首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
As the Mississippi River plays a major role in fulfilling various water demands in North America, accurate prediction of river flow and sediment transport in the basin is crucial for undertaking both short‐term emergency measures and long‐term management efforts. To this effect, the present study investigates the predictability of river flow and suspended sediment transport in the basin. As most of the existing approaches that link water discharge, suspended sediment concentration and suspended sediment load possess certain limitations (absence of consensus on linkages), this study employs an approach that presents predictions of a variable based on history of the variable alone. The approach, based on non‐linear determinism, involves: (1) reconstruction of single‐dimensional series in multi‐dimensional phase‐space for representing the underlying dynamics; and (2) use of the local approximation technique for prediction. For implementation, river flow and suspended sediment transport variables observed at the St. Louis (Missouri) station are studied. Specifically, daily water discharge, suspended sediment concentration and suspended sediment load data are analysed for their predictability and range, by making predictions from one day to ten days ahead. The results lead to the following conclusions: (1) extremely good one‐day ahead predictions are possible for all the series; (2) prediction accuracy decreases with increasing lead time for all the series, but the decrease is much more significant for suspended sediment concentration and suspended sediment load; and (3) the number of mechanisms dominantly governing the dynamics is three for each of the series. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
The summer discharge pattern of the Skeldal River, which drains a 560 km2 partly glacierized catchment in north‐east Greenland, is dominated by diurnal oscillations reflecting variations in the melt rate of snow and ice in the basin. Superimposed on this diurnal pattern are numerous short‐lived discharge fluctuations of irregular periodicity and magnitude. The larger fluctuations are described and attributed to both rainfall events and periodic collapse of the glacier margin damming flow from beneath the Skelbrae glacier. Other minor fluctuations are less readily explained but are associated with changes in the channelized and distributed reservoirs and possibly temporary blockage of subglacial conduits caused by ice melt with subsequent damming. Fluctuations in suspended sediment concentration (SSC) are normally associated with discharge fluctuations, although examples of ‘transient flushes’ were observed where marked increases in SSC occurred in the absence of corresponding discharge variations. A strong relationship between the event discharge increase and event SSC increase for rainfall‐induced events was established, but no such relationship existed for non‐rainfall‐induced events. There is some evidence for an exhaustion effect in the SSC patterns both at the event time‐scale and as the month proceeds. A mean suspended sediment load of 1765 ± 0·26 t day?1 was estimated for the study period, which would be equivalent to a suspended sediment yield of 732 ± 4 t km?2 year?1. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
This study analyses archival discharge and sediment concentration data (1965–1988), monitored by Water Survey of Canada, to examine suspended sediment transport rates and their relationship to effective discharge (Qeff) based on daily discharge duration curves. Effective discharge was determined as the mid‐point of the discharge class transporting the greatest portion of the suspended sediment load (hence class‐based Qeff). Results showed that the concept of effective discharge was applicable to the Fraser River basin where the average class‐based Qeff occurred during 8·4% of the study period with individual values ranging from 0·03% to 16·1%. The durations of effective discharge classes ranged from 0·02% to 19·6% while the transport of 50% of total sediment loads ranged from 3% to 22% with an average of 14% of the time. Equations for predicting the class‐based Qeff in the Fraser River basin from bankfull discharge and drainage area are presented. The observed variations among stations in sediment‐discharge regimes based on subjectively selected 20 discharge classes, seem to reflect the influence of sediment controlling factors such as geology, physiography, catchment size and land use practice in the basin. Future directions of research on applications of the effective discharge concept are explored. As a solution to the problem of lack of an objective method for determining the effective discharge, the effective discharge should be determined from event based assessments of sediment transport (event‐based Qeff), avoiding any subjectivity in the selection of number of discharge classes used for its determination. In conclusion, it is proposed that continued use of the conventional method of determining Qeff should cease. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
Annual fluxes, flow‐weighted concentrations and linear least squares trendline calculations for a number of long‐term Mississippi River Basin (MRB) sampling sites covering 1981 through 2007, whilst somewhat ‘noisy’, display long‐term patterns of decline. Annual flow‐weighted concentration plots display the same long‐term patterns of decline, but are less noisy because they reduce/eliminate variations due to interannual discharge differences. The declines appear greatest in the middle MRB, but also are evident elsewhere. The pattern for the lower Ohio River differs and may reflect ongoing construction at the Olmsted lock and dam that began in 1993 and currently is ongoing. The ‘Great Flood of 1993’ appears to have superimposed a step function (a sharp drop) on the long‐term rate of decline in suspended sediment concentrations (SSC), annual fluxes and flow‐weighted concentrations in the middle MRB at St Louis and Thebes, Missouri and Vicksburg, Mississippi, and in the lower MRB at St Francisville, Louisiana. Evidence for a step function at other sites is less substantial, but may have occurred. The step function appears to have resulted from losses in available (erodible) sediment, rather than to a reduction in discharge; hence, the MRB appears to be supply limited rather than discharge limited. These evaluations support the need for daily discharge and SSC data collections in the MRB to better address questions regarding long‐term trends in sediment‐related issues. This is apparent when the results for the Mississippi River at Thebes and St Louis sites are compared with those from other MRB sites where intensive (daily) data collections are lacking. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

5.
Nicholas Pinter 《水文研究》2010,24(8):1088-1093
This study tests the hypothesis that historical float‐based discharge measurements on the Mississippi River systematically over‐stated actual flood flows by 10% to > 30% relative to measurements using current meters. This assertion has been repeated over the past 25 years and recently has been used to adjust historical discharges used for flood‐frequency analysis. This study tests the hypothesis above using 2150 historical discharge measurements digitized from the three principal gauging stations on the Middle Mississippi River (MMR): data that include 626 float‐based discharges and 1516 meter‐based discharges, including 122 paired measurements. Multiple comparative tests show that the hypothesis above cannot be supported; if anything, the float‐based measurements slightly underestimate flows (not over‐estimate) over a broad range of discharges up to large floods. In response to the purported data bias above (‘changing history’; Dieckmann RJ, Dyhouse GR. 1998. Changing history at St. Louis—adjusting historic flows for frequency analysis. First Federal Inter‐Agency Hydrologic Modeling Conference, April 20–22, 1998. Las Vegas, NV; 4·31–4·36), historical flood discharges on the MMR have been modified, most by 10–20% and several by > 30%. These altered discharges are now being promulgated, in particular, through the Upper Mississippi River System Flow Frequency Study (UMRSFFS). New flow frequencies, flood profiles, and new flood maps from the UMRSFFS may significantly underestimate the actual flood hazard on the MMR if the original hydrologic data have been erroneously altered on the basis of an assumption of data bias. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Spatial and temporal patterns of spring break‐up flooding in the Slave River Delta (SRD), Northwest Territories, are characterized during three years (2003–2005) using water isotope tracers and total inorganic suspended sediment (TSS) concentrations measured from lakewater samples collected shortly after the spring melt. Strongly contrasting spring melt periods led to a moderate flood in 2003, no flooding in 2004 and widespread flooding in 2005. Flooded lakes have isotopically‐depleted δ18O (δ2H) signatures, ranging between ? 19·2‰ (?145‰) and ? 17·1‰ (?146‰) and most have high TSS concentrations (>10 mg L?1), while non‐flooded lakes have more isotopically‐enriched δ18O (δ2H) signatures, ranging between ? 18·2‰ (?149‰) and ? 10·6‰ (?118‰) and low TSS concentrations (<10 mg L?1). These results, in conjunction with the isotopic signatures of Slave River water and snowmelt, are used to estimate the proportion of river‐ or snowmelt‐induced dilution in delta lakes during the spring of each study year. Calculations indicate river flooding caused dilution of ~70–100% in delta lakes, while snowmelt dilution in the absence of river flooding ranged from ~0–56%. A positive relationship exists between the spatial extent of spring flooding in the SRD and level and discharge on the Slave River and upstream tributaries, suggesting that upstream flow generation plays a key role in determining the magnitude of spring flooding in the SRD. Parallel variations in the 46‐year instrumental Slave River discharge record and flood stratigraphy in the active delta indicate that there is potential for extending the flood history of the SRD, a development that will contribute to a more robust understanding of the drivers of historic, contemporary and future flood frequency in the delta. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Bifurcations are key geomorphological nodes in anabranching and braided fluvial channels, controlling local bed morphology, the routing of sediment and water, and ultimately defining the stability of their associated diffluence–confluence unit. Recently, numerical modelling of bifurcations has focused on the relationship between flow conditions and the partitioning of sediment between the bifurcate channels. Herein, we report on field observations spanning September 2013 to July 2014 of the three‐dimensional flow structure, bed morphological change and partitioning of both flow discharge and suspended sediment through a large diffluence–confluence unit on the Mekong River, Cambodia, across a range of flow stages (from 13 500 to 27 000 m3 s?1). Analysis of discharge and sediment load throughout the diffluence–confluence unit reveals that during the highest flows (Q = 27 000 m3 s?1), the downstream island complex is a net sink of sediment (losing 2600 ± 2000 kg s?1 between the diffluence and confluence), whereas during the rising limb (Q = 19 500 m3 s?1) and falling limb flows (Q = 13 500 m3 s?1) the sediment balance is in quasi‐equilibrium. We show that the discharge asymmetry of the bifurcation varies with discharge and highlight that the influence of upstream curvature‐induced water surface slope and bed morphological change may be first‐order controls on bifurcation configuration. Comparison of our field data to existing bifurcation stability diagrams reveals that during lower (rising and falling limb) flow the bifurcation may be classified as unstable, yet transitions to a stable condition at high flows. However, over the long term (1959–2013) aerial imagery reveals the diffluence–confluence unit to be fairly stable. We propose, therefore, that the long‐term stability of the bifurcation, as well as the larger channel planform and morphology of the diffluence–confluence unit, may be controlled by the dominant sediment transport regime of the system. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

8.
Gravel road surfaces can be a major source of fine sediment to streams, yet their contribution to channel reach sediment balances remains poorly documented. To quantify the input of road surface material and to compare this input with natural sediment sources at the reach scale, suspended sediment dynamics was examined and a 16‐month sediment balance was developed for a ~35 channel‐width (approx. 425 m) reach of the Honna River, a medium‐size, road‐affected stream located in coastal British Columbia. Of the 105 ± 33 t of suspended material passing through the reach, 18 ± 6% was attributed to the road surface. The high availability of sediment on the road surface appears to limit hysteresis in road run‐off. During rainstorms that increase streamflow, road surface material composed 0.5–15% of sediment inputs during relatively dry conditions from April to the end of September and 5–70% through wetter conditions from October to the end of March, but our data do not show evidence of major sediment accumulation on the riverbed in the reach. A comparison of modelled sediment production on the road surface with observed yields from drainage channels suggests that (1) during low intensity rainfall, ditches and drainage channels may trap sediment from road run‐off, which is subsequently released during events of greater intensity, and/or (2) production models do not effectively describe processes, such as deposition or erosion of sediment in ditches, which control sediment transport and delivery. Our findings further emphasize the risk of unpaved roads in polluting river systems and highlight the continued need for careful road design and location away from sensitive aquatic environments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Alpine glacial basins are a significant source and storage area for sediment exposed by glacial retreat. Recent research has indicated that short‐term storage and release of sediment in proglacial channels may control the pattern of suspended sediment transfer from these basins. Custom‐built continuously recording turbidimeters installed on a network of nine gauging sites were used to characterize spatial and temporal variability in suspended sediment transfer patterns for the entire proglacial area at Small River Glacier, British Columbia, Canada. Discharge and suspended sediment concentration were measured at 5 min intervals over the ablation season of 2000. Differences in suspended sediment transfer patterns were then extracted using multivariate statistics (principal component and cluster analysis). Results showed that each gauging station was dominated c. 80% of days by diurnal sediment transfer patterns and ‘low’ suspended sediment concentrations. ‘Irregular’ transfer patterns were generally associated with ‘high’ sediment concentrations during snowmelt and rainfall events, resulting in the transfer of up to 70% of the total seasonal suspended sediment load at some gauging stations. Suspended sediment enrichment of up to 600% from channel storage release and extrachannel inputs occurred between the glacial front and distal proglacial boundary. However, these patterns differed significantly between gauging stations as determined by the location of the gauging station within the catchment and meteorological conditions. Overall, the proglacial area was the source for up to 80% of the total suspended sediment yield transferred from the Small River Glacier basin. These results confirmed that sediment stored and released in the proglacial area, in particular from proglacial channels, was controlling suspended sediment transfer patterns. To characterize this control accurately requires multiple gauging stations with high frequency monitoring of suspended sediment concentration. Accurate characterization of this proglacial control on suspended sediment transfer may therefore aid interpretation of suspended sediment yield patterns from glacierized basins. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
This study investigates the dynamic behavior of suspended sediment load transport at different temporal scales in the Mississippi River basin. Data corresponding to five successively doubled temporal scales (i.e. daily, two‐day, four‐day, eight‐day and 16‐day) from the St. Louis gaging station in Missouri are analyzed. The investigation is focused on identifying possible low‐dimensional deterministic behavior in the suspended sediment load transport dynamics, with an aim towards reduction in model complexity. The correlation dimension method is used to identify low‐dimensional determinism. The suspended sediment load dynamics are represented through phase‐space reconstruction, and the variability is estimated using the (proximity of) reconstructed vectors in the phase space. The results indicate the presence of low‐dimensional determinism in the suspended sediment load series at each of the five temporal scales, with the variables dominantly governing the dynamics in the order of three or four. These results not only suggest the appropriateness of relatively simpler models but also hint at possible scale invariance in the suspended sediment load transport dynamics. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Fine sediment sources were characterized by chemical composition in an urban watershed, the Northeast Branch Anacostia River, which drains to the Chesapeake Bay. Concentrations of 63 elements and two radionuclides were measured in possible land‐based sediment sources and suspended sediment collected from the water column at the watershed outlet during storm events. These tracer concentrations were used to determine the relative quantity of suspended sediment contributed by each source. Although this is an urbanized watershed, there was not a distinct urban signature that can be evaluated except for the contributions from road surfaces. We identified the sources of fine sediment by both physiographic province (Piedmont and Coastal Plain) and source locale (streambanks, upland and street residue) by using different sets of elemental tracers. The Piedmont contributed the majority of the fine sediment for seven of the eight measured storms. The streambanks contributed the greatest quantity of fine sediment when evaluated by source locale. Street residue contributed 13% of the total suspended sediment on average and was the source most concentrated in anthropogenically enriched elements. Combining results from the source locale and physiographic province analyses, most fine sediment in the Northeast Branch watershed is derived from streambanks that contain sediment eroded from the Piedmont physiographic province of the watershed. Sediment fingerprinting analyses are most useful when longer term evaluations of sediment erosion and storage are also available from streambank‐erosion measurements, sediment budget and other methods. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The Loop Current mediating the oceanic heat and salt flux from the Caribbean Sea into the Atlantic Ocean and its interference with the Mississippi River discharge are critical for both the regional climate in the Gulf of Mexico area and the water vapor transport towards high northern latitudes. We present a 400-kyr record of sea surface temperature and local surface salinity from the northeastern Gulf of Mexico (IMAGES core MD02-2575) approximated from combined planktonic foraminiferal δ18O and Mg/Ca, which reflects the temporal dynamics of the Loop Current and its relationship to both varying Mississippi discharge and evolution of the Western Hemisphere Warm pool. The reconstructed sea surface temperature and salinity reveal glacial/interglacial amplitudes that are significantly larger than in the Western Hemisphere Warm pool. Sea surface freshening is observed during the extreme cool periods of Marine Isotope Stages 2, 8, and 10, caused by the strengthened Mississippi discharge which spread widely across the Gulf favored by the less established Loop Current. Interglacial and interstadial sea-surface conditions, instead, point to a strengthened, northward flowing Loop Current in line with the northward position of the Intertropical Convergence Zone, allowing northeastern Gulf of Mexico surface hydrographic conditions to approach those of the Caribbean. At these times, the Mississippi discharge was low and deflected westward, promoted by the extended Loop Current. Previously described deglacial megadischarge events further to the west did not affect the northeastern Gulf of Mexico hydrography, implying that meltwater routing from the Laurentide Ice Sheet via the Mississippi River is unlikely to have affected Atlantic Meridional Overturning Circulation.  相似文献   

13.
Simple linear regression models have been widely employed in the analysis of suspended‐sediment concentration (SSC) time series from glacierized catchments, although they have many limitations. This paper builds regression models which address these shortcomings and permit inferences concerning the controls on suspended‐sediment transfer from a glacier at 78°N in the Svalvard archipelago. A bivariate regression model, deterministically predicting SSC from discharge alone, explained less than 15 per cent of the variance in SSC. A multivariate model, incorporating additional potentially explanatory variables, offered little improvement. Diurnal hysteresis in the data gives rise to quasi‐autocorrelation in the residual series from regression models. This was effectively removed by incorporating dummy diurnal variables into the multivariate model. The presence of a first‐order autoregressive, stochastic process gives rise to true autocorrelation in the residual series from regression models. This was accommodated by incorporating an ARIMA (1,0,0) term into a multivariate autoregression model. The model‐building process yielded a systematic progression in the explanation of variance in SSC, stripping away pattern in the autocorrelation function of the residual series; mean model error was reduced from 54 per cent to 6 per cent. The dependence of SSC on the magnitude of discharge is weak and highly variable, whereas the dependence of current SSC on recent values of SSC, revealed through the stochastic term, is an order of magnitude greater and relatively constant during the melt season. The dominant control on SSC throughout the melt season is therefore short‐term sediment availability. The simple and largely unchanging stochastic process generally responsible for generating the observed SSC series implies a simple and unchanging glacier drainage system. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
T. Furuichi  Z. Win  R. J. Wasson 《水文研究》2009,23(11):1631-1641
Among the large rivers rising on the Tibetan Plateau and adjacent high mountains, the discharge and suspended sediment load of the Ayeyarwady (Irrawaddy) River are the least well known. Data collected between 1969 and 1996 at Pyay (Prome) are analysed to provide the best available modern estimate of discharge (379 ± 47 × 109 m3/year) and suspended sediment load (325 ± 57 × 106 t/year) for the river upstream of the delta head. A statistical comparison with data collected in the nineteenth century (1871 to 1879) shows discharge has significantly decreased in the last ~100 years. Regression and correlation analyses between discharge in the modern period and indices of El Niño–Southern Oscillation (ENSO) show a relationship. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Bankfull discharge is a key parameter in the context of river engineering and geomorphology, as an indicator of flood discharge capacity in alluvial rivers, and varying in response to the incoming flow and sediment regimes. Bankfull channel dimensions have significantly adjusted along the Lower Yellow River (LYR) due to recent channel degradation, caused by the operation of the Xiaolangdi Reservoir, which has led to longitudinal variability in cross‐sectional bankfull discharges. Therefore, it is more representative to describe the flood discharge capacity of the LYR, using the concept of reach‐averaged bankfull discharge. Previous simple mean methods to estimate reach‐scale bankfull discharge cannot meet the condition of flow continuity or account for the effect of different spacing between two sections. In this study, a general method to calculate cross‐sectional bankfull discharge using the simulated stage‐discharge relation is outlined briefly, and an integrated method is then proposed for estimating reach‐scale bankfull discharge. The proposed method integrates a geometric mean based on the log‐transformation with a weighted average based on the spacing between two consecutive sections, which avoids the shortcomings of previous methods. The post‐flood reach‐scale bankfull discharges in three different channel‐pattern reaches of the LYR were estimated annually during the period from 1999 to 2010 using the proposed method, based on surveyed post‐flood profiles at 91 sedimentation sections and the measured hydrological data at seven hydrometric sections. The calculated results indicate that: (i) the estimated reach‐scale bankfull discharges can effectively represent the flood discharge capacity of different reaches, with their ranges of variation being less than those of typical cross‐sectional bankfull discharges; and (ii) the magnitude of the reach‐scale bankfull discharge in each reach can respond well to the accumulative effect of incoming flow and sediment conditions. Finally, empirical relationships for different reaches in the LYR were developed between the reach‐scale bankfull discharge and the previous four‐year average discharge and incoming sediment coefficient during flood seasons, with relatively high correlation coefficients between them being obtained, and the reach‐scale bankfull discharges in different reaches predicted by the delayed response model were also presented for a comparison. These relations for the prediction of reach‐scale bankfull discharges were validated using the cross‐sectional profiles and hydrological data measured in 2011. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
This study modelled flood losses (economic damages) along the Middle Mississippi River (MMR) (1) using current US government estimates of flow frequencies and (2) using frequencies based on the original, unaltered discharge measurements. The official flood frequencies were quantified in the Upper Mississippi River System Flow Frequency Study (UMRSFFS), but as a last step in that study, early discharges along the MMR were reduced by up to 54% to reflect a purported bias in early measurements. Subsequently, early discharge measurements were rigorously tested, and no such bias was found. Here, flood damages were quantified using a combination of one‐dimensional hydraulic modelling and flood‐loss modelling. For all recurrence intervals, damages were much less using the UMRSFFS flow frequencies compared with the frequencies based on the original discharge measurements, with differences ranging up to 79% (100‐year event) and $2.9bn (200‐year event). Annualized losses in the study area based on the UMRSFFS frequencies were just $41.6m versus $125.6m using the raw frequencies (an underestimation of 67%). These totals do not include flood losses elsewhere along the MMR, including in metropolitan St Louis. In summary, a seemingly small methodological adjustment – in this case, a single hidden adjustment, not documented anywhere within the UMRSFFS – can have dramatic societal impacts in terms of underestimation of flood probabilities and flood risk. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
In 1937, the US Army Corps of Engineers cut through the “neck” of a large meander on the lower Mississippi River (below the confluence with the Ohio River) forming the Caulk Neck cutoff and creating Lake Whittington, a 26‐km long oxbow lake, in northern Mississippi. Since 1938, seasonal flooding and a boat channel connecting the lake with the Mississippi River have led to sediment accumulation in the lake, resulting in an 80‐year record of sediment quality in the river. On the basis of an age‐dated sediment core from the lake, trends in trace metals and hydrophobic organic compounds (except polycyclic aromatic hydrocarbons) follow well‐known patterns with upward trends from the 1930s to the ca 1970s, followed by downward trends to the present. Two factors contribute to these patterns: reservoir construction and changes in emissions. The construction of seven large reservoirs on the Missouri River, in particular the closure of the Fort Randall (1953) and Gavins Point (1955) Dams, greatly reduced the load of relatively clean sediment to the Mississippi River, likely contributing to downstream increases in contaminant concentrations in the Mississippi River. Increasing anthropogenic emissions also contributed to upward trends until ca 1970 when major environmental policy actions began resulting in broad decreases in emissions and downward trends in the concentrations of most of the contaminants monitored. Polycyclic aromatic hydrocarbons and phosphorus are partial exceptions to this pattern, with increases to the 1960s and variable concentrations showing no clear trend since. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

18.
The Mekong Basin in southeast Asia is facing rapid development, impacting its hydrology and sediment dynamics. Although the understanding of the sediment transport rates in the Mekong is gradually growing, the sediment dynamics in the lower Mekong floodplains (downstream from Kratie) are poorly understood. The aim of this study is to conduct an analysis to increase the understanding of the sediment dynamics at the Chaktomuk confluence of the Mekong River, and the Tonle Sap River in the Lower Mekong River in Cambodia. This study is based on the data from a detailed field survey over the three hydrological years (May 2008–April 2011) at the two sites (the Mekong mainstream and the Tonle Sap River) at the Chaktomuk confluence. We further compared the sediment fluxes at Chaktomuk to an upstream station (i.e. Mukdahan) with longer time series. Inflow sediment load towards the lake was lower than that of the outflow, with a ratio on average of 84%. Although annually only a small amount of sediment load from the Tonle Sap contributes to the delta (less than 15%), its share is substantial during the February–April period. The annual sediment load transport from the confluence to the delta in 2009 and 2010 accounted for 54 and 50 Mt, respectively. This was on average only 55% of the sediment fluxes measured at Mukdahan, a more upstream station. Furthermore when compared to sediment loads further downstream at the Cambodia–Vietnam border, we found that the suspended sediment flux continued to decline towards the South China Sea. Our findings thus indicate that the sediment load to the South China Sea is much lower than the previous estimate 150–160 Mt/yr. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
ABSTRACT

Sediment accumulation in a river reservoir is studied by stochastic time series models and analytical approach. The first-order moving average process is found the best for the suspended sediment discharge time series of the Juniata River at Newport, Pennsylvania, USA. Synthetic suspended sediment discharges are first generated with the chosen model after which analytical expressions are derived for the expected value and variance of sediment accumulation in the reservoir. The expected value and variance of the volume of sediment accumulation in the reservoir are calculated from a thousand synthetic time series each 38 years long and compared to the analytical approach. Stochastic and analytical approaches perfectly trace the observation in terms of the expected value and variability. Therefore, it is concluded that the expected value and variance of sediment accumulation in a reservoir could be estimated by analytical expressions without the cost of synthetic data generation mechanisms.  相似文献   

20.
Hydrological characteristics of englacial and subglacial drainage systems in Gulkana Glacier, Alaska, were examined by analysing temporal variations of discharge and sediment load in the proglacial Phelan Creek in 2001. From data plots on semi‐log paper, it appeared appropriate to separate both discharge and sediment load into fast and slow components. The two components were possibly produced by two different drainage systems: an englacial and subglacial, ‘channellized’ system in the ablation zone, and a subglacial, ‘distributed’ system in the accumulation zone. The data indicate the occurrence of an event during which part of the ‘distributed’ drainage system changed into the ‘channellized’ drainage system. The daily time‐series of discharge and sediment load were represented using a tank model. In the model, the drainage from an additional tank was added, supposing that a subglacial reservoir full of water and sediment collapsed slowly when the subglacial drainage system changed from distributed to channellized. The simulation with the collapsed tank gave much more reasonable results than those with no collapsed tank. The contribution of the collapsed tank to total sediment load is 24%, which is much larger than 9% to total discharge. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号