首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 398 毫秒
1.
Treatment of frozen soil and snow cover in the land surface model SEWAB   总被引:3,自引:0,他引:3  
Summary  The land surface model SEWAB (Surface Energy and Water Balance) is designed to be coupled to both, atmospheric and hydrological models. Its application in mid and high latitudes requires the inclusion of freezing and thawing processes within the soil and the accumulation and ablation of a snow cover. These winter processes are parameterised with a minimum number of empirical formulations in order to assure reasonable computation times for an application in climate and sensitivity studies yet accounting for all important processes. Meteorological forcing data and measurements of snow depth, soil temperature and liquid soil water content at two locations in the mid-west of North America are used to test the model. Generally the simulated snow depth matches the measurements, remaining differences in snow depth can be explained by uncertainties in snow density, blowing snow and errors in precipitation measurements. The simulated soil temperature and liquid soil water content compare well with the measurements, showing the isolating effect of the snow cover. Received August 25, 2000 Revised January 19, 2001  相似文献   

2.
Summary  We compared two one-dimensional simulation models for heat and water fluxes in the soil-snow-atmosphere system with respect to their mathematical formulations of the surface heat exchange and the snow pack evolution. They were chosen as examples of a simple one-layer snow model and a more detailed multiple-layer snow model (SNTHERM). The snow models were combined with the same one-dimensional model for the heat and water balance of the underlying soil (CoupModel). Data from an arable field in central Sweden (Marsta), covering two years (1997–1999) of soil temperature, snow depth and eddy-correlation measurements were successfully compared with the models. Conditions with a snow pack deeper or shallower than 10 cm and bare soil resulted in similar discrepancies. The simulated net radiation and sensible heat flux were in good agreement with that measured during snow-covered periods, except for situations with snowmelt when the downward sensible heat flux was overestimated by 10–20 Wm−2. The results showed that the uncertainties in parameter values were more important than the model formulation and that both models were useful in evaluating the limitations and uncertainties of the measurements. Received November 1, 1999 Revised April 20, 2000  相似文献   

3.
基于WRF(weather research and forecasting model)模式逐时输出结果,设计了逐时太阳总辐射的模式输出统计(model output statistics,MOS)预报流程。主要包括:对逐时观测序列进行低通滤波再除以天文辐射,对模式输出因子的筛选和降维,以及建立MOS预报方程,并对2009年1月、4月、8月和10月武汉站逐时太阳总辐射进行预报试验。结果表明,该方案在各月预报相对稳定,拟合和预报效果均较为理想,可使平均绝对百分比误差控制在20%~30%,相对均方根误差控制在30%~40%,相对模式直接预报辐射改进了50%左右。由此可见,通过对模式输出进行解释应用,可以有效提高辐射预报的准确率。此外,客观分析所得的气温、云量、露点、比湿、相对湿度、地面气压等13个模式输出因子可以作为各地区建立MOS辐射预报方程的参考因子。  相似文献   

4.
We investigate the response of a climate system model to two different methods for estimating snow cover fraction. In the control case, snow cover fraction changes gradually with snow depth; in the alternative scenarios (one with prescribed vegetation and one with dynamic vegetation), snow cover fraction initially increases with snow depth almost twice as fast as the control method. In cases where the vegetation was fixed (prescribed), the choice of snow cover parameterization resulted in a limited model response. Increased albedo associated with the high snow caused some moderate localized cooling (3–5°C), mostly at very high latitudes (>70°N) and during the spring season. During the other seasons, however, the cooling was not very extensive. With dynamic vegetation the change is much more dramatic. The initial increases in snow cover fraction with the new parameterization lead to a large-scale southward retreat of boreal vegetation, widespread cooling, and persistent snow cover over much of the boreal region during the boreal summer. Large cold anomalies of up to 15°C cover much of northern Eurasia and North America and the cooling is geographically extensive in the northern hemisphere extratropics, especially during the spring and summer seasons. This study demonstrates the potential for dynamic vegetation within climate models to be quite sensitive to modest forcing. This highlights the importance of dynamic vegetation, both as an amplifier of feedbacks in the climate system and as an essential consideration when implementing adjustments to existing model parameters and algorithms.  相似文献   

5.
The variations of albedo and absorptivity of the snow cover are considered caused by the presence of the snow roughness in the form of sastrugi. The numerical modeling is carried out within the framework of statistical approach based on the analytic averaging of the radiative transfer equation and statistically homogeneous model on the basis of Poisson flows of points at the straight lines. The estimates of the influence of 3D-effects of the rough surface are represented depending on optical and geometrical characteristics of sastrugi and on the illumination conditions. It is demonstrated that if the absorption by the snow particles is weak (the single scattering albedo w = 0.9999) the reflection of radiation by snow decreases by ∼ 2–3% when the sastrugi appear. This effect is more significant in near infrared spectral region where w is below 0.99.  相似文献   

6.
7.
We use a state of the art climate model (CAM3–CLM3) to investigate the sensitivity of surface climate and land surface processes to treatments of snow thermal conductivity. In the first set of experiments, the thermal conductivity of snow at each grid cell is set to that of the underlying soil (SC-SOIL), effectively eliminating any insulation effect. This scenario is compared against a control run (CTRL), where snow thermal conductivity is determined as a prognostic function of snow density. In the second set of experiments, high (SC-HI) and low (SC-LO) thermal conductivity values for snow are prescribed, based on upper and lower observed limits. These two scenarios are used to envelop model sensitivity to the range of realistic observed thermal conductivities. In both sets of experiments, the high conductivity/low insulation cases show increased heat exchange, with anomalous heat fluxes from the soil to the atmosphere during the winter and from the atmosphere to the soil during the summer. The increase in surface heat exchange leads to soil cooling of up to 20 K in the winter, anomalies that persist (though damped) into the summer season. The heat exchange also drives an asymmetric seasonal response in near-surface air temperatures, with boreal winter anomalies of +6 K and boreal summer anomalies of −2 K. On an annual basis there is a net loss of heat from the soil and increases in ground ice, leading to reductions in infiltration, evapotranspiration, and photosynthesis. Our results show land surface processes and the surface climate within CAM3–CLM3 are sensitive to the treatment of snow thermal conductivity.  相似文献   

8.
地基微波辐射计观测已经用于数值预报中,并对预报效果产生不同的影响.目前,中国约有上百台地基微波辐射计,但是观测数据用到数值预报系统的很有限.本文尝试将两台地基微波辐射计数据同化到WRF数值预报模式,并针对北京一次暴雨过程,进行同化试验,结合地面雨量计测量结果进行比对.试验结果比较表明:同化地基微波辐射计能较明显影响降水...  相似文献   

9.
利用一个包含城市冠层效应的区域模式(WRF/NCAR),对长三角特大城市群的夏季气候效应进行了5 a(2003—2007年)高分辨数值模拟,通过长三角地区有无城市的对比试验分析,重点分析了城市群所造成的多城市热岛和地表能量平衡及其日变化特征。结果表明:城市化会导致显著的地表升温,但昼夜不同的升温幅度造成城市地表温度日较差的降低,以及部分郊区日较差增加;城市化也减小城市近地面风速,但沿海城市升温造成的热力差异,增大白天的海风并降低夜间的陆风。同时大范围城市群的热岛能够显著降低低层气压,导致部分海面风速持续的增加;城市下垫面具有很小的潜热通量,但感热通量和热存储量较大,白天的热岛逐渐增加,并在日落前达到最大,夜间热岛基本维持,但在日出前后迅速减弱;较大的入射短波辐射、较小的向下长波辐射和较低的10 m风速能够减弱白天的热岛,而增强夜间的热岛,并且使热岛峰值从17时延后至20时出现;反之亦然。  相似文献   

10.
The seasonal cycle of snow cover in Eastern Siberia is characterized, and synoptic preconditions of snow accumulation in winter and snow ablation in spring are determined using daily datasets. It was ascertained that cyclone activity has a strong impact on the occurrence of abundant snowfalls in Eastern Siberia. Negative anomalies of sea level pressure (SLP) usually spread westward or southwestward from the place of recorded substantial snowfalls, and they are associated with positive anomalies of air temperature located to the east or northeast of SLP depressions. Cyclonic circulation causes inflow of relatively warm and humid southern air masses originating from the Pacific Ocean, to the eastern parts of cyclones. During the days with snow ablation in spring much lower SLP anomalies occur than during snow accumulation in winter. This may suggest smaller influence of air circulation on snow cover reduction in spring and higher impact of insolation; both result in strong positive anomalies of air temperature which extend over entire Asia. These findings imply that the position, intensity, and dimension of pressure patterns are crucial for determining the location and intensity of rapid changes in snow cover depth during the snow cover season in Eastern Siberia.  相似文献   

11.
Summary ?The present work concerns measurements performed at five Polar sites in order to study the influence of cloud type and cloud cover on the surface radiative balance. Cloud cover index was retrieved with the Kasten and Czeplak formula (1980), and comparison with observed values showed the possibility of applying this formula in Polar regions. The Duchon and O’Malley (1999) methodology was adopted to estimate the cloud types present during the measurement period for each site. The results show that during the Antarctic summer clouds have a warming effect on the surface, while during a melting event recorded in the Arctic site clouds have a net cooling effect on the surface. This result allows us to conclude that, during a melting period a different cloud type formation, and a lower surface albedo, modify the effects of clouds on the surface radiation balance. Received April 5, 2002; revised August 1, 2002; accepted August 17, 2002  相似文献   

12.
Summary Crop residues alter the surface properties of soils. Both shortwave albedo and longwave emissivity are affected. These are linked to an effect of residue on surface evaporation and water content. Water content influences soil physical properties and surface energy partitioning. In summary, crop residue acts to soil as clothing acts to skin. Compared to bare soil, crop residues can reduce extremes of heat and mass fluxes at the soil surface. Managing crop residues can result in more favorable agronomic soil conditions. This paper reviews research results of the quantity, quality, architecture, and surface distribution of crop residues on soil surface radiation and energy balances, soil water content, and soil temperature.With 6 Figures  相似文献   

13.
Urban-rural difference of land cover is the key determinant of urban heat island (UHI). In order to evaluate the impact of land cover data on the simulation of UHI, a comparative study between up-to-date CORINE land cover (CLC) and Urban Atlas (UA) with fine resolution (100 and 10 m) and old US Geological Survey (USGS) data with coarse resolution (30 s) was conducted using the Weather Research and Forecasting model (WRF) coupled with bulk approach of Noah-LSM for Berlin. The comparison between old data and new data partly reveals the effect of urbanization on UHI and the historical evolution of UHI, while the comparison between different resolution data reveals the impact of resolution of land cover on the simulation of UHI. Given the high heterogeneity of urban surface and the fine-resolution land cover data, the mosaic approach was implemented in this study to calculate the sub-grid variability in land cover compositions. Results showed that the simulations using UA and CLC data perform better than that using USGS data for both air and land surface temperatures. USGS-based simulation underestimates the temperature, especially in rural areas. The longitudinal variations of both temperature and land surface temperature show good agreement with urban fraction for all the three simulations. To better study the comprehensive characteristic of UHI over Berlin, the UHI curves (UHIC) are developed for all the three simulations based on the relationship between temperature and urban fraction. CLC- and UA-based simulations show smoother UHICs than USGS-based simulation. The simulation with old USGS data obviously underestimates the extent of UHI, while the up-to-date CLC and UA data better reflect the real urbanization and simulate the spatial distribution of UHI more accurately. However, the intensity of UHI simulated by CLC and UA data is not higher than that simulated by USGS data. The simulated air temperature is not dominated by the land cover as much as the land surface temperature, as air temperature is also affected by air advection.  相似文献   

14.
The variability of the main components of the annual water balance (precipitation, evaporation, glacial alimentation, and dynamic water reserves in the basin) for 1935–1990 is, for the first time, determined for the area where the Zeravshan runoff is formed, higher than hydrological post Dupuli is located. Long-term data on the annual Zeravshan River runoff from an area of 10 200 km2 were derived from the measurements at Dupuli hydrological post. The other water balance components were determined with the help of computation methods. Comparison of the measured and calculated volumes of the annual runoff demonstrated that a relative difference between them is systematic, and as a whole for a computation period it is in the interval from ?0.31 to ?4.78%. The annual balance of accumulation and thawing of solid precipitation on glaciers and in the extraglacial area is also determined in the Zeravshan River basin. A new method for computing and mapping spatial variability of the maximum snowline altitude is developed.  相似文献   

15.
This study quantitatively evaluated how insulation by snow depth (SND) affected the soil thermal regime and permafrost degradation in the pan-Arctic area, and more generally defined the characteristics of soil temperature (TSOIL) and SND from 1901 to 2009. This was achieved through experiments performed with the land surface model CHANGE to assess sensitivity to winter precipitation as well as air temperature. Simulated TSOIL, active layer thickness (ALT), SND, and snow density were generally comparable with in situ or satellite observations at large scales and over long periods. Northernmost regions had snow that remained relatively stable and in a thicker state during the past four decades, generating greater increases in TSOIL. Changes in snow cover have led to changes in the thermal state of the underlying soil, which is strongly dependent on both the magnitude and the timing of changes in snowfall. Simulations of the period 2001–2009 revealed significant differences in the extent of near-surface permafrost, reflecting differences in the model’s treatment of meteorology and the soil bottom boundary. Permafrost loss was greater when SND increased in autumn rather than in winter, due to insulation of the soil resulting from early cooling. Simulations revealed that TSOIL tended to increase over most of the pan-Arctic from 1901 to 2009, and that this increase was significant in northern regions, especially in northeastern Siberia where SND is responsible for 50 % or more of the changes in TSOIL at a depth of 3.6 m. In the same region, ALT also increased at a rate of approximately 2.3 cm per decade. The most sensitive response of ALT to changes in SND appeared in the southern boundary regions of permafrost, in contrast to permafrost temperatures within the 60°N–80°N region, which were more sensitive to changes in snow cover. Finally, our model suggests that snow cover contributes to the warming of permafrost in northern regions and could play a more important role under conditions of future Arctic warming.  相似文献   

16.
积雪分布及其对中国气候影响的研究进展   总被引:12,自引:0,他引:12  
对北半球不同地区的积雪分布状况、积雪异常影响中国气候的事实以及影响机理等问题的研究成果进行了较系统的回顾与总结。青藏高原、蒙古高原、欧洲阿尔卑斯山脉及北美中西部是北半球积雪分布的关键区,其中青藏高原是北半球积雪异常变化最强烈的区域。中国积雪分布范围广泛,其中新疆、东北和青藏高原是3个大值区。总体来看,北半球积雪有减少的趋势,而中国积雪却有弱的增加趋势。冬、春季高原积雪与欧亚积雪对中国夏季降水的影响是相反的。积雪影响中国气候的机理解释为:冬季积雪反照率效应起主要作用,春夏季积雪水文效应起主要作用。积雪被视为中国短期气候预测的一个重要物理因子,继续加强该领域的研究对于提高中国短期气候预测的准确率将有重要意义。  相似文献   

17.
The chemical composition ofprecipitation from May 2012 to March 2013 and snow cover in the south of the Primorsky krai are studied. The measured parameters are pH and the concentration of principal ions, dissolved organic carbon, silicon, and metals in the samples of precipitation and snow cover taken in Vladivostok and in the background area of the Sikhote-Alin mountain range. Data from Primorskaya, Ternei, and Sadgorod stations are presented for comparison.  相似文献   

18.
19.
Using reanalysis data and snow cover data derived from satellite observations, respective influences of Indian Ocean Dipole (IOD) and El Niño/Southern Oscillation (ENSO) on the Tibetan snow cover in early winter are investigated. It is found that the snow cover shows a significant positive partial correlation with IOD. In the pure positive IOD years with no co-occurrences of El Niño, negative geopotential height anomalies north of India are associated with warm and humid southwesterlies to enter the plateau from the Bay of Bengal after rounding cyclonically and supply more moisture. This leads to more precipitation, more snow cover, and resultant lower surface temperature over the plateau. These negative geopotential height anomalies north of India are related to the equivalent barotropic stationary Rossby waves in the South Asian wave guide. The waves can be generated by the IOD-related convection anomalies over the western/central Indian Ocean. In contrast, in the pure El Niño years with no co-occurrences of the positive IOD, the anomalies of moisture supply and surface temperature over the plateau are insignificant, suggesting negligible influences of ENSO on the early winter Tibetan snow cover. Further analyses show that ENSO is irrelevant to the spring/early summer Tibetan snow cover either, whereas the IOD-induced snow cover anomalies can persist long from the early winter to the subsequent early summer.  相似文献   

20.
The role of terrestrial snow cover in the climate system   总被引:2,自引:0,他引:2  
Snow cover is known to exert a strong influence on climate, but quantifying its impact is difficult. This study investigates the global impact of terrestrial snow cover through a pair of GCM simulations run with prognostic snow cover and with all snow cover on land eliminated (NOSNOWCOVER). In this experiment all snowfall over land was converted into its liquid–water equivalent upon reaching the surface. Compared with the control run, NOSNOWCOVER produces mean-annual surface air temperatures up to 5 K higher over northern North America and Eurasia and 8–10 K greater during winter. The globally averaged warming of 0.8 K is one-third as large as the model’s response to 2 × CO2 forcing. The pronounced surface heating propagates throughout the troposphere, causing changes in surface and upper-air circulation patterns. Despite the large atmospheric warming, the absence of an insulating snow pack causes soil temperatures in NOSNOWCOVER to fall throughout northern Asia and Canada, including extreme wintertime cooling of over 20 K in Siberia and a 70% increase in permafrost area. The absence of snow melt water also affects extratropical surface hydrology, causing significantly drier upper-layer soils and dramatic changes in the annual cycle of runoff. Removing snow cover also drastically affects extreme weather. Extreme cold-air outbreaks (CAOs)—defined relative to the control climatology—essentially disappear in NOSNOWCOVER. The loss of CAOs appears to stem from both the local effects of eliminating snow cover in mid-latitudes and a remote effect over source regions in the Arctic, where −40°C air masses are no longer able to form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号