首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Almost the entire Italian territory is prone to hydrogeological risk mostly due to landslides and flooding. The high frequency of extreme weather events in areas prone to geological–hydraulic hazards contributes significantly to increasing the risk for cities and its infrastructure, but above all for the people living there. Therefore, it is vital to research into rapid monitoring techniques to be applied following a disaster such as a landslide, so that important background information, useful for planning interventions aimed at hazard mitigation, can be obtained. This work seeks to identify the depth of the sliding surface of a landslide affecting the municipal area of Tripi (village in the Messina province, Sicily), through two geophysical field surveys (MASW and HVSR) undertaken in the same area at an interval of about 5 years. The MASW surveys have enabled to reconstruct the distribution of shear wave velocity with depth. The HVSR surveys have provided information on resonant frequency and directional effects. The data integration obtained by the two methods allowed to reconstruct impedance contrast sections indicating the depth of the sliding surface of the landslide.  相似文献   

2.
林松  王薇  邓小虎  查雁鸿  周红伟  程邈 《地球科学》2019,44(9):3135-3146
滑坡是最严重的地质灾害之一,查明滑坡形态特征及滑坡形成机制对于滑坡体稳定性分析、滑坡灾害风险管理和政府治理决策等方面具有重要意义.前人研究滑坡形态及其形成机制较少结合地球物理实测方法,其工程地质剖面绘制多局限于点信息的获取方式,而结合地球物理实测方法有利于从线、面同时获取更丰富的滑坡体地质信息,更加准确量化滑移面埋深和透视滑床形态.鉴于此,以灾害频发的三峡库区万州区为研究对象,采用网格高密度电法实测区内不同深度地层的电阻率值,并以此生成二维电阻率剖面和构建滑床三维形态;同时,将剖面电性分布特征与钻孔资料及地质调查资料相结合,对滑坡区地层结构、滑移面埋深以及滑床形态等多个影响滑坡的重要因素综合分析.结果表明,在研究区开展网格高密度电法实测工作,可获取地层电性结构特征以及构建滑坡体三维形态;实测剖面显示四方碑滑坡属于古滑坡,且存在拉裂槽现象.将实测剖面获取的滑移面埋深和构建的三维滑床形态进行钻孔标定,可对滑坡体内部结构及物质组成进行“透视”,从而为滑坡形成机制分析提供依据,同时也给其他类似区域地质调查中的滑坡稳定性评价及预测预报工作提供理论指导和技术参考.通过高密度电法揭示三峡库区典型滑坡体三维形态特征的理论方法和技术路线成功引入滑坡形成机制分析,可为研究滑坡形成机制和理论提供新思路,具有推广意义.   相似文献   

3.
We present in this work investigations using seismic ambient vibration to delimitate the El Achour landslide (Algiers), upon which independent geotechnical studies were carried out. Acquisition campaign of ambient vibration on the El Achour site on June 2009 and June 2015, over a surface of about 2 ha, consisted of 64 records of ambient noise with a 10 to 20 m grid size. This approach consists of simple, light, and fast H/V acquisitions, in order to determine the extension of the unstable zone, the depth of the sliding surface, and to test the effectiveness of this method. Two peaks were interpreted as one being for the sliding surface and the other for the lithological interface. As results, in the stable area, they are satisfactory. Indeed, the points in this area are not intermediate peaks which could be related to potential sliding surfaces, which led us to think that we could delineate, using this method, the unstable area from the stable area. The HVSR method allows to determine the thickness of the geological formations and to highlight the lateral and vertical facies changes in broad area.  相似文献   

4.
Bian  Shiqiang  Chen  Guan  Zeng  Runqiang  Meng  Xingmin  Jin  Jiacheng  Lin  Linxin  Zhang  Yi  Shi  Wei 《Landslides》2022,19(5):1179-1197

The Heifangtai terrace, in Northwest China, is a typical area where loess landslides have been induced by agricultural irrigation, and many of the landslides are prone to reactivation. However, the spatiotemporal evolution and hydrological-triggering mechanisms of loess landslide reactivation are not well understood. In this research, multiple remote sensing (SBAS-InSAR, TLS, and optical remote sensing), integrated with time-lapse ERT (tl-ERT) imaging, was used to monitor the post-failure evolution of the Luojiapo landslide in Heifangtai during the period of May 2015 to Nov. 2020. Pronounced temporal and spatial differences in the deformation and hydrological evolution of landslides after sliding were observed. The largest displacement rates occurred in the landslide source area, and the lateral extension of the landslide source area caused by spatial differences in reactivation is an important feature of landslide evolution. In the landslide area, the groundwater table (GWT) decreased at first ascribed to the spring hole caused by the exposure of the GWT after sliding and then increased due to the subsequent continuous irrigation, and the lag time of the GWT response to irrigation decreased significantly. Spatial differences in GWT evolution are one of the main causes of spatial differences in landslide reactivation, and reactivation was more likely to occur where the GWT fluctuated at a high level. The GWT also fell with local reactivation. Our findings highlight the potential for obtaining internal and external spatiotemporal information of loess landslide evolution using multiple remote sensing integrated with tl-ERT. Our results also help to understand the reactivation process of irrigated loess landslides and provide a reference for the monitoring and early warning of such landslides.

  相似文献   

5.
横波速度由于更能直接反映岩石的物理性质,从而在许多工程、环境和地下水勘查中有重要作用.多道面波分析方法(MASW)是一种新技术,通过求得的一维近地表横波速度剖面构建一个二维横波速度场,从而准确探测近地表介质情况.针对该方法数据的采集,提出了一种检波器排列自动安置的技术(自动安置排列),即使用牵引车辆的液压驱动装置在几秒内自动安置几十个检波器,并将其与传统安置排列的方法做了比较,结果表明,自动安置排列技术可用于多道面波分析方法,而且可以大大减少多道面波分析方法的采集时间和费用.  相似文献   

6.
金沙江上游沃达滑坡自1985年开始出现变形,现今地表宏观变形迹象明显,存在进一步失稳滑动和堵江的风险。采用遥感解译、地面调查、工程地质钻探和综合监测等方法,分析了沃达滑坡空间结构和复活变形特征,阐明了滑坡潜在复活失稳模式,并采用经验公式计算分析了滑坡堵江危险性。结果表明:沃达滑坡为一特大型滑坡,体积约28.81×106 m3,推测其在晚更新世之前发生过大规模滑动;滑坡堆积体目前整体处于蠕滑变形阶段,局部处于加速变形阶段;复活变形范围主要集中在中前部,且呈现向后渐进变形破坏特征,复活区右侧变形比左侧强烈。滑坡存在浅层和深层两级滑面,平均埋深分别约15.0,25.5 m,相应地可能出现两种潜在失稳模式:滑坡强变形区沿浅层滑带滑动失稳时,形成的堵江堰塞坝高度约87.2 m;滑坡整体沿深层滑带滑动失稳时,形成的堵江堰塞坝高度约129.2 m。沃达滑坡存在形成滑坡-堵江-溃决-洪水链式灾害的危险性,建议进一步加强滑坡监测,针对性开展排水、加固等防治工程。  相似文献   

7.
Multichannel analysis of surface waves (MASW) survey was conducted to measure shear wave velocities in order to ascertain the likely causes of road failure along LASU-IBA expressway in Alimosho local government area, Lagos, Nigeria. MASW data were acquired along the express road. The acquired dataset was processed and transformed into two-dimensional structure reflective of depth and surface wave velocity distribution within a depth of investigation using SurfSeis software. The MASW shear wave velocity data were compared to geophysical data that was acquired along the same profile. The comparison was also done with geotechnical data that had been acquired prior to the study some meters away from the study area. The correlation between N values to measured shear wave velocity using MASW was generated. The comparison illustrates the accuracy and consistency of MASW-derived shear wave velocity profiles. We concluded that (1) the low-velocity region that varies between 100 and 250 m/s at surface down to 4 m beneath the surface is characterized by loose/peat materials and may have been responsible for the road failure within the study area; this region depicts a very loose compaction area. (2) The MASW technique is a time–cost-effective tool for obtaining reliable shear wave velocity profiles, and (3) the MASW is particularly attractive in areas that cannot be readily assessed by other geophysical and geotechnical tools.  相似文献   

8.
以青海省南部省道红土山段滑坡为例,在分析区域地质概况和滑坡特征的基础上,对滑坡机理及影响滑坡的因素进行分析,确定滑坡滑动模式;选取合理的计算参数进行滑坡稳定性计算,根据计算结果对滑坡稳定性进行分析。得到以下结论:产生滑坡体病害的主要原因是滑坡所处区域冻土深度较大,区域冬夏温差大,地表水下渗后冻胀,次年夏初消融,这使粘性土及泥岩泥化,粘聚力降低,周而复始,滑体不断蠕动下滑。采用传递系数法对滑坡在不同工况下的稳定性进行计算,结果表明,在天然状态下滑坡浅层滑面处于蠕动变形状态,深层滑面基本稳定;在考虑暴雨和地震的条件下,滑坡处于不稳定状态。   相似文献   

9.
The Sablettes (Algiers) coastal reclaimed fringe region, located on the hanging wall of the Sahel active fault, is subject to different types of geological hazard such as flood and tsunami, coastal uplift, earthquake, liquefaction, landslide, and site effects. In this present work, we used ambient vibration HVSR for imaging the bedrock. The thickness of the sedimentary column under the backfill layer is unknown, and the coastal reclaimed areas are prone to strong amplification of seismic waves. The determination of the depth of the metamorphic base allowed us to establish a mapping of the bedrock roof surface. The 3D representation of this surface enabled us to present models of tectonic structures in this basement (i.e., fault, fold). This analysis will make it possible to make better evaluation of the amplification after having determined the depth of the metamorphic basement exceeding 240 m, which is supposed to have velocities close to those of the seismological basement, as well as the thicknesses of the different layers surmounting it.  相似文献   

10.
Risk evaluation for earthquake-induced rapid and long-travel landslides in densely populated urban areas is currently the most important disaster mitigation task in landslide-threatened areas throughout the world. The research achievements of the IPL M-101 APERITIF project were applied to two urban areas in megacities of Japan. One site is in the upper slope of the Nikawa landslide site where previous movements were triggered by the 1995 Hyogoken-Nambu earthquake. During detailed investigation, the slope was found to be at risk from a rapid and long-travel landslide induced by sliding surface liquefaction by earthquakes similar in scale to the 1995 event. A new plan to prevent the occurrence of this phenomenon was proposed and the plan was implemented. Another area is the Tama residential area near Tokyo. A set of field and laboratory investigations including laser scanner, geological drilling and ring-shear tests showed that there was a risk of sliding surface liquefaction for both sites. A geotechnical computer simulation (Rapid/LS) using the quantitative data obtained in the study allowed urban landslide hazard zoning to be made at individual street level.  相似文献   

11.
滑坡属于地质灾害中的重要灾种之一,查明滑坡区的地质与地球物理特征,对分析滑坡形成机制、评价滑坡稳定性具有重要意义。鉴于此,本文将高密度电法引入三峡库区腹地万州区滑坡地质调查中,在区内四方碑滑坡、塘角1号滑坡和麻柳林滑坡进行地球物理探测工作,并结合钻孔资料对实测结果进行对比验证。实测结果表明:在地形复杂地区开展地球物理探测工作,通过数据反演与分析,可获取滑坡体地层结构及滑移面;结合相关地质资料,通过对比解译,可弥补单纯依靠钻孔信息来确定滑移面形态的不足;3个典型滑坡区地球物理实测资料揭露滑坡体和滑床地球物理电性特征表现为,由崩坡积物、第四系粉质黏土以及含水碎石块组成的滑坡体电阻率低于40 Ω·m,而由砂岩与泥岩组成的滑床电阻率高于40 Ω·m,高密度电法对基岩滑坡和土质滑坡都能获取较好的结果。  相似文献   

12.
Sun  Shu-wei  Pang  Bo  Hu  Jia-bing  Yang  Zhao-xi  Zhong  Xiao-yu 《Landslides》2021,18(7):2593-2607

Owing to the heavy rainfall, a landslide occurred at the Anqian Iron mine, at 18:00(UTC + 8) on November 24, 2019, in China. The landslide was about 3.0?×?104 m3 and caused damage to the road of transporting waste materials. Failure characteristics and the mechanism of this landslide were analyzed in this study. The landslide area was divided into three parts: the rear tension cracking area, the middle sliding deformation area, and the front colluvium area. A contact-free measuring technique using the new ShapeMetrix3D system was applied and 204 joints were analyzed based on equal-angle stereographic projection. Thus, a conceptual model of the mechanism of the landslide was constructed and the formation process of the landslide was divided into three stages: the first shearing and dislocation stage; the second sliding, front bulging, and rear tractive cracking stage; and the third local rock mass collapse and colluvium depositing stage. Numerical modeling was performed to discover the landslide mechanism by progressively reducing the shear strength of rock mass. The results showed that the original slope was stable, whereas heavy rainfall triggered the landslide, and the predicted failure surface matched closely the field investigations. The factor of safety obtained by real three-dimensional analyses was slightly higher than that obtained by plane problem analyses, and the difference was attributed to the three-dimensional effect of the landslide. This paper also presents the results obtained from the parametric analysis in order to understand the impact of shear strength parameters on the overall stability of the slope.

  相似文献   

13.
文章以绞东滑坡为例,利用多期光学影像和Sentinel-1A降轨数据对绞东滑坡的崩滑时间和历史活动性进行了分析,根据分析结果将绞东滑坡斜坡区划分为三个区域,其中两个已滑滑区(A区、C区)和一个潜在滑区(B区)。在此基础上,通过滑坡碎屑流和岩体势能之间的计算方程反演了已滑滑坡的体积规模和滑体平均厚度,并基于已滑滑坡对潜在滑区可能造成的灾情进行了预测,认为潜在滑区在全部滑坡的情况下存在堵江风险。文中研究认为,在遥感手段识别滑坡活动性的基础上,利用遥感影像、DEM等数据,通过计算滑坡碎屑流和岩体势能之间的关系,可进行实测数据难以获取区域的滑坡规模与滑体平均厚度估算,进而进行险情评估,为滑坡防治提供指导。  相似文献   

14.
Multichannel analysis of surface waves (MASW) is a non-destructive seismic prospecting method utilizing Rayleigh waves for imaging and characterizing shallow sub-surface structure. Multichannel analysis of surface waves (MASW) studies were conducted in drift areas of two bridge sites in the hilly terrain of J&K for imaging and characterizing shallow sub-surface structure. The purpose of the present study is to estimate the shear wave velocity (VS) and subsurface structure in four drifts made in a hilly terrain for construction of two bridges. Rayleigh waves are having dispersive properties, travelling along or near the ground surface and are usually characterized by relatively low velocity, low frequency, and high amplitude. The study area comprises of Tertiary group of rocks which are underlain by Siwalik group. The main rock type in the study area is dolomite which has undergone various geological processes like weathering, jointing, fracturing and shearing. MASW data was collected inside four drifts in the mountainous terrain of J&K state which are located on either sides of Chenab river. The data was analyzed by relevant processing software using dispersion and inversion technique. Shear wave velocities were estimated up to 30 m depth. Average shear wave velocity (VS 30) up to top 30m was also computed. It is observed that, VS in the range 400–800 m/s upto 10–15 m corresponding to weathered rock, followed by compact dolomite rock up to the depth of about 30 m with VS in the range 1200–1600 m/s. Some low velocity zones are also identified from these sections which represent shear zones.  相似文献   

15.
Most of Basilicata region in the southern Italian Apennines is characterized by landslides often developing in clayey–marly formations. Many events have been triggered by extreme rainfall or snowmelt. The most important happened (on February–March 2005) at Bosco Piccolo 5 km far from Potenza. This landslide developed subsequently to rapid snowmelt occurred during alternating short periods of high temperatures and intense and continuous snowfalls. This complex landslide affected 4 ha of surface and reached a maximum depth of 20 m inducing damage and collapse of about 80% of the buildings in the village. An integrated multidisciplinary approach has been adopted to study the landslide. A multitemporal aerial photo interpretation and detailed geomorphological surveys have been carried out. Combined Electrical Resistivity Tomography (ERT) and Self-Potential (SP) measurements have been performed and calibrated with boreholes stratigraphy. Such an integrated approach allowed us to partially reconstruct the geometry of the investigated body and to evaluate the effectiveness of drainage system planned for the area.  相似文献   

16.
西藏易贡滑坡源区BH01、BH02与BH03斜坡体呈不稳定状, 严重威胁下游工程设施安全。为防控源区坡体再次高位滑动致灾, 亟待开展斜坡赋存的地质结构及变形趋势分析。文章基于2 m精度的Pleiades数字高程模型及地形影像, 厘定了定量地貌学、地质构造与滑坡学3方面证据, 确定易贡滑坡源区具有前缘叠瓦式逆冲断裂区单面山、逆冲断裂区块体、走滑断裂区块体、走滑断裂区北东向拉裂槽4个次级斜坡单元。现场地质调查发现源区坡体内发育倾向南东、南西两组主控结构面, 这两组结构面是滑坡前缘逆冲断裂、后缘走滑断裂渐进活动的结果。与山脊近直交的北东向拉裂槽可能与晚期东西伸展变形背景相关。研究认为在地质构造影响下, 易贡源区斜坡沿着北东向拉裂槽下延结构面呈现多级、多期次深层滑移, 具有岩质滑坡蠕滑-拉裂-剪断型滑动机制。依据源区拉裂缝扩展的深度判断, 源区BH02坡体具有潜在加速滑移风险, 且BH03坡体亦不稳定。   相似文献   

17.
天然气水合物分解可以诱发海底斜坡失稳对海底工程设施产生造成破坏影响。因此,海底斜坡稳定性状态评价对海底工程设施选址、安全运行具有重要意义。文章根据南海北部神狐海域水合物富集区工程地质特征,采用有限元强度折减法分析了斜坡几何参数、土层强度变化,以及水合物储层特征等因素对水合物分解前后海底斜坡稳定性的影响规律。结果表明,未考虑水合物分解时,海底斜坡稳定性主要受控于斜坡坡度和土体强度,且主要表现为浅层滑坡。考虑水合物的分解时,水合物层强度降低会对斜坡的整体稳定性产生影响,但同等上覆层条件下最危险滑动面位置受水合物层埋深影响较大,且存在受地形几何特征与上覆土层强度控制的临界埋深。埋深大于临界埋深时,水合物分解对斜坡稳定性的影响较小,最危险滑动面位置位于上部浅层,表现为浅表层破坏。小于临界埋深时,最危险滑动面位置则经过水合物层,表现为深层滑坡。根据目前模型中的水合物层埋深条件,水合物分解后的深层滑动面安全系数仍高于浅部地层,意味该海域水合物开采仍需要关注浅层海底滑坡灾害的影响。  相似文献   

18.
The present study deals with the seismic site classification of Bahrah area, Wadi Fatima, to characterize the local site conditions. The dynamic behavior of sediments was studied by the application of surface wave inversion. The multichannel analysis of surface waves (MASW) shallow geophysical technique was utilized for site classification. MASW survey was carried out at 66 sites along with 13 seismic refraction profiles at suitable localities. MASW and seismic refraction profiles were processed and compared with the available borehole data. The integration of MASW techniques with seismic refraction and borehole data progressively enhanced the subsurface visualization and reliability of the shear wave velocity estimation in the subsurface in the study area. The subsurface shear-wave velocity model was achieved by the solution of an inverse problem-based dispersion of surface waves and propagation in a vertically heterogeneous medium. The 2D genetic algorithm was employed for the inversion of dispersion curves to obtain velocity and thickness of subsurface layers. The depth to engineering bedrock and velocity of shear waves in the first 30 m was deciphered and mapped. The depth of bedrock in study area varies from 4 to 30 m, and V S 30 ranges from 320 to 800 m/s. The most of study area falls in B and C class categories in addition to few sites of D class according to the NEHRP guidelines.  相似文献   

19.
The study focuses on the landslide characteristics of Mt. 99 Peaks in Nantou County, the most serious landslide prone area caused by Chichi Earthquake in Taiwan. Several investigations and field surveys were made on Mt. 99 Peaks for 5 years to research the landslide area and depth, rainfall trend, and slope stabilization. The total landslide volume caused by the earthquake on Mt. 99 Peaks was about 1.47×106 m3 and the mean landslide thickness was about 0.22 m. Gravel layers with a volume of more than 80% of total soil profile dominated Mt. 99 Peaks. The landslide on Mt. 99 Peaks was induced by heavy rainfall from July to September because the rainfall on Mt. 99 Peaks had a nonuniform distribution in time. Although the vegetation recovery on Mt. 99 Peaks was in progress, the soil slope had remained unstable. As a result, Typhoon Mindulle occurred in July 2004 collapsed the hillslope again after 5 years of Chichi Earthquake. This study suggests that vegetation recovery on Mt. 99 Peaks for 5 years was insufficient to stabilize the landslide affected area.  相似文献   

20.
The Huangtupo landslide is one of the largest and most destructive landslides still deforming in the Three Gorges area of China. In recent years, most studies on this landslide have been based on the data obtained from an investigation conducted in 2001. To further elucidate the geological structure and evolution of the landslide, we began building a field test site in the area of the sliding mass with the fastest deformation velocity in 2009. A group of tunnels with a total length of 1.1 km has been excavated, and nine boreholes with depths between 76.8 and 127.1 m have been drilled into the sliding body. Additionally, relative monitoring devices, such as borehole inclinometers and crack meters, have been installed. Based on the findings of the previous investigation and the latest tunneling, drilling, and monitoring data, a spatial distribution model of the sliding surfaces of the Huangtupo No. 1 riverside sliding mass has been established using the discrete smooth interpolation (DSI) method. Significant differences are revealed between the previous proposed sliding surface and the latest monitoring data. We propose that the Huangtupo No. 1 sliding mass has two sliding surfaces. Thus, the sliding mass can be further divided into two secondary sliding bodies, which are named the No. 1-1 (east) and No. 1-2 (west) sliding masses. The No. 1-1 sliding mass slid first, and the material along the western boundary slid later, producing the No. 1-2 sliding body, which has a smaller volume and shallower depth. The areas, volumes, and thicknesses of each sliding body have been calculated using a digital 3D model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号