首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Moderate Resolution Imaging Spectroradiometer (MODIS), flown on board the Terra Earth Observing System (EOS) platform launched in December 1999, produces a snow‐covered area (SCA) product. This product is expected to be of better quality than SCA products based on operational satellites (notably GOES and AVHRR), due both to improved spectral resolution and higher spatial resolution of the MODIS instrument. The gridded MODIS SCA product was compared with the SCA product produced and distributed by the National Weather Service National Operational Hydrologic Remote Sensing Center (NOHRSC) for 46 selected days over the Columbia River basin and 32 days over the Missouri River basin during winter and spring of 2000–01. Snow presence or absence was inferred from ground observations of snow depth at 1330 stations in the Missouri River basin and 762 stations in the Columbia River basin, and was compared with the presence/absence classification for the corresponding pixels in the MODIS and NOHRSC SCA products. On average, the MODIS SCA images classified fewer pixels as cloud than NOHRSC, the effect of which was that 15% more of the Columbia basin area could be classified as to presence–absence of snow, while overall there was a statistically insignificant difference over the Missouri basin. Of the pixels classified as cloud free, MODIS misclassified 4% and 5% fewer overall (for the Columbia and Missouri basins respectively) than did the NOHRSC product. When segregated by vegetation cover, forested areas had the greatest differences in fraction of cloud cover reported by the two SCA products, with MODIS classifying 13% and 17% less of the images as cloud for the Missouri and Columbia basins respectively. These differences are particularly important in the Columbia River basin, 39% of which is forested. The ability of MODIS to classify significantly greater amounts of snow in the presence of cloud in more topographically complex, forested, and snow‐dominated areas of these two basins provides valuable information for hydrologic prediction. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Land surface albedo plays an important role in the radiation budget and global climate models. NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) provide 16‐day albedo product with 500‐m resolution every 8 days (MCD43A3). Some in‐situ albedo measurements were used as the true surface albedo values to validate the MCD43A3 product. As the 16‐day MODIS albedo retrievals do not include snow observations when there is ephemeral snow on the ground surface in a 16‐day period, comparisons between MCD43A3 and 16 day averages of field data do not agree well. Another reason is that the MODIS cannot detect the snow when the area is covered by clouds. The Advanced Microwave Scanning Radiometer for EOS (AMSR‐E) data are not affected by weather conditions and are a good supplement for optical remote sensing in cloudy weather. When the surface is covered by ephemeral snow, the AMSR‐E data can be used as the additional information to retrieve the snow albedo. In this study, we developed an improved method by using the MODIS products and the AMSR‐E snow water equivalent (SWE) product to improve the MCD43A3 short‐time snow‐covered albedo estimation. The MODIS daily snow products MOD10A1 and MYD10A1 both provide snow and cloud information from observations. In our study region, we updated the MODIS daily snow product by combining MOD10A1 and MYD10A1. Then, the product was combined with the AMSR‐E SWE product to generate new daily snow‐cover and SWE products at a spatial resolution of 500 m. New SWE datasets were integrated into the Noah Land Surface Model snow model to calculate the albedo above a snow surface, and these values were then utilized to improve the MODIS 16‐day albedo product. After comparison of the results with in‐situ albedo measurements, we found that the new corrected 16‐day albedo can show the albedo changes during the short snowfall season. For example, from January 25 to March 14, 2007 at the BJ site, the albedo retrieved from snow‐free observations does not indicate the albedo changes affected by snow; the improved albedo conforms well to the in‐situ measurements. The correlation coefficient of the original MODIS albedo and the in‐situ albedo is 0.42 during the ephemeral snow season, but the correlation coefficient of the improved MODIS albedo and the in‐situ albedo is 0.64. It is concluded that the new method is capable of capturing the snow information from AMSR‐E SWE to improve the short‐time snow‐covered albedo estimation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The Euphrates and Tigris rivers serve as the most important water resources in the Middle East. Precipitation in this region falls mostly in the form of snow over the higher elevations of the Euphrates Basin and remains on the ground for nearly half of the year. This snow‐covered area (SCA) is a key element of the hydrological cycle, and monitoring the SCA is crucial for making accurate forecasts of snowmelt discharge, especially for energy production, flood control, irrigation, and reservoir‐operation optimization in the Upper Euphrates (Karasu) Basin. Remote sensing allows the detection of the spatio‐temporal patterns of snow cover across large areas in inaccessible terrain, such as the eastern part of Turkey, which is highly mountainous. In this study, a seasonal evaluation of the snow cover from 2000 to 2009 was performed using 8‐day snow‐cover products (MOD10C2) and the daily snow‐water equivalent (SWE) product. The values of SWE products were obtained using an assimilation process based on the Helsinki University of Technology model using equal area Special Sensor Microwave Imager (SSM/I) Earth‐gridded advanced microwave scanning radiometer—EOS daily brightness‐temperature values. In the Karasu Basin, the SCA percentage for the winter period is 80–90%. The relationship between the SCA and the runoff during the spring period is analysed for the period from 2004 to 2009. An inverse linear relationship between the normalized SCA and the normalized runoff values was obtained (r = 0·74). On the basis of the monthly mean temperature, total precipitation and snow depth observed at meteorological stations in the basin, the decrease in the peak discharges, and early occurrences of the peak discharges in 2008 and 2009 are due to the increase in the mean temperature and the decrease in the precipitation in April. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The spatial and temporal distribution of the snow water equivalent (SWE), snow density and snow depth were estimated by a method combining remote sensing technology and degree‐day techniques over a study area of 370 000 km2. The advantages of this simulation model are its simplicity and the availability of degree‐day parameters, which can be successively evaluated by referring to snow area maps created from satellite images. This simulation worked very well for estimating SWE and helped to separate the areas of thin snow cover from heavier snowfall. However, shallow snow in warm regions led to some misjudgments in the snow area maps because of the time lag between when the satellite image was acquired and the simulation itself. Vulnerable areas, where a large variation in the amount of snow affects people's life, could be identified from the differences between heavy and light snow years. This vulnerability stems from a predicted lack of irrigation water for rice production caused by future climate change. The model developed in this study has the potential to contribute to water management activities and decision‐making processes when considering necessary adaptations to future climate change. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
To evaluate the interactive effects of snow and forest on turbulent fluxes between the forest surface and the atmosphere, the surface energy balance above a forest was measured by the eddy correlation method during the winter of 1995–1996. The forest was a young coniferous plantation comprised of spruce and fir. The study site, in Sapporo, northern Japan, had heavy and frequent snowfalls and the canopy was frequently covered with snow during the study period. A comparison of the observed energy balance above the forest for periods with and without a snow‐covered canopy and an analysis using a single‐source model gave the following results: during daytime when the canopy was covered with snow, the upward latent heat flux was large, about 80% of the net radiation, and the sensible heat flux was positive but small. On the other hand, during daytime when the canopy was dry and free from snow, the sensible heat flux was dominant and the latent heat flux was minor, about 10% of the net radiation. To explain this difference of energy partition between snow‐covered and snow‐free conditions, not only differences in temperature but also differences in the bulk transfer coefficients for latent heat flux were necessary in the model. Therefore, the high evaporation rate from the snow‐covered canopy can be attributed largely to the high moisture availability of the canopy surface. Evaporation from the forest during a 60‐day period in midwinter was estimated on a daily basis as net radiation minus sensible heat flux. The overall average evaporation during the 60‐day period was 0·6 mm day−1, which is larger than that from open snow fields. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
Reliable estimation of the volume and timing of snowmelt runoff is vital for water supply and flood forecasting in snow‐dominated regions. Snowmelt is often simulated using temperature‐index (TI) models due to their applicability in data‐sparse environments. Previous research has shown that a modified‐TI model, which uses a radiation‐derived proxy temperature instead of air temperature as its surrogate for available energy, can produce more accurate snow‐covered area (SCA) maps than a traditional TI model. However, it is unclear whether the improved SCA maps are associated with improved snow water equivalent (SWE) estimation across the watershed or improved snowmelt‐derived streamflow simulation. This paper evaluates whether a modified‐TI model produces better streamflow estimates than a TI model when they are used within a fully distributed hydrologic model. It further evaluates the performance of the two models when they are calibrated using either point SWE measurements or SCA maps. The Senator Beck Basin in Colorado is used as the study site because its surface is largely bedrock, which reduces the role of infiltration and emphasizes the role of the SWE pattern on streamflow generation. Streamflow is simulated using both models for 6 years. The modified‐TI model produces more accurate streamflow estimates (including flow volume and peak flow rate) than the TI model, likely because the modified‐TI model better reproduces the SWE pattern across the watershed. Both models also produce better performance when calibrated with SCA maps instead of point SWE data, likely because the SCA maps better constrain the space‐time pattern of SWE.  相似文献   

7.
Water potential below a frozen soil layer was continuously monitored over an entire winter period (using thermally insulated tensiometers sheltered in a heated chamber) along with other soil, snow and atmospheric variables. In early winter, the freezing front advanced under a thin snow cover, inducing upward soil water flow in the underlying unfrozen soil. The freezing front started to retreat when the snow cover became thick enough to insulate the soil, resulting in the reversal of the flow direction in the unfrozen zone. These data provide a clear illustration of soil water dynamics, which have rarely been monitored with a tensiometer. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Multivariate statistical analysis was used to explore relationships between catchment topography and spatial variability in snow accumulation and melt processes in a small headwater catchment in the Spanish Pyrenees. Manual surveys of snow depth and density provided information on the spatial distribution of snow water equivalent (SWE) and its depletion over the course of the 1997 and 1998 melt seasons. A number of indices expressing the topographic control on snow processes were extracted from a detailed digital elevation model of the catchment. Bivariate screening was used to assess the relative importance of these topographic indices in controlling snow accumulation at the start of the melt season, average melt rates and the timing of snow disappearance. This suggested that topographic controls on the redistribution of snow by wind are the most important influence on snow distribution at the start of the melt season. Furthermore, it appeared that spatial patterns of snow disappearance were largely determined by the distribution of snow water equivalent (SWE) at the start of the melt season, rather than by spatial variability in melt rates during the melt season. Binary regression tree models relating snow depth and disappearance date to terrain indices were then constructed. These explained 70–80% of the variance in the observed data. As well as providing insights into the influence of topography on snow processes, it is suggested that the techniques presented herein could be used in the parameterization of distributed snowmelt models, or in the design of efficient stratified snow surveys. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Lars Nyberg 《水文研究》1996,10(1):89-103
The spatial variability of soil water content was investigated for a 6300 m2 covered catchment on the Swedish west coast. The catchment podzol soil is developed in a sandy—silty till with a mean depth of 43 cm and the dominant vegetation is Norway spruce. The acid precipitation is removed by a plastic roof and replaced with lake water irrigated under the tree canopies. On two occasions, in April and May 1993, TDR measurements were made at 57–73 points in the catchment using 15 and 30 cm long vertically installed probes. The water content pattern at the two dates, which occurred during a relatively dry period, were similar. The range of water content was large, from 5 to 60%. In May 1993 measurements also were made in areas of 10 × 10 m, 1 × 1 m and 0·2 × 0·2 m. The range and standard deviation for the 10 × 10 m area, which apart from a small-scale variability in soil hydraulic properties and fine root distribution also had a heterogeneous micro- and macro-topography, was similar to the range and standard deviation for the catchment. The 1 × 1 m and 0·2 × 0·2 m areas had considerably lower variability. Semi-variogram models for the water content had a range of influence of about 20 m. If data were paired in the east-–west direction the semi-variance reflected the topography of the central valley and had a maximum for data pairs with internal distances of 20–40 m. The correlation between soil water content and topographic index, especially when averaged for the eight topographically homogeneous subareas, indicated the macro-topography as the cause of a large part of the water content variability.  相似文献   

10.
11.
Kyuhyun Byun  Minha Choi 《水文研究》2014,28(7):3173-3184
Accurate estimation of snow water equivalent (SWE) has been significantly recognized to improve management and analyses of water resource in specific regions. Although several studies have focused on developing SWE values based on remotely sensed brightness temperatures obtained by microwave sensor systems, it is known that there are still a number of uncertainties in SWE values retrieved from microwave radiometers. Therefore, further research for improving remotely sensed SWE values including global validation should be conducted in unexplored regions such as Northeast Asia. In this regard, we evaluated SWE through comparison of values produced by the Advanced Microwave Scanning Radiometer Earth Observing System (AMSR‐E) from December 2002 to February 2011 with in situ SWE values converted from snow‐depth observation data from four regions in the South Korea. The results from three areas showed similarities which indicated that the AMSR‐E SWE values were overestimated when compared with in situ SWE values, and their Mean Absolute Errors (MAE) by month were relatively small (1.1 to 6.5 mm). Contrariwise, the AMSR‐E SWE values of one area were significantly underestimated when compared with in situ SWE values and the MAE were much greater (4.9 to 35.2 mm). These results were closely related to AMSR‐E algorithm‐related error sources, which we analyzed with respect to topographic characteristics and snow properties. In particular, we found that snow density data used in the AMSR‐E SWE algorithm should be based on reliable in situ data as the current AMSR‐E SWE algorithm cannot reflect the spatio‐temporal variability of snow density values. Additionally, we derived better results considering saturation effect of AMSR‐E SWE. Despite the demise of AMSR‐E, this study's analysis is significant for providing a baseline for the new sensor and suggests parameters important for obtaining more reliable SWE. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The magnitude and spatial distribution of snow on sea ice are both integral components of the ocean–sea‐ice–atmosphere system. Although there exists a number of algorithms to estimate the snow water equivalent (SWE) on terrestrial surfaces, to date there is no precise method to estimate SWE on sea ice. Physical snow properties and in situ microwave radiometry at 19, 37 and 85 GHz, V and H polarization were collected for a 10‐day period over 20 first‐year sea ice sites. We present and compare the in situ physical, electrical and microwave emission properties of snow over smooth Arctic first‐year sea ice for 19 of the 20 sites sampled. Physical processes creating the observed vertical patterns in the physical and electrical properties are discussed. An algorithm is then developed from the relationship between the SWE and the brightness temperature measured at 37 GHz (55°) H polarization and the air temperature. The multiple regression between these variables is able to account for over 90% of the variability in the measured SWE. This algorithm is validated with a small in situ data set collected during the 1999 field experiment. We then compare our data against the NASA snow thickness algorithm, designed as part of the NASA Earth Enterprise Program. The results indicated a lack of agreement between the NASA algorithm and the algorithm developed here. This lack of agreement is attributed to differences in scale between the Special Sensor Microwave/Imager and surface radiometers and to differences in the Antarctic versus Arctic snow physical and electrical properties. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
The temporal and spatial continuity of spatially distributed estimates of snow‐covered area (SCA) are limited by the availability of cloud‐free satellite imagery; this also affects spatial estimates of snow water equivalent (SWE), as SCA can be used to define the extent of snow telemetry (SNOTEL) point SWE interpolation. In order to extend the continuity of these estimates in time and space to areas beneath the cloud cover, gridded temperature data were used to define the spatial domain of SWE interpolation in the Salt–Verde watershed of Arizona. Gridded positive accumulated degree‐days (ADD) and binary SCA (derived from the Advanced Very High Resolution Radiometer (AVHRR)) were used to define a threshold ADD to define the area of snow cover. The optimized threshold ADD increased during snow accumulation periods, reaching a peak at maximum snow extent. The threshold then decreased dramatically during the first time period after peak snow extent owing to the low amount of energy required to melt the thin snow cover at lower elevations. The area having snow cover at this later time was then used to define the area for which SWE interpolation was done. The area simulated to have snow was compared with observed SCA from AVHRR to assess the simulated snow map accuracy. During periods without precipitation, the average commission and omission errors of the optimal technique were 7% and 11% respectively, with a map accuracy of 82%. Average map accuracy decreased to 75% during storm periods, with commission and omission errors equal to 11% and 12% respectively. The analysis shows that temperature data can be used to help estimate the snow extent beneath clouds and therefore improve the spatial and temporal continuity of SCA and SWE products. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
The retrieval of Snow Water Equivalent (SWE) from remote sensing satellites continues to be a very challenging problem. In this paper, we evaluate the accuracy of a new SWE product derived from the blending of a passive microwave SWE product based on the Advanced Microwave Sounding Unit (AMSU) with a multi‐sensor snow cover extent product based on the Interactive Multi‐sensor Snow and Ice Mapping System (IMS). The microwave measurements have the ability to penetrate the snow pack, and thus, the retrieval of SWE is best accomplished using the AMSU. On the other hand, the IMS maps snow cover more reliably due to the use of multiple satellite and ground observations. The evolution of global snow cover from the blended, the AMSU and the IMS products was examined during the 2006 snow season. Despite the overall good inter‐product agreement, it was shown that the retrievals of snow cover extent in the blended product are improved when using IMS, with implications for improved microwave retrievals of SWE. In a separate investigation, the skill of the microwave SWE product was also examined for its ability to correctly estimate SWE globally and regionally. Qualitative evaluation of global SWE retrievals suggested dependence on land surface temperature: the lower the temperature, the higher the SWE retrieved. This temperature bias was attributed in part to temperature effects on those snow properties that impact microwave response. Therefore, algorithm modifications are needed with more dynamical adjustments to account for changing snow cover. Quantitative evaluation over Slovakia in central Europe, for a limited period in 2006, showed reasonably good performance for SWE less than 100 mm. Sensitivity to deeper snow decreased significantly. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Time series of fractional snow covered area (SCA) estimates from Landsat Enhanced Thematic Mapper (ETM+), Moderate Resolution Imaging Spectroradiometer (MODIS), and Advanced Very High Resolution Radiometer (AVHRR) data were combined with a spatially distributed snowmelt model to reconstruct snow water equivalent (SWE) in the Rio Grande headwaters (3419 km2). In this reconstruction approach, modeled snowmelt over each pixel is integrated during the period of satellite-observed snow cover to estimate SWE. Due to underestimates in snow cover detection, maximum basin-wide mean SWE using MODIS and AVHRR were, respectively, 45% and 68% lower than SWE estimates obtained using ETM+ data. The mean absolute error (MAE) of SWE estimated at 100-m resolution using ETM+ data was 23% relative to observed SWE from intensive field campaigns. Model performance deteriorated when MODIS (MAE = 50%) and AVHRR (MAE = 89%) SCA data were used. Relative to differences in the SCA products, model output was less sensitive to spatial resolution (MAE = 39% and 73% for ETM+ and MODIS simulations run at 1 km resolution, respectively), indicating that SWE reconstructions at the scale of MODIS acquisitions may be tractable provided the SCA product is improved. When considering tradeoffs between spatial and temporal resolution of different sensors, our results indicate that higher spatial resolution products such as ETM+ remain more accurate despite the lower frequency of acquisition. This motivates continued efforts to improve MODIS snow cover products.  相似文献   

16.
Comprehensive snow depth data, collected using georadar and hand probing, were used for statistical analyses of snow depths inside 1 km grid cells. The sub‐grid cell spatial scale was 100 m. Statistical distribution functions were found to have varying parameters, and an attempt was made to connect these statistical parameters to different terrain variables. The results showed that the two parameters mean and standard deviation of snow depth were significantly related to the sub‐grid terrain characteristics. Linear regression models could explain up to 50% of the variation for both of the snowcover parameters mentioned. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Hydrological processes in mountainous settings depend on snow distribution, whose prediction accuracy is a function of model spatial scale. Although model accuracy is expected to improve with finer spatial resolution, an increase in resolution comes with modelling costs related to increased computational time and greater input data and parameter information. This computational and data collection expense is still a limiting factor for many large watersheds. Thus, this work's main objective is to question which physical processes lead to loss in model accuracy with regard to input spatial resolution under different climatic conditions and elevation ranges. To address this objective, a spatially distributed snow model, iSnobal, was run with inputs distributed at 50‐m—our benchmark for comparison—and 100‐m resolutions and with aggregated (averaged from the fine to the large resolution) inputs from the 50‐m model to 100‐, 250‐, 500‐, and 750‐m resolution for wet, average, and dry years over the Upper Boise River Basin (6,963 km2), which spans four elevation bands: rain dominated, rain–snow transition, and snow dominated below treeline and above treeline. Residuals, defined as differences between values quantified with high resolution (>50 m) models minus the benchmark model (50 m), of simulated snow‐covered area (SCA) and snow water equivalent (SWE) were generally slight in the aggregated scenarios. This was due to transferring the effects of topography on meteorological variables from the 50‐m model to the coarser scales through aggregation. Residuals in SCA and SWE in the distributed 100‐m simulation were greater than those of the aggregated 750 m. Topographic features such as slope and aspect were simplified, and their gradient was reduced due to coarsening the topography from the 50‐ to 100‐m resolution. Therefore, solar radiation was overestimated, and snow drifting was modified and caused substantial SCA and SWE underestimation in the distributed 100‐m model relative to the 50‐m model. Large residuals were observed in the wet year and at the highest elevation band when and where snow mass was large. These results support that model accuracy is substantially reduced with model scales coarser than 50 m.  相似文献   

18.
The water storage and energy transfer roles of supraglacial ponds are poorly constrained, yet they are thought to be important components of debris‐covered glacier ablation budgets. We used an unmanned surface vessel (USV) to collect sonar depth measurements for 24 ponds to derive the first empirical relationship between their area and volume applicable to the size distribution of ponds commonly encountered on debris‐covered glaciers. Additionally, we instrumented nine ponds with thermistors and three with pressure transducers, characterizing their thermal regime and capturing three pond drainage events. The deepest and most irregularly‐shaped ponds were those associated with ice cliffs, which were connected to the surface or englacial hydrology network (maximum depth = 45.6 m), whereas hydrologically‐isolated ponds without ice cliffs were both more circular and shallower (maximum depth = 9.9 m). The englacial drainage of three ponds had the potential to melt ~100 ± 20 × 103 kg to ~470 ± 90 × 103 kg of glacier ice owing to the large volumes of stored water. Our observations of seasonal pond growth and drainage with their associated calculations of stored thermal energy have implications for glacier ice flow, the progressive enlargement and sudden collapse of englacial conduits, and the location of glacier ablation hot‐spots where ponds and ice cliffs interact. Additionally, the evolutionary trajectory of these ponds controls large proglacial lake formation in deglaciating environments. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Taking the Northern Xinjiang region as an example, we develop a snow depth model by using the Advanced Microwave Scanning Radiometer‐Earth Observing System (AMSR‐E) horizontal and vertical polarization brightness temperature difference data of 18 and 36 GHz bands and in situ snow depth measurements from 20 climatic stations during the snow seasons November–March) of 2002–2005. This article proposes a method to produce new 5‐day snow cover and snow depth images, using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) daily snow cover products and AMSR‐E snow water equivalent and daily brightness temperature products. The results indicate that (1) the brightness temperature difference (Tb18h–Tb36h) provides the most accurate and precise prediction of snow depth; (2) the snow, land and overall classification accuracies of the new images are separately 89.2%, 77.7% and 87.2% and are much better than those of AMSR‐E or MODIS products (in all weather conditions) alone; (3) the snow classification accuracy increases as snow depth increases; and (4) snow accuracies for different land cover types vary as 88%, 92.3%, 79.7% and 80.1% for cropland, grassland, shrub, and urban and built‐up, respectively. We conclude that the new 5‐day snow cover–snow depth images can provide both accurate cloud‐free snow cover extent and the snow depth dynamics, which would lay a scientific basis for water management and prevention of snow‐related disasters in this dry and cold pastoral area. After validations of the algorithms over other regions with different snow and climate conditions, this method would also be used for monitoring snow cover and snow depth elsewhere in the world. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Water losses from snow intercepted by forest canopy can significantly influence the hydrological cycle in seasonally snow‐covered regions, yet how snow interception losses (SIL) are influenced by a changing climate are poorly understood. In this study, we used a unique 30 year record (1986–2015) of snow accumulation and snow water equivalent measurements in a mature mixed coniferous (Picea abies and Pinus sylvestris ) forest stand and an adjacent open area to assess how changes in weather conditions influence SIL. Given little change in canopy cover during this study, the 20% increase in SIL was likely the result of changes in winter weather conditions. However, there was no significant change in average wintertime precipitation and temperature during the study period. Instead, mean monthly temperature values increased during the early winter months (i.e., November and December), whereas there was a significant decrease in precipitation in March. We also assessed how daily variation in meteorological variables influenced SIL and found that about 50% of the variation in SIL was correlated to the amount of precipitation that occurred when temperatures were lower than ?3 °C and to the proportion of days with mean daily temperatures higher than +0.4 °C. Taken together, this study highlights the importance of understanding the appropriate time scale and thresholds in which weather conditions influence SIL in order to better predict how projected climate change will influence snow accumulation and hydrology in boreal forests in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号