首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
By the aid of GC-MS technique, a series of sequentially biodegraded oils from Liaohe Basin have been analyzed. The results show that the concentrations and relative compositions of various aromatic compounds in the biodegraded crude oils will change with increasing biodegradation degree. The concentrations of alkyl naphthalenes, alkyl phenanthrenes, alkyl dibenzothiophene are decreased, and the concentration of triaromatic steroids will increase with increasing biodegradation degree in biodegraded oils. Those phenomena indicate that various aromatic compounds are more easily biodegraded by bacteria like other kinds of hydrocarbons such as alkanes, but different series of aromatic compounds have a varied ability to resistant to biodegradation. The ratios of dibenzothiophene to phenenthrene (DBTH/P) and methyl dibenzothiophene to methyl phenanthrene (MDBTH/MP) are related to the features of depositional environment for source rocks such as redox and ancient salinity. However, in biodegraded oils, the two ratios increase quickly with the increase of the biodegradation degree, indicating that they have lost their geochemical significance. In this case, they could not be used to evaluate the features of depositional environment. Methyl phenanthrene index, methyl phenanthrene ratio and methyl dibenzoyhiophene ratio are useful aromatic maturity indicators for the crude oils and the source rocks without vitrinite. But for biodegraded oils, those aromatic maturity indicators will be affected by biodegradation and decrease with the increase of the biodegradation degree. Therefore, those aromatic molecular maturity indicators could not be used for biodegraded oils.  相似文献   

2.
By aid of gas chromatogram/mass spectrometry (GC-MS), the distributions and the compositions of biomarkers in a set of sequentially biodegraded oils from Liaohe Basin, China, have been quantitatively analyzed, and it has been found that during the biodegradation process of crude oils, the molecular maturity parameters such as Ts/Tm, homohopane C31 22S/(22S+22R) and sterane C29 20S/(20S+20R) ratios will be affected to different extent. The results show that except homohopane C31 22S/(22S+22R) ratio, Ts/Tm ratio will decrease with increasing biodegradation, but for C29 20S/(20S+20R) ratio, it will almost remain constant in slightly and moderately biodegraded oils, and then will increase quickly in severely biodegraded oils. The main reason is that there are some differences in the ability of resistant biodegradation for different isomer of biomarkers with different stereo configuration, resulting in the fact that destroying rate by bacteria for those biomarkers with weak ability will be higher than those with strong ability in resistant biodegradation. For example, 18α(H)-22,29,30-trisnorhopanes (Ts) will be destroyed more quickly than 17α(H)-22,29,30-trisnorshopanres (Tm), and 20R isomer is more quickly than 20S isomer for C29 sterane, resulting in the relative ratios changed with increasing biodegradation. Therefore, much more attention should be paid to the biodegradation extent of crude oils and the type of biomarker maturity indicators, when the distributions and the compositions of biomarkers in biodegraded oils are used to determine the maturity of biodegraded oils.  相似文献   

3.
Aromatic hydrocarbon fractions isolated from sediments polluted with crude oil, from sampling stations in and around Sullom Voe, Shetland Islands, were found to exhibit, as the major feature in their gas chromatograms, an unresolved complex mixture or ‘hump’. This feature was absent from the gas chromatograms of the aromatic hydrocarbon fractions isolated from corresponding unpolluted sediments in the region. The observed aromatic hump had little resemblance to the distribution of aromatic hydrocarbons in a typical North Sea crude oil. Incubation studies, however, showed that such a hump was appearing when oil-spiked sediments were aerobically biodegraded. From these incubation studies it was also evident that alkylaromatic hydrocarbons in the crude oil were biodegraded before any change in the normal alkanes was apparent. Therefore, the presence of an unresolved complex mixture in the gas chromatograms of aromatic hydrocarbon fractions from recent sediments can act as a marker to recognize contamination by crude oil.  相似文献   

4.
Light hydrocarbons(LHs) are one of the main petroleum fractions in crude oils, and carry much information regarding the genetic origin and alteration of crude oils. But secondary alterations—especially biodegradation—have a significant effect on the composition of LHs in crude oils. Because most of the LHs affected in oils underwent only slight biodegradation(rank 1 on the biodegradation scale), the variation of LHs can be used to describe more the refined features of biodegradation. Here,23 crude oils from the Dawanqi Oilfield in the Tarim Basin, NW China, eleven of which have been biodegraded to different extents, were analyzed in order to investigate the effect of slight to minor biodegradation on C_6–C_7 LHs.The study results showed that biodegradation resulted in the prior depletion of straight-chained alkanes, followed by branched alkanes. In slight and minor biodegraded oils,such biodegradation scale could not sufficiently affect C_6–C_7cycloalkanes. For branched C_6–C_7 alkanes, generally,monomethylalkanes are biodegraded earlier than dimethylalkanes and trimethylalkanes, which indicates that branched alkanes are more resistant to biodegradation, with the increase of substituted methyl groups on parent rings.The degree of alkylation is one of the primary controlling factors on the biodegradation of C_6–C_7 LHs. There is a particular case: although 2,2,3-trimethylbutane has a relative higher alkylation degree, 2,2-dimethylpentane is more resistant to biodegradation than 2,2,3-trimethylbutane. 2,2-Dimethylpentane is the most resistant to biodegradation in branched C_6–C_7 alkanes. Furthermore, the 2-methylpentane/3-methylpentane and 2-methylhexane/3-methylhexane ratios decreased steadily with increasing biodegradation,which implies that isomers of bilateral methyl groups are more prone to bacterial attack relative to mid-chain isomers. The position of the alkyls on the carbon skeleton is also one of the critical factors controlling the rate of biodegradation. With increasing biodegradation, Mango's LH parameters K1 values decrease and K2 values increase,the values of n-heptane and isoheptane decrease, and the indices of methylcyclohexane and cyclohexane increase.LH parameters should be applied cautiously for the biodegraded oils. Because biodegraded samples belong to slight or minor biodegraded oils, the values of n-heptane and isoheptane from Dawanqi Oilfield can better reflect and determine the ‘‘Biodegraded' zone. When the heptane value is 0–21 and the isoheptane value is 0–2.6, the crude oil in Dawanqi Oilfield is defined as the ‘‘Biodegraded' zone.  相似文献   

5.
The Liaohe Oilfield in the Liaohe Western Depression of the Bohai Gulf Basin is the third-largest oil producing province and the largest heavy oil producing oilfield in China. A total of 65 oil samples,35 rock samples and 36 reservoir sandstone samples were collected and analyzed utilizing conventional geochemical and biogeochemical approaches to unravel the mechanisms of the formation of the heavy oils. Investigation of the oils with the lowest maturity compared with the oils in the Gaosheng and Niuxintuo oilfields indicates no apparent relation between the maturity and physical properties of the heavy oils. It is suggested that the heavy oil with primary origin is not likely the main mechanism re-sponsible for the majority of the heavy oils in the Liaohe Western Slope. The absence and/or depletion of n-alkanes etc.,with relatively low molecular weight and the occurrence of 25-norhopane series in the heavy oils as well as the relatively high acidity of the oils all suggest that the majority of the heavy oils once experienced secondary alteration. The fingerprints of the total scanning fluorescence (TSF) of the inner adsorbed hydrocarbons on the reservoir grains and the included hydrocarbons in fluid inclusions are similar to that of the normal oils in the area but are different from the outer adsorbed and reser-voired free oils at present,further indicating that most of the heavy oils are secondary in origin. Analyses of bacteria (microbes) in 7 oil samples indicate that anaerobic and hyperthermophilic Ar-chaeoglobus sp. are the dominant microbes relevant to oil biodegradation,which coincides with the shallow commercial gas reservoirs containing anaerobic bacteria derived gas in the Gaosheng and Leijia teotonic belts. The biodegradation most likely occurs at the water/oil interface,where the forma-tion water is essential for microbe removal and nutrient transportation. We think that biodegradation,water washing and oxidization are interrelated and are the main mechanisms for the formation of the heavy oils. Biodegradation was the predominant process with water washing being a prerequisite,and oxidization acting as a metabolic manifestation. This study provides unique approaches for further investigation of the formation mechanisms of heavy oils in general,and may provide some important insight for the exploration of shallow biogas in the area.  相似文献   

6.
Five stations were established in the Fenglin mangrove area of Xiamen, China to determine the concentrations of polycyclic aromatic hydrocarbons (PAHs) and the numbers of PAH-degrading bacteria in surface sediments. Assessing the biodegradation potential of indigenous microorganisms and isolating the high molecule weight (HMW)-PAH degrading bacteria was also one of the aims of this work. The results showed that the total PAH concentration of sediments was 222.59 ng g(-1) dry weight, whereas the HMW-PAH benzo(a)pyrene (BaP) had the highest concentration among 16 individual PAH compounds. The variation in the numbers of PAH-degrading bacteria was 2.62 x 10(2)-5.67 x 10(4)CFU g(-1) dry weight. The addition of PAHs showed a great influence in increasing the microbial activity in mangrove sediments. A bacterial consortium, which could utilize BaP as the sole source of carbon and energy, and which was isolated from mangrove sediments and enriched in liquid medium for nearly one year degraded 32.8% of BaP after 63 days incubation.  相似文献   

7.
《Marine pollution bulletin》2012,64(5-12):424-430
Dynamics of microbial community and biodegradation of polycyclic aromatic hydrocarbons (PAHs) in polluted marine sediments, artificially spiked with a mixture of PAHs (fluorene, phenanthrene, fluoranthene and pyrene), were examined for a period of 60 days. Microbial communities were characterised by bacterial counts, ester-linked fatty acid methyl ester (EL-FAME) analysis and denaturing gradient gel electrophoresis (DGGE). A noted reduction in species diversity occurred only in the high PAH level treatment at onset. Both EL-FAME and DGGE demonstrated a marked shift in microbial community, in all the PAH level treatments, afterwards, with increases in the number of fatty acid degraders, the relative abundance of fatty acid biomarkers for gram-negative bacteria and a decrease in species diversity. The shift was also accompanied by the significant decrease in PAH concentrations. By the end of the experiment, diversity indices, based on both approaches, recovered when PAH concentrations declined to their background levels, except in the high PAH level treatment.  相似文献   

8.
Dynamics of microbial community and biodegradation of polycyclic aromatic hydrocarbons (PAHs) in polluted marine sediments, artificially spiked with a mixture of PAHs (fluorene, phenanthrene, fluoranthene and pyrene), were examined for a period of 60 days. Microbial communities were characterised by bacterial counts, ester-linked fatty acid methyl ester (EL-FAME) analysis and denaturing gradient gel electrophoresis (DGGE). A noted reduction in species diversity occurred only in the high PAH level treatment at onset. Both EL-FAME and DGGE demonstrated a marked shift in microbial community, in all the PAH level treatments, afterwards, with increases in the number of fatty acid degraders, the relative abundance of fatty acid biomarkers for gram-negative bacteria and a decrease in species diversity. The shift was also accompanied by the significant decrease in PAH concentrations. By the end of the experiment, diversity indices, based on both approaches, recovered when PAH concentrations declined to their background levels, except in the high PAH level treatment.  相似文献   

9.
Yu KS  Wong AH  Yau KW  Wong YS  Tam NF 《Marine pollution bulletin》2005,51(8-12):1071-1077
The biodegradability of a mixture of PAHs, namely fluorene (Fl), phenanthrene (Phe) and pyrene (Pyr), in mangrove sediment slurry was investigated. At the end of week 4, natural attenuation based on the presence of autochthonous microorganisms degraded more than 99% Fl and Phe but only around 30% of Pyr were degraded. Biostimulation with addition of mineral salt medium degraded over 97% of all three PAHs, showing that nutrient amendment could enhance Pyr degradation. Bioaugmentation with inoculation of a PAH-degrading bacterial consortium enriched from mangrove sediments did not show any promotion effect and the degradation percentages of three PAHs were similar to that by natural attenuation. Some inhibitory effect was observed in bioaugmentation treatment in week 1 with only 50% Fl and 70% Phe degraded. These results indicate that autochthonous microbes may interact and even compete with the enriched consortium during PAH biodegradation. Natural attenuation appeared to be the most appropriate way to remedy Fl- and Phe-contaminated mangrove sediments while biostimulation was more capable to degrade Pyr-contaminated sediments. The study also shows that although a large portion of the added PAHs (more than 95%) was adsorbed onto the sediments at the beginning of the experiment, most PAHs were degraded in 4 weeks, suggesting that the degraders could utilize the adsorbed PAHs efficiently.  相似文献   

10.
Biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated sediment is an attractive remediation technique and its success depends on biodegradation kinetics, and the optimal condition for the PAH-degrading isolates; however, information on this aspect is still scarce. The effects of multi-factors on biodegradation of phenanthrene, a 3-ring model PAH, in contaminated sediment slurry by Sphingomonas sp. a bacterial strain isolated from surface mangrove sediment, were investigated using the orthogonal experimental design (form L(16)(4(5))). The most significant factors were salinity and inoculum size, while the effects of phenanthrene concentrations, nutrient addition and temperatures were insignificant. The optimal biodegradation condition in contaminated mangrove sediment slurry was 30 degrees C, 15 ppt salinity, a carbon/nitrogen ratio of 100:1 (the background ratio in sediment) and an inoculum size of 10(6) most probable number g(-1) sediment. The phenanthrene biodegradation could be best described by the first order rate model, C=C(0)e(-kt), where k (the rate constant) is equaled to 0.1185, under the optimal condition. The kinetic model was verified and its validity in predicting biodegradation by Sphingomonas sp. at various phenanthrene concentrations was proved by experimental data.  相似文献   

11.
Contaminations in sediments by polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs were investigated at 44 sites in Osaka Bay, Japan. Concentrations of total PAHs and alkylated PAHs were in the range 6.40–7800 ng/g dry weights and 13.7–1700 ng/g dry weights, respectively. The PAH concentrations tended to be higher along the shoreline in the vicinities of big ports, industrialized areas, and densely populated regions such as the cities of Osaka and Kobe. The major sources appeared to be pyrogenic or both pyrogenic and petrogenic at most of the sites. PAH concentrations were remarkably high at a site near Kobe, where the concentrations of dibenzo(a,h)anthracene and benzo(g,h,i)perylene exceeded the effects-range-medium concentration and eight PAHs were above the corresponding effects-range-low concentrations. Those PAHs may have been derived from the great fire associated with the large earthquake in 1995.  相似文献   

12.
13.
Biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated sediment is an attractive remediation technique and its success depends on biodegradation kinetics, and the optimal condition for the PAH-degrading isolates; however, information on this aspect is still scarce. The effects of multi-factors on biodegradation of phenanthrene, a 3-ring model PAH, in contaminated sediment slurry by Sphingomonas sp. a bacterial strain isolated from surface mangrove sediment, were investigated using the orthogonal experimental design (form L16(45)). The most significant factors were salinity and inoculum size, while the effects of phenanthrene concentrations, nutrient addition and temperatures were insignificant. The optimal biodegradation condition in contaminated mangrove sediment slurry was 30 °C, 15 ppt salinity, a carbon/nitrogen ratio of 100:1 (the background ratio in sediment) and an inoculum size of 106 most probable number g−1 sediment. The phenanthrene biodegradation could be best described by the first order rate model, C = C0ekt, where k (the rate constant) is equaled to 0.1185, under the optimal condition. The kinetic model was verified and its validity in predicting biodegradation by Sphingomonas sp. at various phenanthrene concentrations was proved by experimental data.  相似文献   

14.
15.
Samples of marine benthic invertebrates collected from two sites in the Antarctic have been analysed for both aliphatic and aromatic hydrocarbons in order to establish baseline concentrations for some classes of hydrocarbons.Samples from Signy Island, a pristine site, contained low concentrations of the hydrocarbons determined, whereas those from King Edward Cove, South Georgia, contained significantly higher concentrations. King Edward Cove has a known history of pollution from whaling operations.Platt & Mackie (1979) have suggested that the hydrocarbons in sediments from King Edward Cove are a result of the world-wide dissemination of the pyrolysis products of fossil fuels. Our work suggests, in contrast, that the hydrocarbons in the benthos are derived from local sources.  相似文献   

16.
Abiogenic hydrocarbons in commercial gases from the Songliao Basin, China   总被引:3,自引:0,他引:3  
This paper discusses the kinetic fractionation, composition and distribution characteristics of carbon and hydrogen isotopes for various alkane gases formed in different environments, by different mecha- nisms and from different sources in nature. It is demonstrated that the biodegradation or thermode- gradation of complex high-molecule sedimentary organic material can form microbial gas or thermogenic gas. The δ 13C1 value ranges from -110‰ to -50‰ for microbial gases but from -50‰ to -35‰ (even heavier) f...  相似文献   

17.
18.
Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea   总被引:10,自引:0,他引:10  
Between 1992 and 1994, the distribution of 15 polycyclic aromatic hydrocarbons (PAHs) was investigated in seawater and surface sediments of the Baltic Sea. The analysis of PAHs in seawater is very difficult due to the low concentration. High separation capability is required. A method for analysing very low concentrations of PAHs is presented. The method is based on the high-performance liquid chromatography (HPLC) with fluorescence detection. The concentrations of PAHs in seawater are discussed in relation to water depth. A seasonal variation of PAHs in seawater was observed, with lowest concentrations occurring in summer and generally higher concentrations occurring in November. According to the regional distribution, elevated concentrations of PAHs were found in coastal regions of the Baltic Sea. The regional distribution of PAHs in surface sediments of the Belt Sea and the Arkona Basin were also investigated. The relationship between the content of PAHs and the percentage of total organic carbon in sediments is discussed.  相似文献   

19.
The composition and spatial distribution of aliphatic and polycyclic aromatic hydrocarbons (PAHs) were investigated in biota and coastal sediments from four countries surrounding the Gulf (Bahrain, Qatar, United Arab Emirates and Oman). The levels of total petroleum hydrocarbons (TPH), aliphatic unresolved mixture and PAHs in sediments and biota were relatively low compared to world-wide locations reported to be chronically contaminated by oil. Only in the case of the sediments collected near the BAPCO oil refinery in Bahrain, having concentrations of 779 μg g−1 total petroleum hydrocarbon equivalents and 6.6 μg g−1 ∑PAHs, can they be categorized as chronically contaminated. Some evidence of oil contamination was also apparent in sediments and bivalves around Akkah Head and Abu Dhabi in the UAE, and near Mirbat in Oman. Contaminant patterns in sediments and biota indicated that the PAHs were mainly from fossil sources, with the exception of the high PAH concentrations in sediments near the BAPCO refinery that contained substantial concentrations of carcinogenic PAH combustion products.  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs) were measured in 41 surface sediments from Narragansett Bay, RI. All the analytes generally decrease down bay from the Seekonk, Providence and Taunton Rivers at the head of the bay. Total PAHs ranged from 0.569 to 216 microg/g with 27% exceeding the effects range median (ERM) of 44.8 microg/g and 73% of the stations exceeding the effects range low (ERL) of 4.02 microg/g (Long et al., 1995). Based on principal component analysis, the major source of the contaminants in Narragansett Bay was the Providence River while the coves and Taunton River/Mt. Hope Bay appeared to only have a limited influence on the open bay. PAH source ratios indicate that creosote and/or coal may be the most significant contributor of pyrogenic high molecular weight PAHs in Narragansett Bay, along with significant contributions from diesel exhaust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号