首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 631 毫秒
1.
Devonian strata in the Guizhong region, Guangxi, China consist mainly of marine deposition carbonates (limestones and dolomites) as well as restricted clastic rocks. The strata thickness is measured as 2041m and classified into 14 formations. An integrated field geological, petrographic, sedimentological, palaeobiological, and geochemical study of these strata reveals that the depositional paleoenvironments were carbonate tidal flat, restricted platform, open platform, shelf, platform margin slop, and algal herm. The total organic carbon (TOC) of sedimentary organic matter ranges between 0.07% and 1.96% with average of 0.21%. The organic matter types are Type I and Type III. The vitrinite reflectance (R 0) of kerogen ranges between 0.99% and 2.03%, indicating the maturated and highly maturated stages. The analytical results of the representative samples collected from shelf and subtidal facies show that the differences of organic matter type and biological diagnostic compounds are related to the types of source rocks deposited in different paleoenvironments.  相似文献   

2.
China’s widespread marine carbonate rock series are mostly characterized by intensive thermal evolu- tion and low abundance of organic matter, especially the Lower Paleozoic carbonate rocks have experienced multi-episodes of tectonics and prolonged history of thermal evolution, thus making it more complicatedethe development and distribution of hydrocar- bon-source rocks reflected in the sedimentary, bio- logical and geochemical facies. Consequently, it seems much less powerful to assess the …  相似文献   

3.
The Tuoku region in northern Tarim Basin of China is a key area for studying oil/gas reservoir rocks. The magnetic and mineralogical parameters of well cuttings from two wells, well S7, situated on oil/gas field, and well S6, at an oil/water interface, were measured. The two wells are located in the same structure with similar strata and types of lithology, but well S6 is a showing well of oil and gas 5 km northwest of well S7. The purpose of this paper is to evaluate the possibility and distribution of secondary magnetic alteration that may have occurred due to hydrocarbon migration above an oil/gas accumulation. It is concluded that the magnetism of well cuttings from major strata in well S7, including source rocks, oil reservoir rocks and cap rocks, and in Quaternary (Q) soil is higher than that from well S6. The Cambrian oil-bearing strata and cap rocks have even higher magnetism in well S7. The shape and parameters of magnetic hysteresis loops indicate that soft (H c<20 mT,H s<0.3 T) ferrimagnetic components dominate the magnetic carriers within the strongly magnetic strata of well S7, whereas a mixed paramagnetic and ferrimagnetic distribution occurs in well S6 (for example, low coecivityH c and nonsaturating magnetized character). Analysis of heavy minerals shows that the contents of iron oxide (magnetite, maghemite and hematite) in well S7 are often higher than those in well S6. The magnetite content in samples of cuttings from Cambrian rocks can reach 9.7% in oil-bearing strata in well S7, and in strata Ekm and N1j are 1.215% and1.498%, respectively. Typical spherical magnetite grains are found within the main source rocks and the soils in well S7. By analysis of surface microtexture and of trace element contents, we infer that the spherical magnetite is composed of aggregates of ultrafine particles that are probably authigenic magnetite formed in a hydrocarbon halo background. Project supported by the National Natural Science Foundation of China and the Geological Industry Foundation of China (Grant No. 49374216) and Foundation of the State Key Laboratory of Oil/Gas Reservoir Geology and Exploitation of China (Grant No. 9608).  相似文献   

4.

Natural gases discovered up to now in Lishui Sag, the East China Sea Basin, differ greatly in gaseous compositions, of which hydrocarbon gases amount to 2%–94% while non-hydrocarbon gases are dominated by CO2. Their hydrocarbon gases, without exception, contain less than 90% of methane and over 10% of C2 + heavier hydrocarbons, indicating a wet gas. Carbon isotopic analyses on these hydrocarbon gases showed that δ 13C1, δ 13C2 and δ 13C3 are basically lighter than −44‰, −29‰ and −26‰, respectively. The difference in carbon isotopic values between methane and ethane is great, suggesting a biogenic oil-type gas produced by the mixed organic matter at peak generation. δ 13 \( C_{CO_2 } \) values of nonhydrocarbon gases are all heavier than −10‰, indicating a typical abiogenic gas. The simulation experiment on hydrocarbon generation of organic matter in a closed gold-tube system showed that the proportion of methane in natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit is obviously higher than that in natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit, consequently the proportion of heavier hydrocarbons of the former is remarkably lower than that of the latter. Moreover, δ 13C1 values of natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit are about 5‰ heavier than those of natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit while δ 13C2 and δ 13C3 values of the former are over 9‰ heavier than those of the latter. Currently the LS36-1 oil-gas pool is the only commercial oil-gas reservoir in Lishui Sag, where carbon isotopic compositions of various hydrocarbon components differ greatly from those of natural gases produced by the Lingfeng Formation organic matter but are very similar to those of natural gases derived from the Yueguifeng Formation organic matter, therefore, natural gases in the LS36-1 oil-gas pool are mainly derived from the Yueguifeng Formation lacustrine source rock rather than the Lingfeng Formation marine or Mingyuefeng Formation coal-measures source rocks.

  相似文献   

5.
Yang  Chun  Luo  Xia  Li  Jian  Li  ZhiSheng  Liu  QuanYou  Wang  YuLin 《中国科学:地球科学(英文版)》2008,51(1):140-147

The Xushen gas field, located in the north of Songliao Basin, is a potential giant gas area for China in the future. Its proved reserves have exceeded 1000×108 m3 by the end of 2005. But, the origin of natural gases from the deep strata is still in debating. Epimetamorphic rocks as a potential gas source are widely spreading in the northern basement of Songliao Basin. According to pyrolysis experiments for these rocks in the semi-confined system, gas production and geochemistry of alkane gases are discussed in this paper. The Carboniferous-Permian epimetamorphic rocks were heated from 300°C to 550°C, with temperature interval of 50°C. The gas production was quantified and measured for chemical and carbon isotopic compositions. Results show that δ 13C1 is less than −20‰, carbon isotope trend of alkane gas is δ 13C1<δ 13C2<δ 13C3 or δ 13C1<δ 13C2>δ 13C3, these features suggest that the gas would be coal-type gas at high-over maturity, not be inorganic gas with reversal trend of gaseous alkanes (δ 13C1>δ 13C2>δ 13C3). These characteristics of carbon isotopes are similar with the natural gas from the basin basement, but disagree with gas from the Xingcheng reservoir. Thus, the mixing gases from the pyrolysis gas with coal-typed gases at high-over maturity or oil-typed gases do not cause the reversal trend of carbon isotopes. The gas generation intensity for epimetamorphic rocks is 3.0×108–23.8×108 m3/km2, corresponding to R o from 2.0% to 3.5% for organic matter.

  相似文献   

6.
The organic matter of three different chronological major carbonaceous rock gold-bearing formations of South China (Middle Proterozoic Shangqiaoshan group of northeastern Jiangxi, Lower Cambrian Shuikou group of northern Guangxi and Devonian Shetianqiao group of eastern Hunan) and related carbonaceous stratabound gold deposits such as Jinshan, Longshui and Shixia deposits, respectively, has been characterized by organic geochemical techniques. These organic geochemical results show that the average total organic carbon (TOC) content of the three chronological carbonaceous rock gold-bearing formations of South China ranges from 0.15% to 1.56%. The thermal maturity of the organic matter of host rocks in the three gold-bearing formations is high. The micro-component of the organic matter of the host rocks consists primarily of solid bitumen and graphite. The organic carbon and gold of the host rocks appear to syndepositin situ during the formation of the gold-bearing formations. The organic carbon played a certain role in controlling the geochemical environment of the gold-bearing formations. The metallogenetic mechanism of the carbonaceous rock stratabound gold deposits of South China is closely associated in genesis with the sedimentation, diagenesis and thermal evolution history of the organic matter of host rocks in the gold-bearing formations.  相似文献   

7.
A sequential selective chemical degradation has been performed on the kerogen from the Nenjiang Formation of the southern Songliao Basin by using a series of mild chemical degradations (alkaline hydrolysis, cleavage of ether-bonds and sulfur-bonds, and ruthenium tetroxide (RuO4) oxidation). Subsequently, the GC-MS analyses are carried out on different degradation products. The results show that chemical degradations can release a great number of GC/MS-determinable biomarkers from insoluble kerogen, such as, alkaline hydrolysis products mainly comprise n-alkanes, fatty acids and alkanols; thiophene compounds are predominantly ether-bound to kerogen matrix; the products from the cleavage of sulfur-sulfur and sulfur-carbon bonds in the kerogen include fatty acids, alkanols and some n-alkanes with high carbon numbers; RuO4 oxidation products are predominantly monocarboxylic acids and α,ω-dicarboxylic acids. The distributions of main degradation products indicate that organic matter in this kerogen is predominantly derived from algae and bacteria, and that small amounts of high plant-derived organic matter are possibly combined into kerogen matrix at the late stage by sulfur bonds and other means. This study will provide an important approach for further discussing sources of organic matter in source rocks and their depositional paleoenvironments.  相似文献   

8.
Spinifex-like textured metaperidotites from the Higo Metamorphic Rocks (HMR), west-central Kyushu, Japan, may be formed by high-pressure dehydration of antigorite, and may indicate deep subduction of serpentinite reaching a pressure–temperature condition of 1.6 GPa and 740–750 °C. Three rock types have been identified based on mineral assemblage and rock texture: Type I (L) consisting of medium-grained (1–5 cm long) olivine + enstatite + chromite ±tremolite with secondary talc and anthophyllite that occurs in low-grade metamorphic rocks of the biotite zone, Type I (H) of coarse-grained (up to 10 cm long) olivine + enstatite (with clinoenstatite lamella) + chromite ±tremolite with secondary talc that occurs in high-grade metamorphic rocks of the garnet-cordierite zone, and Type II composed of Al-spinel + chlorite + olivine + apatite + ilmenite with minor sodic gedrite in the garnet-cordierite zone together with Type I (H). Olivines in all rock types are mostly serpentinized during exhumation. The chromite-olivine thermometer gives 560–690 °C for Type I (L) rocks, and the spinel-olivine thermometer gives 610–740 °C for Type II rocks. The peak metamorphic pressure will be higher than 1.6 GPa based on the location of the experimentally determined invariant point (P = 1.6 GPa and T = 670 °C) of antigorite + forsterite + enstatite + talc + H2O. This estimate is consistent with the occurrence of chlorite in Type II rocks, which is stable up to 890 °C at 2.0 GPa. The spinifex-like textured metaperidotites occur as small bodies in the low P/T type gneisses, implying tectonic juxtaposition of them probably during exhumation of the HMR. Recent findings of medium pressure (0.9–1.2 GPa) granulites and gneisses from the HMR may indicate that the HMR has a deep root into the wedge mantle from which the spinifex-like textured metaperidotites have derived.  相似文献   

9.
The Ogasawara Islands mainly comprise Eocene volcanic strata formed when the Izu–Ogasawara–Mariana Arc began. We present the first detailed volcanic geology, petrography and geochemistry of the Mukojima Island Group, northernmost of the Ogasawara Islands, and show that the volcanic stratigraphy consists of arc tholeiitic rocks, ultra‐depleted boninite‐series rocks, and less‐depleted boninitic andesites, which are correlatable to the Maruberiwan, Asahiyama and Mikazukiyama Formations on the Chichijima Island Group to the south. On Chichijima, a short hiatus is identified between the Maruberiwan (boninite, bronzite andesite, and dacite) and Asahiyama Formation (quartz dacite and rhyolite). In contrast, these lithologies are interbedded on Nakodojima of the Mukojima Island Group. The stratigraphically lower portion of Mukojima is mainly composed of pillow lava, which is overlain by reworked volcaniclastic rocks in the middle, whereas the upper portion is dominated by pyroclastic rocks. This suggests that volcanic activity now preserved in the Mukojima Island Group records growth of one or more volcanoes, beginning with quiet extrusion of lava under relatively deep water followed by volcaniclastic deposition. These then changed into moderately explosive eruptions that took place in shallow water or above sea level. This is consistent with the uplift of the entire Ogasawara Ridge during the Eocene. Boninites from the Mukojima Island Group are divided into three types on the basis of geochemistry. Type 1 boninites have high SiO2 (>57.0 wt.%) and Zr/Ti (>0.022) and are the most abundant type in both Mukojima and Chichijima Island Groups. Type 2 boninites have low SiO2 (<57.1 wt.%) and Zr/Ti (<0.014). Type 3 boninites have 57.6–60.7 wt.% SiO2 and are characterized by high CaO/Al2O3 (0.9–1.1). Both type 2 and 3 boninites are common on Mukojima but are rare in the Chichijima Island Group.  相似文献   

10.
Study of Late Cretaceous lacustrine sedimentary strata in the eastern Songliao Basin, China revealed that the paleoclimate was relatively arid and hot during sedimentation of the upper Santonian of the Yaojia Formation, but became relatively humid and warm during deposition of the lower Campanian Nenjiang Formation. The upper Yaojia Formation was deposited in a freshwater lake environment, while the lower Nenjiang Formation was deposited in a slightly brackish to brackish environment. The average total organic carbon content in the upper Yaojia Formation is 0.15%, while the hydrogen index is 36 mgHC/gTOC, implying poor source rock for oil generation and the organic matter comprised of a mixture of woody and herbaceous organic matter. In contrast, the hydrogen index of oil shale and black shale of the lower Nenjiang Formation is 619 mgHC/gTOC, and total organic carbon content on average is 3.37%, indicating a mixed algae and herbaceous source of kerogen and an increase in aquatic bioproductivity. The black shale and oil shale have low Pristane/Phytane and C29 5α,14α,17α(H) ? stigmastane 20R/(20R + 20S) ratios, with maximum concentration of n‐alkanes at n‐C23, implying an anoxic depositional environment with algae, bacteria and higher plants providing most of the organic matter. Relatively abundant gammacerane and a higher Sr/Ba ratio in the oil shales suggest the presence of brackish water and development of salinity stratification in the lake. During sedimentation of the upper Yaojia through the lower Nenjiang Formations, the level of Songliao lake increased and a deep‐lake environment was formed with bottom waters being oxygen depleted. Concomitantly, as the lake deepened bottom conditions were changing from oxic to anoxic, and the input of organic matter changed from predominantly higher plants to a mixture of bacteria, algae and higher plants providing favorable conditions for oil source rock accumulation.  相似文献   

11.
The distribution, the relative composition, and their variation of methylated chromans (MTTC) with maturation of organic matter in the source rocks from Mingjia 1 well, Jianghan hypersaline basin, have been analyzed and studied. There is a close relationship between the distribution of methylatd chromans and paleosalinity of depositional environment. In the Eq 1–Eq 3 source rocks deposited under hypersaline environment with lower Pr/Ph ratio, higher gammacerane index and abundant organic sulfur-containing compounds, methyl MTTC and dimethyl MTTC are main components, but in the Eq 4 source rocks deposited non-hypersaline environment with relatively higher Pr/Ph ratio, lower gammacerane index and organic sulfur-containing compounds, trimethyl MTTC is a major compound in methylate chromans. Obviously, the distributions and the compositions of methylated chromans in the source rocks are in harmony with biomarker indicators indicating the paleaosalinity and redox of depositional environment. The relationship between the ratio of 5,8-dimethyl MTTC to 7,8-dimethyl MTTC (dimethyl MTTC ratio) and the maturity of organic matter in the source rocks from Mingjia 1 well has been discussed. The results show that dimethyl MTTC ratio increased with the burial depth and the maturation of organic matter in the source rocks, especially in immature level. It is noteworthy that this ratio is very susceptible to small variation in the maturity of organic matter in the source rocks when vitrinite reflectance R o is less than 0.65%. It may imply that this ratio is a good and susceptible aromatic maturity indicator for the relative maturity of organic matter in immature source rocks.  相似文献   

12.
The lithological features, the types of organic matter and its occurrence and carbon and oxygen isotopic value were clarified by combining core observation, thin slice authentication, X ray diffraction analysis, kerogen type identification and carbon and oxygen isotope analysis. The characteristic of strata, the distribution of volcanoes of Junggar Basin were also taken into consideration. A comprehensive analysis was conducted to evaluate environmental response of volcanism in Lucaogou formation in Jimsar sag. The results show that rocks is a mixed sedimentation of effusive rock and carbonate rocks, volcanic materials is widely developed in Lucaogou formation and origins from the edge of sag or distant source volcano activity. Organic matter is predominantly unstructural algae and asphaltene. The carbon isotopic value of carbonates ranges between 6.8‰ and 9.7‰ with an average of 8.3‰, featured in high positive excursions, while oxygen isotopic value varies from -11.9‰ to -4.3‰ with an average of -6.2‰. During the period of volcanic activity, the volcanic material released high amounts of nutrient to the lake basin, which is beneficial to the algae and other organic organisms. In the poor oxygen and calm water environments, the organic matter is distributed in the laminar algal and the carbon isotope value is high positive drift. During the intermittent period of volcanic activity, the lake level decreased and the lake bottom water changed to the oxygen-enriched environments. The organic matter is locally enriched or dispersed in local layers, and the carbon isotope values decreased slightly. The frequent volcanic activity promoted the organism boom, which lead carbon isotope value to have high positive characteristics and change trends.  相似文献   

13.
The Flin Flon Belt of Canada contains Paleoproterozoic volcanic–sedimentary sequences that are related to the Trans‐Hudson Orogeny. The sequences include island arc volcanic and volcaniclastic rocks (Amisk Group) that are unconformably overlain by subaerial sedimentary rocks (Missi Group), and younger deep facies sediments. In the Flin Flon area, several north–south trending faults divide the sequences into blocks and obscure the depositional environment of the deep facies sediments. Locally, within the Flin Flon area, the Embury Lake Formation is in fault contact with island arc volcanic–sedimentary sequences of the Amisk and Missi Groups. To identify the depositional environment of the Embury Lake Formation, we used lithologic and geochemical approaches. Here, we report carbon isotopic values in organic matter (δ13Corg) and sulfur isotopes (δ34S), as well as total organic carbon and total sulfur measurements for the black shale in the formation. Samples were taken from a drill core that contains alternating bands of sandstone and black shale. Pyrite in the black shale is divided into four textural types: euhedral, vein‐type, elliptical, and microcrystalline. Microcrystalline pyrite is typically generated by microbially mediated sulfate reduction. An extremely low S/C ratio (avg. = 0.04) is consistent with lacustrine deposition. The ranges of δ13Corg (?36 ‰ to ?27 ‰) and δ34S (+3.0 ‰ to +7.7 ‰) values can be explained by bacterial photosynthesis that involved Calvin cycle and acetyl CoA pathways, and sulfate reduction in a low‐sulfate environment. Considering the depositional age reported in a previous study of < 1.84 Ga, the Embury Lake Formation was likely emplaced in a lacustrine setting during the Trans‐Hudson Orogeny.  相似文献   

14.
Step heating experiments on ultra-high pressure (UHP) mcks from the Dabie Mountain shows a majority of CO2 in fluid inclusion (excluding H2O); CO is also a significant component, with a small content of N2 and CH4. Carbon isotopic composition of CO2 in fluid of metamorphic climax stage (-25%0- -30%0) is different from that of mantle carbon, indicating that UHP rocks did not experience obvious transformation by mantle fluids despite their subduction depth. CO2 was derived from carbon matter in the pmtoliths of UHP rocks in a relatively confined system, showing that the UHP rocks subsided quickly and uplifted quickly from the mantle. Current organization: Research Institute of Petroleum Exploration and Development, Beijing 100083, China.  相似文献   

15.
Two organic maturity indices, the statistical thermal alteration index (stTAI) and vitrinite reflectance (RO), are used to gain insight into the geological histories of sequences of Tertiary and Upper Cretaceous sediments in northern Japan that contain an unconformity and which are affected by faulting and contact metamorphism. The stTAI is based on the brightness, or gray level, of fossil pollen of Pinus, Podocarpus, Abies, and Picea species. Pollen brightness is measured using a transmitted‐light microscope equipped with a computer‐driven digital image processor. The stTAI represents the mean value of the modes for the complete array of indigenous pollen in rock samples. The stTAI indicates the level of organic maturation for Neogene sedimentary rocks of Japan, from incipient diagenesis to early catagenesis (RO ≤1.0%). With the progressive diagenesis and catagenesis of sedimentary rocks, stTAI values generally show a progressive decrease, whereas RO values increase. The effects of an unconformity and faulting are more clearly recorded in stTAI trends than in RO trends. During early stages of organic maturation (RO ≤0.7%), stTAI shows a rapid decrease, while RO shows a rapid increase during the mature and post‐mature stages (RO ≥0.8%). The occurrence of a range in RO values for a given level of organic maturity makes it difficult to determine the influence of the unconformity on the increasing RO trend. RO values show a progressive increase toward an igneous dyke, but this trend is not apparent in stTAI values. Measurements of Tertiary and Upper Cretaceous rocks in Japan reveal that stTAI is more sensitive to heating duration than RO, although RO is more sensitive to heating temperature.  相似文献   

16.
This paper reports the analysis on cores and rock slices,data on seismic and logging activities,characteristics of core samples,and the paleogeographic background of the Yingcheng Formation of the Xujiaweizi faulted depression in the Songliao Basin.The results show that some of the volcanic rocks were formed during subaquatic eruptions.These subaqueous volcanic rocks are further characterized by the interbedded black mudstone and tuffite,the presence of double-layer perlite enclosing aphyric or sparsely phyric rhyolite,the presence of a bentonite layer,and the coefficient of oxidation(Fe2O3/FeO).The types of rocks are volcanic breccia,lava breccias,perlite,rhyolite,tuff and sedimentary tuff.The subaquatic eruptions are distributed mainly in Wangjiatun,Shengping,Xuxi,Xuzhong,and Xudong.The XS-1 area is the most typical.The organic abundance of overburden mud rocks within the volcanic rocks of the Yingcheng Formation indicates that these rocks represent high-quality source rocks.The analysis also shows that continental subaquatic volcanic eruptions provide a rich supply of minerals and energies for the lake basin and increase the organic matter content in the water.Moreover,the water differentiation provides a good reducing environment for the conservation of organic matter,and is beneficial for the formation of high-quality source rocks.Finally,we propose a hypothesis to describe the mode of subaquatic eruptions and the formation of high-quality source rocks.  相似文献   

17.

The Proterozoic anorogenic magmatic rocks are well developed in the Bayan Obo deposit region. They are composed of trachyte, magnesioarfvedesonite-feldspatite, potash-rhyolite, dacite, rhyolite, quartz porphyry and trachy basalt. A lot of high-K diabase veins (dykes) are also found. These anorogenic magmatic rocks are derived from the mantle. They have lowerɛNd(t) (4.52-5.88) with T Nd DM = 1.54-1.92 Ga. Their Nd isotopic compositions and T Nd DM are consistent with those of ores, implying that the ore-forming materials were derived from these anorogenic magmatic rocks. The zircon U-Pb ages of the rocks are 1.8 Ga. Research results indicate that the Bayan Obo Group was replaced by the hydrothermal solution related to the anorogenic magmatic rocks, resulting in the formation of the deposit.

  相似文献   

18.
Organic matter of the Sinian and early Cambrian black shales on the Yangtze Platform belongs to the light carhon group of isotopes with the δ13C values from - 27% to - 35 %, which are lower than those of the contempomneously deposited carbonates and phosphorites. A carbon isotope-stratified paleooceanographic model caused by upwelling is proposed, which can be used not only to interpret the characteristies of organic carbon isotopic compositions of the black shales, but also to interpret the paleogeographic difference in the organic carbon isotope compositions of various types of sedimentary rocks. Project supported by the National Natural Science Foundation of China (Grant No. 49472114) and the Open Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences.  相似文献   

19.
Aromatic hydrocarbons are generally main distillation of crude oil and organic extract of source rocks. Bicyclic and tricyclic aromatic hydrocarbons can be purified by two-step method of chromatography on alumina. Carbon isotopic composition of individual aromatic hydrocarbons is affected not only by thermal maturity, but also by organic matter input, depositional environment, and hydrocarbon generation process based on the GC-IRMS analysis of Upper Ordovician, Lower Ordovician, and Cambrian source rocks in different areas in the Tarim Basin, western China. The subgroups of aromatic hydrocarbons as well as individual aromatic compound, such as 1-MP, 9-MP, and 2,6-DMP from Cambrian-Lower Ordovician section show more depleted 13 C distribution. The 13 C value difference between Cambrian-Lower Ordovician section and Upper Ordovician source rocks is up to 16.1‰ for subgroups and 14‰ for individual compounds. It can provide strong evidence for oil source correlation by combing the 13 C value and biomarker distribution of different oil and source rocks from different strata in the Tarim Basin. Most oils from Tazhong area have geochemical characteristics such as more negative 13C9-MP value, poor gammacerane, and abundant homohopanes, which indicate that Upper Ordovician source rock is the main source rock. In contrast, oils from Tadong area and some oils from Tazhong area have geochemical characteristics such as high 13C9-MP value, abundant gammacerane, and poor homohopanes, which suggest that the major contributor is Cambrian-Lower Ordovician source rock.  相似文献   

20.

Recently, garnet pyroxenite enclaves within peridotites occurring near Raobazhai, Huoshan County, have been discovered. The garnet pyroxenite is small pods, decimeters in size, enclosed within intensively serpentinized peridotites. Major mineral components comprise: garnet (Prp25–35), sodium augite (Jd10–25) with a small amount of ilmenite. There are two stages of retrometamorphism: the retrogressive granulite facies mineral assemblage is superimposed by that of amphibolite facies. The host rocks of the garnet pyroxenite are spinel peridotites, including spinel harzburgite and lherzolite. Due to intensive serpentinitization, only 5%–40% of the relic olivine (Fo92–93) are preserved. The orthopyroxenes are Mg-rich (En87–93) with bending of cleavages and granulation at their margins showing intracrystalline plasticity. On the basis of garnet-clinopyroxene Fe−Mg exchange equilibrium geothermometry proposed by Ellis & Green (1979) and Krogh (1988)K D=4.06–5.28;T=793–919°C,P=1.5 GPa are estimated for the garnet pyroxenite. It is inferred that the peridotites are mantle rocks about 60 km in depth. During the exhumation of the orogenic belt, it was tectonically emplaced into the lower crust in the solid state and then uplifted to the shallow depth. Obviously, this kind of garnet pyroxenite must be petrogenetically related to its host rock. The REE distribution pattern and the Ni−Co−Sc diagram reveal that they are chemically equivalent to the basaltic melt and ultramafic residua respectively derived from partial melting of mantle rocks.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号