首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Flood disaster has become one of the most damaging natural disasters for the highway transportation all around the world, especially its destructive effects on highway infrastructures. In order to better understand the ruinous influence of flood disaster on highway transportation in China, this paper proposes an alternative evaluation index of highway flood disaster risk from three aspects, namely the disaster-causing factors, disaster-inducing environment, and disaster-bearing subjects. This paper also puts forward some targeted suggestions for the risk management, including two aspects: physical protection measurement and organization and management measurement. Moreover, this paper develops a highway flood disaster risk management system by using the ArcGIS technology.  相似文献   

2.
Jin  Ju-Liang  Fu  Juan  Wei  Yi-Ming  Jiang  Shang-Ming  Zhou  Yu-Liang  Liu  Li  Wang  You-Zhen  Wu  Cheng-Guo 《Natural Hazards》2014,75(2):155-178

Regional waterlog disaster integrated risk system, affected by natural, social, and economic systems and its combination relationship, is a complex system with certain structure and function. Waterlog disaster integrated risk results from the combined effects of regional environment, impact factors, vulnerability, and disaster-reducing capability of flood hazards in the drainage area. Waterlog disaster integrated risk system can be divided into four subsystems of hazard, vulnerability, disaster-reducing capability, and disaster conditions. Evaluation indexes are selected using fuzzy analytic hierarchy process method, and the evaluation index system is established. Then, the waterlog disaster integrated risk evaluation model is proposed based on set pair analysis method. Taking Huaihe river in Anhui Province of China as the typical area in this study, the results show that the proposed approach is able to obtain the spatial distribution characteristics of waterlog hazard, vulnerability, mitigation capabilities, and integrated disaster risk within the study area. From the quantitative point of view, identification of the areas with high flood risk can provide a scientific basis for the flood management and technical support.

  相似文献   

3.
Lixin  Yi  Ke  Cheng  Xiaoying  Cao  Yueling  Sun  Xiaoqing  Cheng  Ye  He 《Natural Hazards》2017,85(2):1223-1248

Flood management consists many aspects such as hazard assessment, vulnerability assessment, exposure assessment, risk assessment, early warning system, damage assessment as well as risk mitigation planning. Conventional flood management are depending on the ground based monitoring of rainfall and river discharge. Many parts of the world are not covered by these sensor networks in one hand and these ground based systems are costly. Most of the tropical countries have high flood risk and low financial and institutional capacity to afford ground based system. While conventional flood management is time and cost intensive, spaceborne remote sensing provides timely and low-cost data in comparison to field observation, and is the obvious choice for most developing countries affected by flooding. Many aspects of flood management are being aided with the advancement of remote sensing technology. More precise and near real time flood detection, lead time in flood early warning system, accurate and advance inputs of hydrological models are now blessed by space technology. Many methods and approaches have been developed to overcome the constrains in the application of spaceborne remote sensing in flood management. Application of satellite remote sensing in flood hazard assessment is well documented, however, the application of space technology in other aspects of the flood management is also promising. Therefore, this review paper focuses on the applicability of spaceborne remote sensing and in most of the aspects in flood management.

  相似文献   

4.
Wu  Cheng-Guo  Wei  Yi-Ming  Jin  Ju-Liang  Huang  Qiang  Zhou  Yu-Liang  Liu  Li 《Natural Hazards》2014,75(2):179-197

The Ningxia–Inner Mongolia Reach, in the upper Yellow River, is one of the most serious reaches suffering from ice flood disaster in China. Firstly, according to its characteristics of ice condition evolution and ice disaster, the concept of ice disaster risk of Ningxia–Inner Mongolia Reach was defined, the risk factors of ice disaster were discussed, and the theory and method of “risk identification–risk estimation–risk assessment–risk management” for the ice disaster risk analysis of Ningxia–Inner Mongolia Reach was proposed. Then, the comprehensive evaluation model of ice disaster risk was established using the projection pursuit, fuzzy clustering and accelerating genetic algorithm method. Finally, the ice disaster risk grade was formulated, and the ice disaster risk of 1991–2010 for the Ningxia–Inner Mongolia Reach was evaluated in this paper. The results show that the application results were consistent with the practical characteristics of water regime, meteorological and ice condition, revealing the rationality of the risk evaluation model. This study aims at enriching and developing the theory and method for the ice disaster risk analysis and providing scientific decision basis for the ice-prevention preparedness of Ningxia–Inner Mongolia Reach, in the upper Yellow River.

  相似文献   

5.
洪水灾害风险管理广义熵智能分析的理论框架   总被引:4,自引:0,他引:4       下载免费PDF全文
基于洪水灾害风险管理的背景分析,提出用广义分布函数及其广义熵理论统一描述、物理解析洪水灾害风险管理系统的各种不确定性信息。基于洪水灾害风险形成机制和风险管理理论与水利科学、信息科学、智能科学综合集成途径,提出由洪水灾害孕灾环境和致灾因子危险性广义熵智能分析、承灾体易损性广义熵智能分析、承灾体灾情广义熵智能分析和风险决策广义熵智能分析组成的洪水灾害风险管理广义熵智能分析的初步理论框架及其主要研究内容,在其它灾害风险管理中具有一定的参考应用价值。  相似文献   

6.
Malik  Ishfaq Hussain 《Natural Hazards》2022,110(3):1911-1929

Flood relief and rescue form an important basis of disaster management, and the assessment of flood damage is a critical component of flood risk management. In its recent history, Kashmir Valley witnessed the floods in 2014, 2015, 2017, 2019, 2020, and 2021, but the worst flood in the living memory of the people was witnessed in the year 2014, which created widespread loss in economic and societal aspects. The present study discusses the spatial dimension of impact, relief, and rescue of the flood of 2014 in the Kashmir Valley. It analyses the distribution of relief and politics of relief and rescue and highlights the role of the communitarianism and the heroics of the community members in dealing with floods. The study provides the data of relief distribution under different government schemes and reveals that the relief was not distributed equally in various districts of the valley. The study relies on primary and secondary sources of data. Ethnographic approach was used for acquiring primary data because it provides the complex narratives of disasters and the political and social rupture experienced during the disasters. The data have been analysed with the help of Geographic Information System.

  相似文献   

7.
Pei  Wei  Tian  Cuizhu  Fu  Qiang  Ren  Yongtai  Li  Tianxiao 《Natural Hazards》2022,110(3):1599-1620

The risk analysis of flood and drought disasters and the study of their influencing factors enhance our understanding of the temporal and spatial variation law of disasters and help identify the main factors affecting disasters. This paper uses the provincial administrative region of China as the research area. The proportion of the disaster area represents the degree of the disaster. The statistical distribution of the proportions was optimized from 10 alternative distributions based on a KS test, and the disaster risk was analyzed. Thirty-five indicators were selected from nature, agriculture and the social economy as alternative factors. The main factors affecting flood and drought disasters were selected by Pearson, Spearman and Kendall correlation coefficient test. The results demonstrated that the distribution of floods and drought is right-skewed, and the gamma distribution is the best statistical distribution for fitting disasters. In terms of time, the risk of flood and drought disasters in all regions showed a downward trend. Economic development and the enhancement of the ability to resist disasters were the main reasons for the change in disasters. Spatially, the areas with high drought risk were mainly distributed in Northeast and North China, and the areas with high flood risk were mainly distributed in the south, especially in Hubei, Hunan, Jiangxi and Anhui. The distribution of floods and drought disasters was consistent with the distribution characteristics of precipitation and water resources in China. Among the natural factors, precipitation was the main factor causing changes in floods and drought disasters. Among the agricultural and socioeconomic factors, the indicators reflecting the disaster resistance ability and regional economic development level were closely related to flood and drought disasters. The research results have reference significance for disaster classification, disaster formation mechanisms and flood and drought resistance.

  相似文献   

8.

Transport infrastructure is at significant risk of direct damage from extreme climate events such as flooding, where the cost implications of delayed recovery are generally significant. Previous research in this regard has focused on the technical and engineering aspects of infrastructure construction. The risk management of resilient transport infrastructure is poorly considered, and little has been done to quantify the capacity of transport infrastructure to recover from the impact of natural disasters under varying conditions. This paper applies Cox’s proportional hazards regression model to determine the rate of recovery and cumulative probability that recovery occurs for transport infrastructure across regional areas in New South Wales, Australia. Data for post-disaster reconstruction projects over the period 1992–2012 are used to analyze recovery rate against geographic region, natural disaster type and post-disaster transport infrastructure reconstruction cost. Results demonstrate that transport infrastructure recovered slowest when the failure is the result of a flood rather than bushfire or storm, and in regions with a riverine geography. To validate the accuracy of the model, a bootstrap resampling technique is used. The bootstrap result confirms that the model is robust and reasonable.

  相似文献   

9.
Lv  Hong  Guan  Xinjian  Meng  Yu 《Natural Hazards》2020,103(2):1823-1841

The extreme precipitation events caused by climate change and the rapid development of urbanization have brought hidden flood risks to the cities. This paper comprehensively considered two major factors of vulnerability of urban flood-bearing and disaster prevention and mitigation (DPAM) capacity and built a comprehensive evaluation index system for urban flood-bearing risks. Secondly, a combined model consisted of composite fuzzy matter-element and entropy weight model was constructed to calculate the comprehensive risk indicator. Finally, the Zhengzhou City was taken as an example, the comprehensive indices of urban flood-bearing risk from 2006 to 2015 were evaluated. The results showed that the comprehensive risk of Zhengzhou City was generally on a slow upward trend, from II level (moderate-risk) in 2006 to III level (secondary high-risk) in 2015, which was mainly due to the mismatch between the rapid development of urbanization and the slow improvement of DPAM capabilities. This paper is expected to provide scientific reference and technical support for urban flood disaster prevention and sponge city construction.

  相似文献   

10.
As one of the top 20 cities exposed to flood disasters, Shanghai is particularly vulnerable because it is exposed to powerful floods and poorly prepared. However, it is unclear to understand the evolution process of floods and the variation of flood risk in Shanghai during the past 1,000 years. This paper analyzed the spatial–temporal characteristics of flood disaster and evaluated the integrated risk of flood disaster in Shanghai based on the historical flood data from 251 to 2000. The results show that flood disaster in Shanghai was divided into storm surge-induced flood, rainstorm-induced flood and overbank flood. Flood disaster in Shanghai presents rising trend with time and mainly occurs in summer and autumn. Moreover, the flood disaster is dominated by rainstorm-induced flood, especially after the establishment of the People’s Republic of China in 1949. Additionally, flood risk in different areas of Shanghai between the years 251–1949 and 1950–2000 changed significantly. Shanghai urban area, Jinshan District and Chongming County belong to increased flood risk area; Baoshan, Jiading, Qingpu, Songjiang, Fengxian, Pudong and Minhang District belong to decreased flood risk area. The integrated risk of flood disaster in Shanghai has presented spatial disparities evidently at present. Shanghai urban area is most likely to suffer flood disaster; Baoshan, Jiading and Minhang District have medium flood risk rank; and Jinshan, Songjiang, Fengxian, Pudong, Qingpu and Chongming County show low flood risk at present. The combined effect of urbanization, sea-level rise, land subsidence and the poor capacity of flood prevention facilities will give rise to the risk of flood in the next several decades. These results provide very important information for the local government to improve flood risk management.  相似文献   

11.
An integrated framework for disaster risk management is presented to cope with the risk of low-probability high-consequence (LPHC) disasters in urban communities. Since the 2000 Tokai flood in Japan, there has been a shift in the management strategy from disaster prevention with a presumed zero risk to disaster reduction with an acceptable risk. The framework consists of: (i) integration of a different categories of risk reduction options in terms of structural and nonstructural measures, regulation and market-oriented measures, (ii) strengthening of the capacity of local communities to make their own management choices for LPHC-type disaster risks, and (iii) promoting the participation of stakeholders throughout the entire cycle of risk management. The interdisciplinary framework is discussed with reference to lessons learned from two recent major flood disasters (the 2000 Tokai flood and the 2004 Niigata flood). To implement the goals of the integrated framework, a participatory platform for disaster risk communication called “Pafrics” has been developed. Preliminary results of the pilot study of participation and risk communication supported by Pafrics are presented.  相似文献   

12.
Kougkoulos  Ioannis  Merad  Myriam  Cook  Simon J.  Andredakis  Ioannis 《Natural Hazards》2021,109(2):1959-1980

France experiences catastrophic floods on a yearly basis, with significant societal impacts. In this study, we use multiple sources (insurance datasets, scientific articles, satellite data, and grey literature) to (1) analyze modern flood disasters in the PACA Region; (2) discuss the efficiency of French public policy instruments; (3) perform a SWOT analysis of French flood risk governance (FRG); and (4) suggest improvements to the FRG framework. Despite persistent government efforts, the impacts of flood events in the region have not lessened over time. Identical losses in the same locations are observed after repeated catastrophic events. Relative exposure to flooding has increased in France, apparently due to intense urbanization of flood-prone land. We suggest that the French FRG could benefit from the following improvements: (1) regular updates of risk prevention plans and tools; (2) the adoption of a build back better logic; (3) taking undeclared damages into account in flood risk models; (4) better communication between the actors at the different steps of each cycle (preparation, control, organization, etc.); (5) better communication between those responsible for risk prevention, emergency management, and disaster recovery; (6) an approach that extends the risk analysis outside the borders of the drainage basin; and (7) increased participation in FRG from local populations.

  相似文献   

13.
基于自然灾害风险原理,结合青海省气象数据、地理信息数据、社会经济数据,并利用主成分分析法、GIS自然断点法对青海省暴雨洪涝灾害致灾因子危险度、承载体易损度评估模型以及暴雨洪涝灾害风险度进行评估,结果表明:青海省不同强度降水日数均呈增多趋势,新世纪以来中雨日数及强降水日数增加趋势尤为明显;暴雨洪涝灾害致灾因子危险度呈由东南向西北降低的趋势,承载体易损度为东北部地区最高,南部以及西部地区最低;暴雨洪涝风险较高的地区主要集中在东部地区,互助、湟中、大通、西宁为高风险区,东部大部地区、环青海湖地区为较高风险区,西部地区为低风险区。该评估结果可以在气象灾害风险管理业务中进行应用,可以加强对暴雨洪涝灾害风险的影响程度及影响区域的判定,为地方防灾减灾救灾工作提供科学依据。  相似文献   

14.
This study presents the methodology and procedure for risk assessment of flood disasters in central Liaoning Province, which was supported by geographical information systems (GIS) and technology of natural disaster risk assessment. On the basis of the standard formulation of natural disaster risk and flood disaster risk index, of which weights were developed using combined weights of entropy, the relative membership degree functions of variable fuzzy set (VFS) theory were calculated using improved set pair analysis, while level values were calculated using VFSs, including hazard levels, exposure levels, vulnerability levels and restorability levels, and the flood risk level for each assessment unit was obtained using the natural disaster index method. Consequently, integrated flood risk map was carried out by GIS spatial analysis technique. The results show that the southwestern and central parts of the study area possess higher risk, while the northwestern and southeastern parts possess lower risk. The results got by the assessment model fits the area of historical flood data; this study offer new insights and possibility to carry out an efficient way for flood disaster prevention and mitigation. The study also provides scientific reference in flood risk management for local and national governmental agencies.  相似文献   

15.
王本德  于义彬 《水文》2005,25(1):24-28,45
从防洪系统风险的基本概念出发,分析了防洪风险的性质,在洪水风险管理、防洪堤、水库大坝以及其他建筑物工程风险、洪水预报调度风险等诸多方面分析了当前的研究情况,对防洪系统的风险管理提出了几点建议。  相似文献   

16.

Frequent flood is a concern for most of the coastal regions of India. The importance of flood maps in governing strategies for flood risk management is of prime importance. Flood inundation maps are considered dependable output generated from simulation results from hydraulic models in evaluating flood risks. In the present work, a continuous hydrologic-hydraulic model has been implemented for mapping the flood, caused by the Baitarani River of Odisha, India. A rainfall time-series data were fed into the hydrologic model and the runoff generated from the model was given as an input into the hydraulic model. The study was performed using the HEC-HMS model and the FLO-2D model to map the extent of flooding in the area. Shuttle Radar Topographic Mission (SRTM) 90 m Digital Elevation Model (DEM) data, Land use/Land cover map (LULC), soil texture data of the basin area were used to compute the topographic and hydraulic parameters. Flood inundation was simulated using the FLO-2D model and based on the flow depth, hazard zones were specified using the MAPPER tool of the hydraulic model. Bhadrak District was found to be the most hazard-prone district affected by the flood of the Baitarani River. The result of the study exhibited the hydraulic model as a utile tool for generating inundation maps. An approach for assessing the risk of flooding and proper management could help in mitigating the flood. The automated procedure for mapping and the details of the study can be used for planning flood disaster preparedness in the worst affected area.

  相似文献   

17.
Frolova  N. L.  Kireeva  M. B.  Magrickiy  D. V.  Bologov  M. B.  Kopylov  V. N.  Hall  J.  Semenov  V. A.  Kosolapov  A. E.  Dorozhkin  E. V.  Korobkina  E. A.  Rets  E. P.  Akutina  Y.  Djamalov  R. G.  Efremova  N. A.  Sazonov  A. A.  Agafonova  S. A.  Belyakova  P. A. 《Natural Hazards》2016,80(1):103-125

Hydrological extreme events pose an imminent risk to society and economics. In this paper, various aspects of hydrological hazards in Russia are analysed at different scales of risk assessment. It is shown that the number of hydrological and meteorological hazards in Russia has been growing every year. The frequency of economic losses associated with extreme low flow in this century has increased by factor five compared to the last decade of the previous century. With regard to floods, an interesting spatial patter can be observed. On the one hand, the number of floods in the Asian part of the country has increased, whereas on the other hand, the number and intensity of floods in estuarine areas in the European part of Russia have significantly reduced since the middle of the twentieth century, especially in the 2000s. This decrease can be attributed to runoff flooding in the mouths of regulated rivers, with an effective system of flood and ice jam protection. The analysis shows that there is an 8–12-year periodicity in the number of flood occurrences and that flood surges have intensified over the last 110 years, especially on the European territory of Russia. An integrated index that accounts for flood hazards and socio-economic vulnerability was calculated for each region of Russia. A classification of flood risk was also developed, taking into account more than 20 hydrological and social–economic characteristics. Based on these characteristics, hazard and vulnerability maps for entire Russia were generated which can be used for water management and the development of future water resources plans.

  相似文献   

18.
In this paper, we introduce the gray correlation method of risk evaluation in meteorological disaster losses based on historical disaster data in China (mainland) and apply the improved gray relational analysis model (the triangular gray relational model) to the risk evaluation of rainstorm and flood disaster losses. In addition, we divide the risk grade standards of rainstorm and flood disaster losses according to 186 rainstorm and flood disaster data of four optimization indexes (disaster area, suffered population, collapsed houses, and direct economic losses), evaluate the extent of dynamic rainstorm and flood disaster losses in 31 provinces of China (Hong Kong, Macao, and Taiwan exclusive) comprehensively, and draw China’s zoning map of rainstorm and flood disaster from 2004 to 2009. The method provides reasonable and effective references for national disaster preventions which can be used in other researches focused on risk evaluation of meteorological disaster losses.  相似文献   

19.
Chen  Sha  Luo  Zhongkui  Pan  Xubin 《Natural Hazards》2013,69(3):1597-1605

China is a country prone to high frequency of natural catastrophic events. According to the natural disaster data from 1900 to 2011, the major disaster types include drought, earthquake, epidemic, extreme temperature, flood, mass movement wet and storm. The occurrence of natural disaster and economic loss is increased during the studied period. However, the death toll induced by natural disaster is decreased significantly. A new frame of social development and natural disaster is proposed to discuss the impact of population and GDP on the influence of disaster through the recording and reduction efforts. The results indicated that economic development contributes to the reduction in the impact of natural disaster on the people lives and society. New comprehensive integrated management, including international cooperation, should be established.

  相似文献   

20.
Regional waterlog disaster integrated risk system, affected by natural, social, and economic systems and its combination relationship, is a complex system with certain structure and function. Waterlog disaster integrated risk results from the combined effects of regional environment, impact factors, vulnerability, and disaster-reducing capability of flood hazards in the drainage area. Waterlog disaster integrated risk system can be divided into four subsystems of hazard, vulnerability, disaster-reducing capability, and disaster conditions. Evaluation indexes are selected using fuzzy analytic hierarchy process method, and the evaluation index system is established. Then, the waterlog disaster integrated risk evaluation model is proposed based on set pair analysis method. Taking Huaihe river in Anhui Province of China as the typical area in this study, the results show that the proposed approach is able to obtain the spatial distribution characteristics of waterlog hazard, vulnerability, mitigation capabilities, and integrated disaster risk within the study area. From the quantitative point of view, identification of the areas with high flood risk can provide a scientific basis for the flood management and technical support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号