach‐scale bankfull discharge cannot meet the condition of flow continuity or account for the effect of different spacing between two sections. In this study, a general method to calculate cross‐sectional bankfull discharge using the simulated stage‐discharge relation is outlined briefly, and an integrated method is then proposed for estimating reach‐scale bankfull discharge. The proposed method integrates a geometric mean based on the log‐transformation with a weighted average based on the spacing between two consecutive sections, which avoids the shortcomings of previous methods. The post‐flood reach‐scale bankfull discharges in three different channel‐pattern reaches of the LYR were estimated annually during the period from 1999 to 2010 using the proposed method, based on surveyed post‐flood profiles at 91 sedimentation sections and the measured hydrological data at seven hydrometric sections. The calculated results indicate that: (i) the estimated reach‐scale bankfull discharges can effectively represent the flood discharge capacity of different reaches, with their ranges of variation being less than those of typical cross‐sectional bankfull discharges; and (ii) the magnitude of the reach‐scale bankfull discharge in each reach can respond well to the accumulative effect of incoming flow and sediment conditions. Finally, empirical relationships for different reaches in the LYR were developed between the reach‐scale bankfull discharge and the previous four‐year average discharge and incoming sediment coefficient during flood seasons, with relatively high correlation coefficients between them being obtained, and the reach‐scale bankfull discharges in different reaches predicted by the delayed response model were also presented for a comparison. These relations for the prediction of reach‐scale bankfull discharges were validated using the cross‐sectional profiles and hydrological data measured in 2011. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
This study uses the method of peaks over threshold (P.O.T.) to estimate the flood flow quantiles for a number of hydrometric stations in the province of New Brunswick, Canada. The peak values exceeding the base level (threshold), or `exceedances', are fitted by a generalized Pareto distribution. It is known that under the assumption of Poisson process arrival for flood exceedances, the P.O.T. model leads to a generalized extreme value distribution (GEV) for yearly maximum discharge values. The P.O.T. model can then be applied to calculate the quantiles X T corresponding to different return periods T, in years. A regionalization of floods in New Brunswick, which consists of dividing the province into `homogeneous regions', is performed using the method of the `region of influence'. The 100-year flood is subsequently estimated using a regionally estimated value of the shape parameter of the generalized Pareto distribution and a regression of the 100-year flood on the drainage area. The jackknife sampling method is then used to contrast the regional results with the values estimated at site. The variability of these results is presented in box-plot form. Received: June 1, 1997  相似文献   

15.
This study uses the method of peaks over threshold (P.O.T.) to estimate the flood flow quantiles for a number of hydrometric stations in the province of New Brunswick, Canada. The peak values exceeding the base level (threshold), or `exceedances', are fitted by a generalized Pareto distribution. It is known that under the assumption of Poisson process arrival for flood exceedances, the P.O.T. model leads to a generalized extreme value distribution (GEV) for yearly maximum discharge values. The P.O.T. model can then be applied to calculate the quantiles X T corresponding to different return periods T, in years. A regionalization of floods in New Brunswick, which consists of dividing the province into `homogeneous regions', is performed using the method of the `region of influence'. The 100-year flood is subsequently estimated using a regionally estimated value of the shape parameter of the generalized Pareto distribution and a regression of the 100-year flood on the drainage area. The jackknife sampling method is then used to contrast the regional results with the values estimated at site. The variability of these results is presented in box-plot form. Received: June 1, 1997  相似文献   

16.
A rating curve provides a reasonable estimate of the suspended sediment concentration at a given discharge. However, analysis of a detailed 9‐year time‐series of suspended sediment concentration (SSC) and discharge Q of the Meuse River in The Netherlands indicates that SSC is (besides discharge) controlled by exhaustion and replenishment of different sediment sources. Clockwise hysteresis and other effects of sediment exhaustion can be observed during and after flood events, and the effects of stockpiling of sediment in the river bed during low‐discharge periods are obvious in the SSC of the next flood. In a single regression equation we have implemented a parameter that represents the presence or absence of stock for sediment uptake. In comparison with a rating curve of SSC and Q, adding this parameter is shown to be a more reliable and comprehensive method to predict SSCs at all discharge regimes with all preceding discharge conditions, for single‐peaked and multi‐peaked runoff events as well as for low flow conditions. The method is probably applicable to other small‐ to medium‐scaled river basins. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Adjustment of stream-channel shape to hydrologic regime   总被引:1,自引:0,他引:1  
Bed-load channels tend to adjust their cross-sections so that given slope, roughness and sediment load, channel shape approaches the optimum for bed-load transport. The extent to which any one shape is the optimum varies with discharge, so four Cumberland Basin stream channels have been investigated to determine the discharges at which their present cross-sections represent the optimum for bed-load transport. These discharges have return periods ranging from 1.1 to 1.5 years on the annual series. The return periods closely correspond with return periods for the discharge at which, over a period of time, the most bed-load is transported. These return periods vary from 1.15 to 1.45 years when the same bed-load equation is used. The close correspondence between sets of return periods suggests that bed-load channels tend to adjust their cross-sections to become the optimum shape for bed-load transport at or close to the discharge at which the most bed-load transport is accomplished.  相似文献   

18.
The paper presents an analysis of 17 long annual maximum series (AMS) of flood flows for Swiss Alpine basins, aimed at checking the presence of changes in the frequency regime of annual maxima. We apply Pettitt's change point test, the nonparametric sign test and Sen's test on trends. We also apply a parametric goodness‐of‐fit test for assessing the suitability of distributions estimated on the basis of annual maxima collected up to a certain year for describing the frequency regime of later observations. For a number of series the tests yield consistent indications for significant changes in the frequency regime of annual maxima and increasing trends in the intensity of annual maximum discharges. In most cases, these changes cannot be explained by anthropogenic causes only (e.g. streamflow regulation, construction of dams). Instead, we observe a statistically significant relationship between the year of change and the elevation of the catchment outlet. This evidence is consistent with the findings of recent studies that explain increasing discharges in alpine catchments with an increase in the temperature controlling the portion of mountain catchments above the freezing point. Finally, we analyse the differences in return periods (RPs) estimated for a given flood flow on the basis of recent and past observations. For a large number of the study AMS, we observe that, on average, the 100‐year flood for past observations corresponds to a RP of approximately 10 to 30 years on the basis of more recent observation. From a complementary perspective, we also notice that estimated RP‐year flood (i.e. flood quantile (FQ) associated with RP) increases on average by approximately 20% for the study area, irrespectively of the RP. Practical implications of the observed changes are illustrated and discussed in the paper. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The study analyses the morphological response of a gravel‐bed river to discharges of different magnitude (from moderate events that occur several times a year to a 12‐year flood) and so defines the range of formative discharges for single morphological units (channels, bars, islands) and a range of magnitude of morphological activity from the threshold discharges for gravel transport and minor bar modification up to flows causing major morphological changes. The study was conducted on the Tagliamento River, a large gravel‐bed river in north‐eastern Italy, using two different methods, analysis of aerial photographs and field observation of painted gravel particles. The available photographs (five flights from August 1997 to November 2002) and the two commissioned flights (June 2006 and April 2007) do not define periods with a single flood event, but the intervals are short enough (11 to 22 months) to have a limited number of flood events in each case. The fieldwork, which involved cross‐section survey, grain‐size analysis and observation of painted sediments, complemented the aerial surveys by allowing analysis of channel response to single flood events. Substantial morphological changes (e.g. bank erosion of several tens of metres up to more than 100 m) associated with flood events with a recurrence interval between 1·1 year and 12 years have been documented. Multiple forming discharges were defined based on the activity of different morphological units. Discharges equal to 20–50% of the bankfull discharge are formative for the channels, whereas the bankfull discharge (1·1 year flood in this case of the Tagliamento River) is formative for low bars. Larger floods, but still relatively frequent (with a recurrence interval less than five years), are required for full gravel transport on high bars and significant morphological changes of islands. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
This study modelled flood losses (economic damages) along the Middle Mississippi River (MMR) (1) using current US government estimates of flow frequencies and (2) using frequencies based on the original, unaltered discharge measurements. The official flood frequencies were quantified in the Upper Mississippi River System Flow Frequency Study (UMRSFFS), but as a last step in that study, early discharges along the MMR were reduced by up to 54% to reflect a purported bias in early measurements. Subsequently, early discharge measurements were rigorously tested, and no such bias was found. Here, flood damages were quantified using a combination of one‐dimensional hydraulic modelling and flood‐loss modelling. For all recurrence intervals, damages were much less using the UMRSFFS flow frequencies compared with the frequencies based on the original discharge measurements, with differences ranging up to 79% (100‐year event) and $2.9bn (200‐year event). Annualized losses in the study area based on the UMRSFFS frequencies were just $41.6m versus $125.6m using the raw frequencies (an underestimation of 67%). These totals do not include flood losses elsewhere along the MMR, including in metropolitan St Louis. In summary, a seemingly small methodological adjustment – in this case, a single hidden adjustment, not documented anywhere within the UMRSFFS – can have dramatic societal impacts in terms of underestimation of flood probabilities and flood risk. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号