首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of basin size on low-flow stream chemistry and subsurface contact time were examined for a part of the Neversink River watershed in southern New York State. Acid neutralizing capacity (ANC), the sum of base cation concentrations (SBC), pH and concentrations of total aluminum (Al), dissolved organic carbon (DOC) and silicon (Si) were measured during low stream flow at the outlets of nested basins ranging in size from 0·2 to 166·3 km2. ANC, SBC, pH, Al and DOC showed pronounced changes as basin size increased from 0·2 to 3 km2, but relatively small variations were observed as basin size increased beyond 3 km2. An index of subsurface contact time computed from basin topography and soil hydraulic conductivity also showed pronounced changes as basin size increased from 0·2 to 3 km2 and smaller changes as basin size increased beyond 3 km2. These results suggest that basin size affects low-flow stream chemistry because of the effects of basin size on subsurface contact time. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
This data note describes the Biscuit Brook and Neversink Reservoir watershed long-term monitoring data that includes: 1) stream discharge, (1983–2020 for Biscuit Brook and 1937–2020 for the Neversink Reservoir watershed), 2) stream water chemistry, 1983–2020, at 4 stations, 3) fish survey data from 16 locations in the watershed 1990–2019, 4) soil chemistry data from 2 headwater sub-watersheds, 1993–2012 and 5) periodic stream water chemistry sampling data from 364 locations throughout the watershed, 1983–2020. The Neversink Reservoir watershed in the Catskill Mountains of New York, USA drains an area of 172.5 km2. The watershed feeds one of six reservoirs in New York City's West of Hudson water supply, which accounts for about 90% of the city's water supply. Biscuit Brook is a 9.63 km2 tributary sub-watershed within the Neversink Reservoir watershed.  相似文献   

3.
Headwater streams expand, contract, and disconnect in response to seasonal moisture conditions or those related to individual precipitation events. The fluctuation of the surface flow extent, or active drainage network, reflects catchment storage characteristics and has important impacts on stream ecology; however, the hydrological mechanisms that drive this phenomenon are still uncertain. Here, we present field surveys of the active drainage networks of four headwater streams in Central Idaho's Frank Church‐River of No Return Wilderness (7–21 km2) spanning the spring and summer months of 2014. We report the total length of the active drainage networks, which varied as a power law function with stream discharge with an average exponent of 0.11 ± 0.03 (range of 0.05–0.20). Generally, these active drainage networks were less responsive to changes in discharge than many streams in past studies. We observed that the locations where surface flow originates, or flowheads, were often stable, and an average of 64% of the change in active drainage network length was explained by downstream discontinuities. Analysis of geologic and geomorphic characteristics of individual watersheds and flowheads suggests that most flowheads below approximately 2200 m are supported by stable flowpaths controlled by bedrock structure. At higher elevations, small accumulation areas and saturation of shallow and conductive soil and colluvium after snowmelt result in more mobile flowhead locations. The dynamics of active drainage networks can help illuminate the spatiotemporal structure of flowpaths supporting surface flow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Despite decades of research on the ecological consequences of stream network expansion, contraction and fragmentation, surprisingly little is known about the hydrological mechanisms that shape these processes. Here, we present field surveys of the active drainage networks of four California headwater streams (4–27 km2) spanning diverse topographic, geologic and climatic settings. We show that these stream networks dynamically expand, contract, disconnect and reconnect across all the sites we studied. Stream networks at all four sites contract and disconnect during seasonal flow recessions, with their total active network length, and thus their active drainage densities, decreasing by factors of two to three across the range of flows captured in our field surveys. The total flowing lengths of the active stream networks are approximate power‐law functions of unit discharge, with scaling exponents averaging 0.27 ± 0.04 (range: 0.18–0.40). The number of points where surface flow originates obey similar power‐law relationships, as do the lengths and origination points of flowing networks that are continuously connected to the outlet, with scaling exponents averaging 0.36–0.48. Even stream order shifts seasonally by up to two Strahler orders in our study catchments. Broadly, similar stream length scaling has been observed in catchments spanning widely varying geologic, topographic and climatic settings and spanning more than two orders of magnitude in size, suggesting that network extension/contraction is a general phenomenon that may have a general explanation. Points of emergence or disappearance of surface flow represent the balance between subsurface transmissivity in the hyporheic zone and the delivery of water from upstream. Thus the dynamics of stream network expansion and contraction, and connection and disconnection, may offer important clues to the spatial structure of the hyporheic zone, and to patterns and processes of runoff generation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Streams crossing underground coal mines may lose flow, whereas abandoned mine drainage (AMD) restores flow downstream. During 2005–2012, discharge from the Pine Knot Mine Tunnel, the largest AMD source in the upper Schuylkill River Basin, had near‐neutral pH and elevated concentrations of iron, manganese and sulphate. Discharge from the tunnel responded rapidly to recharge but exhibited a prolonged recession compared with nearby streams, consistent with rapid infiltration of surface water and slow release of groundwater from the mine complex. Dissolved iron was attenuated downstream by oxidation and precipitation, whereas dissolved CO2 degassed and pH increased. During high flow conditions, the AMD and downstream waters exhibited decreased pH, iron and sulphate with increased acidity that were modelled by mixing net‐alkaline AMD with recharge or run‐off having low ionic strength and low pH. Attenuation of dissolved iron within the river was least effective during high flow conditions because of decreased transport time coupled with inhibitory effects of low pH on oxidation kinetics. A numerical model of groundwater flow was calibrated by using groundwater levels in the Pine Knot Mine and discharge data for the Pine Knot Mine Tunnel and West Branch Schuylkill River during a snowmelt event in January 2012. Although the calibrated model indicated substantial recharge to the mine complex took place away from streams, simulation of rapid changes in mine pool level and tunnel discharge during a high flow event in May 2012 required a source of direct recharge to the Pine Knot Mine. Such recharge produced small changes in mine pool level and rapid changes in tunnel flow rate because of extensive unsaturated storage capacity and high transmissivity within the mine complex. Thus, elimination of stream leakage could have a small effect on the annual discharge from the tunnel, but a large effect on peak discharge and associated water quality downstream. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

7.
Jens Flster 《水文研究》2001,15(2):201-217
The near‐stream zone has received increasing attention owing to its influence on stream water chemistry in general and acidity in particular. Possible processes in this zone include cation exchange, leaching of organic matter and redox reactions of sulphur compounds. In this study the influences of processes in the near‐stream zone on the acidity in runoff from a small, acidified catchment in central southern Sweden were investigated. The study included sampling of groundwater, soil water and stream water along with hydrological measurements. An input–output budget for the catchment was established based on data from the International Co‐operative Programme on Integrated Monitoring at this site. The catchment was heavily acidified by deposition of anthropogenic sulphur, with pH in stream water between 4·4 and 4·6. There was also no relationship between stream flow and pH, which is indicative of chronic acidification. Indications of microbial reduction of sulphate were found in some places near the stream, but the near‐stream zone did not have a general impact on the sulphate concentration in discharging groundwater. The near‐stream zone was a source of dissolved organic carbon (DOC) in the stream, which had a median DOC of 6·8 mg L1. The influence on stream acidity from organic anions was overshadowed by the effect of sulphate, however, except during a spring flow episode, when additional organic matter was flushed out and the sulphate‐rich ground water was mixed with more diluted event water. Ion exchange was not an important process in the near‐stream zone of the Kindla catchment. Different functions of the near‐stream zone relating to discharge acidity are reported in the literature. In this study there was even a variation within the site. There is therefore a need for more case studies to provide a more detailed understanding of the net effects that the near‐stream zone can have on stream chemistry under different circumstances. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
A method for estimation of mean baseflow residence time in watersheds from hydrograph runoff recession characteristics was developed. Runoff recession characteristics were computed for the period 1993–96 in the 2 km2 Winnisook watershed, Catskill Mountains, southeastern New York, and were used to derive mean values of subsurface hydraulic conductivity and the storage coefficient. These values were then used to estimate the mean baseflow residence time from an expression of the soil contact time, based on watershed soil and topographic characteristics. For comparison, mean baseflow residence times were calculated for the same period of time through the traditional convolution integral approach, which relates rainfall δ18O to δ18O values in streamflow. Our computed mean baseflow residence time was 9 months by both methods. These results indicate that baseflow residence time can be calculated accurately using recession analysis, and the method is less expensive than using environmental and/or artificial tracers. Published in 2002 by John Wiley & Sons, Ltd.  相似文献   

9.
A long-term salt balance model is coupled with the small catchment water balance model presented in Part 1 of this series of papers. The salt balance model was designed as a simple robust, conceptually based model of the fundamental salt fluxes and stores in forested and cleared catchments. The model has four interdependent stores representing salt storage in the unsaturated zone, the deep permanent saturated groundwater system, the near-stream perched groundwater system and in a ‘salt bulge’ just above the permanent water-table. The model has performed well in simulations carried out on Salmon and Wights, two small experimental catchments in south-west Western Australia. When applied to Wights catchment the salt balance model was able to predict the stream salinities prior to clearing of native forests, and the increased salinities after the clearing.  相似文献   

10.
Gyoo‐Bum Kim 《水文研究》2010,24(24):3535-3546
A number of groundwater wells for agricultural activity, including rice farming and greenhouses, have been developed near streams over the past 20 years in South Korea. The result of a stream depletion calculation using an analytical solution of complimentary error function shows that groundwater pumping at 1949 wells drilled in the Gapcheon watershed can produce stream depletion. This amount is estimated at about 7% of annual baseflow and reaches as high as 18% of monthly baseflow during the maximum agricultural water consumption period in May. Agricultural wells have a larger effect on stream depletion than domestic wells because of their higher pumping rate. Stream depletion from agricultural wells located within 200 m from a stream represents 65% of the total depletion rate. Agricultural water policy for water use at nearby streams should be changed to reduce stream depletion and thereby maintain sustainable water development in South Korea. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
S. Rai  M. Z. Iqbal 《水文研究》2015,29(2):173-186
Fluorescein and bromide tracers were used to study baseflow mechanisms of a small suburban watershed in northeast Iowa, USA. The tracers were applied to ten injection holes ranging from 1.3 to 3.0 ft in depth in two phases. Separately, two PVC wells (15 and 16 ft deep) were used to investigate tracer movement in a deeper flow system. Over 30 days of phase 1, none of the tracers was detected in the creek water. In phase 2, fluorescein was irregularly detected in the creek at two sites, whereas bromide was detected at one site only. Meanwhile, soil analysis detected measurable diffusion of bromide and fluorescein at four sites. At each of these sites, the tracer was found to be diffusing toward the creek. None of the tracers applied to the deeper PVC wells showed any movement toward the creek over 1 month of continuous sampling. Isotopic composition of water samples varied spatially as well as temporally going from the deep well (δ18O = ?8.89‰) to the injection holes (average δ18O = ?8.42‰), to the creek (average δ18O = ?7.86‰), and further to the rain samples (average δ18O = ?4.68‰). The analytical error margin is ±0.09‰. Samples from the injection holes were generally heavier than the deep well sample and lighter than the creek samples, indicating that there was no significant connection between the surface and the subsurface systems. Furthermore, the sporadic appearance of bromide and fluorescein both spatially and temporally points to the fact that baseflow does not constitute a significant part of the area's stream discharge. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Studies of hyporheic exchange flows have identified physical features of channels that control exchange flow at the channel unit scale, namely slope breaks in the longitudinal profile of streams that generate subsurface head distributions. We recently completed a field study that suggested channel unit spacing in stream longitudinal profiles can be used to predict the spacing between zones of upwelling (flux of hyporheic water into the stream) and downwelling (flux of stream water into the hyporheic zone) in the beds of mountain streams. Here, we use two‐dimensional groundwater flow and particle tracking models to simulate vertical and longitudinal hyporheic exchange along the longitudinal axis of stream flow in second‐, third‐, and fourth‐order mountain stream reaches. Modelling allowed us to (1) represent visually the effect that the shape of the longitudinal profile has on the flow net beneath streambeds; (2) isolate channel unit sequence and spacing as individual factors controlling the depth that stream water penetrates the hyporheic zone and the length of upwelling and downwelling zones; (3) evaluate the degree to which the effects of regular patterns in bedform size and sequence are masked by irregularities in real streams. We simulated hyporheic exchange in two sets of idealized stream reaches and one set of observed stream reaches. Idealized profiles were constructed using regression equations relating channel form to basin area. The size and length of channel units (step size, pool length, etc.) increased with increasing stream order. Simulations of hyporheic exchange flows in these reaches suggested that upwelling lengths increased (from 2·7 m to 7·6 m), and downwelling lengths increased (from 2·9 m to 6·0 m) with increase in stream order from second to fourth order. Step spacing in the idealized reaches increased from 5·3 m to 13·7 m as stream size increased from second to fourth order. Simulated downwelling lengths increased from 4·3 m in second‐order streams to 9·7 m in fourth‐order streams with a POOL–RIFFLE–STEP channel unit sequence, and increased from 2·5 m to 6·1 m from second‐ to fourth‐order streams with a POOL–STEP–RIFFLE channel unit sequence. Upwelling lengths also increased with stream order in these idealized channels. Our results suggest that channel unit spacing, size, and sequence are all important in determining hyporheic exchange patterns of upwelling and downwelling. Though irregularities in the size and spacing of bedforms caused flow nets to be much more complex in surveyed stream reaches than in idealized stream reaches, similar trends emerged relating the average geomorphic wavelength to the average hyporheic wavelength in both surveyed and idealized reaches. This article replaces a previously published version (Hydrological Processes, 19 (17), 2915–2929 (2005) [ DOI:10.1002/hyp.5790 ]. See also retraction notice DOI:10.1002/hyp.6350 Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers. The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.  相似文献   

14.
In light of recent reductions in sulphur (S) and nitrogen (N) emissions mandated by Title IV of the Clean Air Act Amendments of 1990, temporal trends and trend coherence in precipitation (1984–2001 and 1992–2001) and surface water chemistry (1992–2001) were determined in two of the most acid‐sensitive regions of North America, i.e. the Catskill and Adirondack Mountains of New York. Precipitation chemistry data from six sites located near these regions showed decreasing sulphate (SO42?), nitrate (NO3?), and base cation (CB) concentrations and increasing pH during 1984–2001, but few significant trends during 1992–2001. Data from five Catskill streams and 12 Adirondack lakes showed decreasing trends in SO42? concentrations at all sites, and decreasing trends in NO3?, CB, and H+ concentrations and increasing trends in dissolved organic carbon at most sites. In contrast, acid‐neutralizing capacity (ANC) increased significantly at only about half the Adirondack lakes and in one of the Catskill streams. Flow correction prior to trend analysis did not change any trend directions and had little effect on SO42? trends, but it caused several significant non‐flow‐corrected trends in NO3? and ANC to become non‐significant, suggesting that trend results for flow‐sensitive constituents are affected by flow‐related climate variation. SO42? concentrations showed high temporal coherence in precipitation, surface waters, and in precipitation–surface water comparisons, reflecting a strong link between S emissions, precipitation SO42? concentrations, and the processes that affect S cycling within these regions. NO3? and H+ concentrations and ANC generally showed weak coherence, especially in surface waters and in precipitation–surface water comparisons, indicating that variation in local‐scale processes driven by factors such as climate are affecting trends in acid–base chemistry in these two regions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
This article has been retracted and replaced. See Retraction and Replacement Notice DOI: 10.1002/hyp.6350 Studies of hyporheic exchange flows have identified physical features of channels that control exchange flow at the channel unit scale, namely slope breaks in the longitudinal profile of streams that generate subsurface head distributions. We recently completed a field study that suggested channel unit spacing in stream longitudinal profiles can be used to predict the spacing between zones of upwelling (flux of hyporheic water into the stream) and downwelling (flux of stream water into the hyporheic zone) in the beds of mountain streams. Here, we use two‐dimensional groundwater flow and particle tracking models to simulate vertical and longitudinal hyporheic exchange along the longitudinal axis of stream flow in second‐, third‐, and fourth‐order mountain stream reaches. Modelling allowed us to (1) represent visually the effect that the shape of the longitudinal profile has on the flow net beneath streambeds; (2) isolate channel unit sequence and spacing as individual factors controlling the depth that stream water penetrates the hyporheic zone and the length of upwelling and downwelling zones; (3) evaluate the degree to which the effects of regular patterns in bedform size and sequence are masked by irregularities in real streams. We simulated hyporheic exchange in two sets of idealized stream reaches and one set of observed stream reaches. Idealized profiles were constructed using regression equations relating channel form to basin area. The size and length of channel units (step size, pool length, etc.) increased with increasing stream order. Simulations of hyporheic exchange flows in these reaches suggested that upwelling lengths increased (from 2·7 m to 7·6 m), and downwelling lengths increased (from 2·9 m to 6·0 m) with increase in stream order from second to fourth order. Step spacing in the idealized reaches increased from 5·3 m to 13·7 m as stream size increased from second to fourth order. Simulated upwelling lengths increased from 4·3 m in second‐order streams to 9·7 m in fourth‐order streams with a POOL–RIFFLE–STEP channel unit sequence, and increased from 2·5 m to 6·1 m from second‐ to fourth‐order streams with a POOL–STEP–RIFFLE channel unit sequence. Downwelling lengths also increased with stream order in these idealized channels. Our results suggest that channel unit spacing, size, and sequence are all important in determining hyporheic exchange patterns of upwelling and downwelling. Though irregularities in the size and spacing of bedforms caused flow nets to be much more complex in surveyed stream reaches than in idealized stream reaches, similar trends emerged relating the average geomorphic wavelength to the average hyporheic wavelength in both surveyed and idealized reaches. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
The transformation of snowmelt water chemical composition during melt, elution and runoff in an Arctic tundra basin is investigated. The chemistry of the water flowing along pathways from the surface of melting snow to the 95·5 ha basin outlet is related to relevant hydrological processes. In so doing, this paper offers physically based explanations for the transformation of major ion concentrations and loads of runoff water associated with snowmelt and rainfall along hydrological pathways to the stream outlet. Late‐lying snowdrifts were found to influence the ion chemistry in adjacent reaches of the stream channel greatly. As the initial pulse of ion‐rich melt water drained from the snowdrift and was conveyed through hillslope flowpaths, the concentrations of most ions increased, and the duration of the peak ionic pulse lengthened. Over the first 3 m of overland flow, the concentrations of all ions except for NO increased by one to two orders of magnitude, with the largest increase for K+, Ca2+ and Mg2+. This was roughly equivalent to the concentration increase that resulted from percolation of relatively dilute water through 0·25 m of unsaturated soil. The Na+ and Cl? were the dominant ions in snowmelt water, whereas Ca2+ and Mg2+ dominated the hillslope runoff. On slopes below a large melting snowdrift, ion concentrations of melt water flowing in the saturated layer of the soil were very similar to the relatively dilute concentrations found in surface runoff. However, once the snowdrift ablated, ion concentrations of subsurface flow increased above parent melt‐water concentrations. Three seasonally characteristic hydrochemical regimes were identified in a stream reach adjacent to late‐lying snowdrifts. In the first two stages, the water chemistry in the stream channel strongly resembled the hillslope drainage water. In the third stage, in‐stream geochemical processes, including the weathering/ion exchange of Ca2+ and Mg2+, were the main control of streamwater chemistry. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Relationships between stream chemistry and elevation, area, Anakeesta geology, soil properties, and dominant vegetation were evaluated to identify the influence of basin characteristics on baseflow and stormflow chemistry in eight streams of the Great Smoky Mountains National Park. Statistical analyses were employed to determine differences between baseflow and stormflow chemistry, and relate basin‐scale factors governing local chemical processes to stream chemistry. Following precipitation events, stream pH was reduced and aluminium concentrations increased, while the response of acid neutralizing capacity (ANC), nitrate, sulfate, and base cations varied. Several basin characteristics were highly correlated with each other, demonstrating the interrelatedness of topographical, geological, soil, and vegetative parameters. These interrelated basin factors uniquely influenced acidification response in these streams. Streams in higher‐elevation basins (>975 m) had significantly lower pH, ANC, sodium, and silicon and higher nitrate concentrations (p < 0.05). Streams in smaller basins (<10 km2) had significantly lower nitrate, sodium, magnesium, silicon, and base cation concentrations. In stormflow, streams in basins with Anakeesta geology (>10%) had significantly lower pH and sodium concentrations, and higher aluminium concentrations. Chemical and physical soil characteristics and dominant overstory vegetation in basins were more strongly correlated with baseflow and stormflow chemical constituents than topographical and geological basin factors. Saturated hydraulic conductivity, of all the soil parameters, was most related to concentrations of stormflow constituents. Basins with higher average hydraulic conductivities were associated with lower stream pH, ANC, and base cation concentrations, and higher nitrate and sulfate concentrations. These results emphasize the importance of soil and geological properties influencing stream chemistry and promote the prioritization of management strategies for aquatic resources. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Long-term ecosystem studies are valuable for understanding integrated ecosystem response to global changes in atmospheric deposition and climate. We examined trends for a 35-year period (1982/83–2017/18) in concentrations of a range of solutes in precipitation and stream water from nine headwater catchments spanning elevation and surficial geology gradients at the Turkey Lakes watershed (TLW) in northeastern Ontario, Canada. Average annual water year (WY, October to September) concentrations in precipitation significantly declined over the period for sulphate (SO42−), nitrate (NO3) and chloride (Cl), while calcium (Ca2+) and potassium (K+) concentrations increased, resulting in a significant pH increase from 4.2 to 5.7. Trends in stream chemistry through time are generally consistent with expectations associated with acidification recovery. Concentration of many stream water solutes (SO42−, Cl, calcium [Ca2+], magnesium [Mg2+] and NH4+ generally decreased, while others (silica [SiO2] and dissolved organic carbon [DOC]) generally increased. Increases were also observed for alkalinity (six of nine catchments), acid neutralizing capacity ([ANC]; six of nine catchments) and pH (eight of nine catchments), while conductivity declined (six of nine catchments). Variability in trends among catchments are associated with differences in surficial geology and wetland cover. While absolute solute concentrations were generally lower at bedrock dominated high-elevation catchments compared to till dominated lower elevation catchments, the rate of change of concentration was often greater for high elevation catchments. This study confirms continued, but non-linear stream chemistry recovery from acidification, particularly at the less buffered high and moderate elevation sites. The heterogeneity of responses among catchments highlights our incomplete understanding of the relative importance of different mechanisms influencing stream chemistry and the consequences for downstream ecosystems.  相似文献   

19.
Norman E. Peters 《水文研究》2009,23(20):2860-2878
A long‐term stream water quality monitoring network was established in the city of Atlanta, Georgia during 2003 to assess baseline water quality conditions and the effects of urbanization on stream water quality. Routine hydrologically based manual stream sampling, including several concurrent manual point and equal width increment sampling, was conducted ~12 times annually at 21 stations, with drainage areas ranging from 3·7 to 232 km2. Eleven of the stations are real‐time (RT) stations having continuous measures of stream stage/discharge, pH, dissolved oxygen, specific conductance, water temperature and turbidity, and automatic samplers for stormwater collection. Samples were analyzed for field parameters, and a broad suite of water quality and sediment‐related constituents. Field parameters and concentrations of major ions, metals, nutrient species and coliform bacteria among stations were evaluated and with respect to watershed characteristics and plausible sources from 2003 through September 2007. Most constituent concentrations are much higher than nearby reference streams. Concentrations are statistically different among stations for several constituents, despite high variability both within and among stations. Routine manual sampling, automatic sampling during stormflows and RT water quality monitoring provided sufficient information about urban stream water quality variability to evaluate causes of water quality differences among streams. Fecal coliform bacteria concentrations of most samples exceeded Georgia's water quality standard for any water‐usage class. High chloride concentrations occur at three stations and are hypothesized to be associated with discharges of chlorinated combined sewer overflows, drainage of swimming pool(s) and dissolution and transport during rainstorms of CaCl2, a deicing salt applied to roads during winter storms. One stream was affected by dissolution and transport of ammonium alum [NH4Al(SO4)2] from an alum‐manufacturing plant; streamwater has low pH (<5), low alkalinity and high metals concentrations. Several trace metals exceed acute and chronic water quality standards and high concentrations are attributed to washoff from impervious surfaces. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

20.
Stream temperature is a complex function of energy inputs including solar radiation and latent and sensible heat transfer. In streams where groundwater inputs are significant, energy input through advection can also be an important control on stream temperature. For an individual stream reach, models of stream temperature can take advantage of direct measurement or estimation of these energy inputs for a given river channel environment. Understanding spatial patterns of stream temperature at a landscape scale requires predicting how this environment varies through space, and under different atmospheric conditions. At the landscape scale, air temperature is often used as a surrogate for the dominant controls on stream temperature. In this study we show that, in regions where groundwater inputs are key controls and the degree of groundwater input varies in space, air temperature alone is unlikely to explain within-landscape stream temperature patterns. We illustrate how a geologic template can offer insight into landscape-scale patterns of stream temperature and its predictability from air temperature relationships. We focus on variation in stream temperature within headwater streams within the McKenzie River basin in western Oregon. In this region, as in other areas of the Pacific Northwest, fish sensitivity to summer stream temperatures continues to be a pressing environmental issue. We show that, within the McKenzie, streams which are sourced from deeper groundwater reservoirs versus shallow subsurface flow systems have distinct summer temperature regimes. Groundwater streams are colder, less variable and less sensitive to air temperature variation. We use these results from the western Oregon Cascade hydroclimatic regime to illustrate a conceptual framework for developing regional-scale indicators of stream temperature variation that considers the underlying geologic controls on spatial variation, and the relative roles played by energy and water inputs. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号