首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
Studies of the X-ray surface brightness profiles of clusters, coupled with theoretical considerations, suggest that the breaking of self-similarity in the hot gas results from an 'entropy floor', established by some heating process, which affects the structure of the intracluster gas strongly in lower-mass systems. By fitting analytical models for the radial variation in gas density and temperature to X-ray spectral images from the ROSAT PSPC and ASCA GIS, we have derived gas entropy profiles for 20 galaxy clusters and groups. We show that, when these profiles are scaled such that they should lie on top of one another in the case of self-similarity, the lowest-mass systems have higher-scaled entropy profiles than more massive systems. This appears to be due to a baseline entropy of depending on the extent to which shocks have been suppressed in low-mass systems. The extra entropy may be present in all systems, but is detectable only in poor clusters, where it is significant compared with the entropy generated by gravitational collapse. This excess entropy appears to be distributed uniformly with radius outside the central cooling regions.
We determine the energy associated with this entropy floor, by studying the net reduction in binding energy of the gas in low-mass systems, and find that it corresponds to a pre-heating temperature of 0.3 keV. Since the relationship between entropy and energy injection depends upon gas density, we are able to combine the excesses of 70140 keV cm2 and 0.3 keV to derive the typical electron density of the gas into which the energy was injected. The resulting value of implies that the heating must have happened prior to cluster collapse but after a redshift z 710. The energy requirement is well matched to the energy from supernova explosions responsible for the metals which now pollute the intracluster gas.  相似文献   

3.
4.
5.
We have used the ROSAT PSPC to study the properties of a sample of 24 X-ray-bright galaxy groups, representing the largest sample examined in detail to date. Hot plasma models are fitted to the spectral data to derive temperatures, and modified King models are used to characterize the surface brightness profiles.
In agreement with previous work, we find evidence for the presence of two components in the surface brightness profiles. The extended component is generally found to be much flatter than that observed in galaxy clusters, and there is evidence that the profiles follow a trend with system mass. We derive relationships between X-ray luminosity, temperature and optical velocity dispersion. The relation between X-ray luminosity and temperature is found to be L X∝ T 4.9, which is significantly steeper than the same relation in galaxy clusters. These results are in good agreement with pre-heating models, in which galaxy winds raise the internal energy of the gas, inhibiting its collapse into the shallow potential wells of poor systems.  相似文献   

6.
We point out that two problems of observational cosmology, namely the facts (i) that ≳60 per cent of the baryonic content of the Universe is not observed at   z ∼ 0  and (ii) that the properties of small clusters do not agree with simple expectations, could be closely related. As shown by recent studies, the shock heating associated with the formation of large-scale structures heats the intergalactic medium (IGM) and leads to a 'warm IGM' component for the gas. In the same spirit, we suggest the intracluster medium (ICM) to be a mixture of galaxy-recycled, metal-enriched gas and intergalactic gas, shock heated by the collapsing much larger scales. This could be obtained through two processes: (1) the late infalling gas from the external warm IGM is efficiently mixed within the halo and brings some additional entropy, or (2) the shocks generated by larger non-linear scales are also present within clusters and can heat the ICM. We show that, if assumption (1) holds, the entropy brought by the warm IGM is sufficient to explain the observed properties of clusters, in particular the entropy floor and the   L X– T   relation. On the other hand, we note briefly that scenario (2) would require a stronger shock heating because of the larger density of the ICM as compared with filaments. Although the efficiency of these two processes remains to be checked on a quantitative level, they have the advantage of dispensing with the need to invoke any strong preheating from supernovae or quasars (which has otherwise been introduced for the sole purpose of reproducing the behaviour of clusters). Matter ejection by galaxies is included in the present calculations and, consistently with the metal-enrichment requirements, is indeed shown to yield only a quite moderate entropy increase. Our scenario of clusters being 'born warm' can be checked through the predicted redshift evolution of the entropy floor.  相似文献   

7.
There is still no consensus as to what causes galactic discs to become warped. Successful models should account for the frequent occurrence of warps in quite isolated galaxies, their amplitude as well as the observed azimuthal and vertical distributions of the H  i layer. Intergalactic accretion flows and intergalactic magnetic fields may bend the outer parts of spiral galaxies. In this paper we consider the viability of these non-gravitational torques to take the gas off the plane. We show that magnetically generated warps are clearly flawed because they would wrap up into a spiral in less than two or three galactic rotations. The inclusion of any magnetic diffusivity to dilute the wrapping effect causes the amplitude of the warp to damp. We also consider the observational consequences of the accretion of an intergalactic plane-parallel flow at infinity. We have computed the amplitude and warp asymmetry in the accretion model, for a disc embedded in a flattened dark matter halo, including self-consistently the contribution of the modes with azimuthal wavenumbers   m = 0  and   m = 1  . Since the m = 0 component, giving a U-shaped profile, is not negligible compared to the m = 1 component, this model predicts quite asymmetric warps, maximum gas displacements on the two sides in the ratio 3 : 2 for the preferred Galactic parameters, and the presence of a fraction ∼3.5 per cent of U-shaped warps, at least. The azimuthal dependence of the moment transfer by the ram pressure would produce a strong asymmetry in the thickness of the H  i layer and asymmetric density distributions in z , in conflict with observational data for the warp in our Galaxy and in external galaxies. The amount of accretion that is required to explain the Galactic warp would give gas scaleheights in the far outer disc that are too small. We conclude that accretion of a flow with no net angular momentum cannot be the main and only cause of warps.  相似文献   

8.
9.
10.
11.
12.
13.
We use models of the rates of Type Ia supernovae (SNe Ia) and core-collapsed supernovae, built in such a way that both are consistent with recent observational constraints at   z ≲ 1.6  and can reproduce the measured cosmic star formation rate, to recover the history of metal accumulation in the intracluster medium. We show that these SN rates, in unit of SN number per comoving volume and rest-frame year, provide on average a total amount of iron that is marginally consistent with the value measured in galaxy clusters in the redshift range 0–1, and a relative evolution with redshift that is in agreement with the observational constraints up to   z ≈ 1.2  . Moreover, we verify that the predicted metals-to-iron ratios reproduce the measurements obtained in nearby clusters through X-ray analysis, implying that (1) about half of the iron mass and ≳75 per cent of the nickel mass observed locally are produced by SN Ia ejecta, (2) the SN Ia contribution to the metal budget decreases steeply with redshift and by   z ≈ 1  is already less than half of the local amount, and (3) a transition in the abundance ratios relative to iron is present between redshifts ∼0.5 and 1.4, with core-collapsed SN products becoming dominant at higher redshifts.  相似文献   

14.
We study the inhomogeneous reionization in a critical density CDM universe resulting from stellar sources, including Population III objects. The spatial distribution of the sources is obtained from high-resolution numerical N -body simulations. We calculate the source properties, taking into account a self-consistent treatment of both radiative (i.e. ionizing and H2-photodissociating photons) and stellar (i.e. SN explosions) feedbacks regulated by massive stars. This allows us to describe the topology of the ionized and dissociated regions at various cosmic epochs, and to derive the evolution of H, He and H2 filling factors, soft UV background, cosmic star formation rate and the final fate of ionizing objects. The main results are: (i) galaxies reionize the intergalactic medium by z ≈10 (with some uncertainty related to the gas clumping factor), whereas H2 is completely dissociated already by z ≈25; (ii) reionization is mostly caused by the relatively massive objects which collapse via H line cooling, while objects the formation of which relies on H2 cooling alone are insufficient for this purpose; (iii) the diffuse soft UV background is the major source of radiative feedback effects for z ≤15; at higher z direct flux from neighbouring objects dominates; (iv) the match of the calculated cosmic star formation history with that observed at lower redshifts suggests that the conversion efficiency of baryons into stars is ≈1 per cent; (v) we find that a very large population of dark objects which failed to form stars is present by z ≈8. We discuss and compare our results with similar previous studies.  相似文献   

15.
We investigate the metal enrichment of the intra-cluster medium by using a method that combines N-Body simulations and a semi-analytic model (SAM) of galaxy formation. The cluster of galaxies is simulated in a flat, low density universe, with a numerical resolution that allows the detection of substructures in the dark matter background of the cluster. The phenomenological approach used to model the physical processes involved in the galaxy formation and metal production is applied to the substructures found in the dark matter halos detected at different redshifts. Details of the chemical implementation in the SAM and first results related to the mean properties of the baryonic matter components are presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
We present an analysis of the behaviour of a perturbed radio cocoon. Comparisons with observations of sound waves detected in the Perseus and Virgo clusters suggest the separations of observed ripples correspond to the natural oscillation frequency of the cocoon. An energy injection rate consistent with active galactic nucleus power is required to offset the strong acoustic damping of cocoon oscillations, suggesting the sources are in equilibrium with the intracluster medium (ICM), and the oscillations are effectively undamped. Viscous dissipation of sound waves provides ICM heating that can quench cooling flows on time-scales greatly exceeding the oscillation time-scale. Thermal conductivity is likely to be heavily suppressed.  相似文献   

17.
18.
19.
I demonstrate by means of high-resolution cosmological simulations, which include modelling of a two-phase interstellar medium, that the dominant mechanism for transporting heavy elements from protogalaxies into the intergalactic medium (IGM) is the merger mechanism as discovered by Gnedin & Ostriker. Direct ejection of the interstellar gas by supernovae plays only a minor role in transporting metals into the IGM: for a realistic cosmological scenario only a small fraction of all metals in the IGM is delivered by the supernova-driven winds, while most of the metals in the IGM are transported by the merger mechanism. As a result, the metallicity distribution in the IGM is highly inhomogeneous, in agreement with studies of the QSO metal absorption systems, and the predicted metallicity distribution of Lyman alpha absorbers as a function of their column density is in excellent agreement with the observational data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号