首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthetic methods of thin section petrography, scanning electron microscope, electron microprobe, energy spectrum analysis, cathodoluminescence, isotopic analysis and temperature measuring for fluid inclusions were used in analyzing sandstone samples collected from the Zhiluo Formation in order to fully understand the diagenesis evolution and the mineralizing response as well as the genesis of the uranium-bearing sandstone in Dongsheng area. The result shows that (1) the sandstone include lithic silicarenite, feldspathic litharenite and litharenite; (2) the authigenic minerals include clay minerals, carbonate minerals, siliceous and ferric minerals; (3) the physical property of sandstone is obviously controlled by diagenesis; and (4) the sandstone with favorable physical property is propitious to migration and storage of ore-forming fluid, and finally, forming the ore deposit. The sandstone of the Zhiluo Formation had undergone the early diagenetic stage (periods A and B) and the epidiagenetic stage. The evolution of diagenetic environment is in the order of acidic oxidation, alkalescent deoxidization, acidity to transitional environment of oxidation-deoxidization and acidity-alkalescence. The uranium exists in forms of pre-enrichment uranyl ion, active uranyl ion, dispersive adsorptive uranium and uranium mineral, respectively. In addition, the authors also hold that the formation of the sandstone-type uranium is not only related to the oxidation-deoxidization environment, but also closely related to the acidic-alkaline transitional environment, which are propitious to uranium mineralization in sandstone.  相似文献   

2.
Synthetic methods of thin section petrography, scanning electron microscope, electron microprobe, energy spectrum analysis, cathodoluminescence, isotopic analysis and temperature measuring for fluid inclusions were used in analyzing sandstone samples collected from the Zhiluo Formation in order to fully understand the diagenesis evolution and the mineralizing response as well as the genesis of the uranium-bearing sandstone in Dongsheng area. The result shows that (1) the sandstone include lithic silicarenite, feldspathic litharenite and litharenite; (2) the authigenic minerals include clay minerals, carbonate minerals, siliceous and ferric minerals; (3) the physical property of sandstone is obviously controlled by diagenesis; and (4) the sandstone with favorable physical property is propitious to migration and storage of ore-forming fluid, and finally, forming the ore deposit. The sandstone of the Zhiluo Formation had undergone the early diagenetic stage (periods A and B) and the epidiagenetic stage. The evolution of diagenetic environment is in the order of acidic oxidation, alkalescent deoxidization, acidity to transitional environment of oxidation-deoxidization and acidity-alkalescence. The uranium exists in forms of pre-enrichment uranyl ion, active uranyl ion, dispersive adsorptive uranium and uranium mineral, respectively. In addition, the authors also hold that the formation of the sandstone-type uranium is not only related to the oxidation-deoxidization environment, but also closely related to the acidic-alkaline transitional environment, which are propitious to uranium mineralization in sandstone.  相似文献   

3.
Dongsheng sandstone-type uranium deposit is located in the northern part of Ordos Basin, occurring in the transitional zones between gray-green and gray sandstones of Jurassic Zhiluo Formation. Sandstones in oxidized zone of the ore bed look gray-green, being of unique signature and different from one of ordinary inter-layered oxidation zone of sandstone-type uranium deposits. The character and origin of gray-green sandstones are systematically studied through their petrology, mineralogy and geochemistry. It is pointed out that this color of sandstones is originated from secondary oil-gas reduction processes after paleo-oxidation, being due to acicular-leaf chlorite covering surfaces of the sandstone grains. To find out the origin of gray-green sandstone and recognize paleo-oxidation zones in the ore bed are of not only theoretical significance for understanding metallogenesis of this kind of sandstone-type uranium deposit, but also very importantly practical significance for prospecting for similar kind of sandstone-type uranium deposit.  相似文献   

4.
Dongsheng sandstone-type uranium deposit is located in the northern part of Ordos Basin, occurring in the transitional zones between gray-green and gray sandstones of Jurassic Zhiluo Formation. Sandstones in oxidized zone of the ore bed look gray-green, being of unique signature and different from one of ordinary inter-layered oxidation zone of sandstone-type uranium deposits. The character and origin of gray-green sandstones are systematically studied through their petrology, mineralogy and geochemistry. It is pointed out that this color of sandstones is originated from secondary oil-gas reduction processes after paleo-oxidation, being due to acicular-leaf chlorite covering surfaces of the sandstone grains. To find out the origin of gray-green sandstone and recognize paleo-oxidation zones in the ore bed are of not only theoretical significance for understanding metallogenesis of this kind of sandstone-type uranium deposit, but also very importantly practical significance for prospecting for similar kind of sandstone-type uranium deposit.  相似文献   

5.
Yong Il  Lee  Dong Hyun  Lim 《Island Arc》2008,17(1):152-171
Abstract The Gyeongsang Basin is a non‐marine sedimentary basin formed by extensional tectonism during the Early Cretaceous in the southeastern Korean Peninsula. The sediment fill starts with the Sindong Group distributed along the western margin of the basin. It consists of three lithostratigraphic units: the Nakdong (alluvial fan), Hasandong (fluvial) and Jinju (lacustrine) formations with decreasing age. Sindong Group sandstones are classified into four petrofacies (PF) based on their detrital composition: PF‐A consists of the lower Nakdong Formation with average Q73F12R15; PF‐B the upper Nakdong and lower Hasandong formations with Q66F15R18; PF‐C the middle Hasandong to middle Jinju formations with Q49F29R22; and PF‐D the upper Jinju Formation with Q26F34R41. The variations of detrital composition influenced the diagenetic mineral assemblage in the Sindong Group sandstones. Illite and dolomite/ankerite are important diagenetic minerals in PF‐A and PF‐B, whereas calcite and chlorite are dominant diagenetic minerals in PF‐C and PF‐D. Most of the diagenetic minerals can be divided into early and late diagenetic stages of formation. Early diagenetic calcites occur mostly in PF‐C, probably controlled by arid to semiarid climatic conditions during the sandstone deposition, no early calcite being found in PF‐A and PF‐B. Late‐stage calcites are present in all Sindong Group sandstones. The calcium ions may have been derived from shale diagenesis and dissolution of early stage calcites in the Hasandong and Jinju sandstones. Illite, the only diagenetic clay mineral in PF‐A and lower PF‐B, is inferred to be a product of kaolinite transformation during deep burial, and the former presence of kaolinite is inferred from the humid paleoclimatic conditions during the deposition of the Nakdong Formation. Chlorites in PF‐C and PF‐D are interpreted to be the products of transformation of smectitic clay or of precipitation from alkaline pore water under arid to semiarid climatic conditions. The occurrence of late‐stage diagenetic minerals largely depended on the distribution of early diagenetic minerals, which was controlled initially by the sediment composition and paleoclimate.  相似文献   

6.
The known uranium ore and anomaly occur-rences are distributed mainly in the southwestern part of the Turfan-Hami basin. The focus of current explo-ration is placed on the leachable interlayered oxidation zone type of sandstone uranium deposits. Uranium deposits in the sedimentary basin can be classified into three types in accordance with their host rock types, i.e. the sandstone-type uranium deposits, the coal rock-type uranium deposits and the mud-stone-type uranium deposits. The sandstone…  相似文献   

7.
Alkaline diagnesis is a diagenetic process that a reservoir undergoes under an alkaline environment. Because of the influence of alkaline formation water, the most typical characteristics of diagnesis is that quartz is obviously dissolved, feldspar is massively enlarged, and less late carbonate cement is formed in the evolution of carbonate minerals. With the decrease of the alkalinity of the formation water in diagenesis, the quartz overgrowths become common. The change in the chemical characteristics of the formation water leads to a more complex distribution of reservoir porosity at different depths than that of the secondary porosity formed by classical acidic water. It also makes the B stage of early diagenesis the important development period of secondary porosity.  相似文献   

8.
Impure reworked evaporitic sandstones, preserved on Meridiani Planum, Mars, are mixtures of roughly equal amounts of altered siliciclastic debris, of basaltic provenance (40 ± 10% by mass), and chemical constituents, dominated by evaporitic minerals (jarosite, Mg-, Ca-sulfates ± chlorides ± Fe-, Na-sulfates), hematite and possibly secondary silica (60 ± 10%). These chemical constituents and their relative abundances are not an equilibrium evaporite assemblage and to a substantial degree have been reworked by aeolian and subaqueous transport. Ultimately they formed by evaporation of acidic waters derived from interaction with olivine-bearing basalts and subsequent diagenetic alteration. The rocks experienced an extended diagenetic history, with at least two and up to four distinct episodes of cementation, including stratigraphically restricted zones of recrystallization and secondary porosity, non-randomly distributed, highly spherical millimeter-scale hematitic concretions, millimeter-scale crystal molds, interpreted to have resulted from dissolution of a highly soluble evaporite mineral, elongate to sheet-like vugs and evidence for minor synsedimentary deformation (convolute and contorted bedding, possible teepee structures or salt ridge features). Other features that may be diagenetic, but more likely are associated with relatively recent meteorite impact, are meter-scale fracture patterns, veins and polygonal fractures on rock surfaces that cut across bedding. Crystallization of minerals that originally filled the molds, early cement and sediment deformation occurred syndepositionally or during early diagenesis. All other diagenetic features are consistent with formation during later diagenesis in the phreatic (fluid saturated) zone or capillary fringe of a groundwater table under near isotropic hydrological conditions such as those expected during periodic groundwater recharge. Textural evidence suggests that rapidly formed hematitic concretions post-date the primary mineral now represented by crystal molds and early pore-filling cements but pre-date secondary moldic and vug porosity. The second generation of cements followed formation of secondary porosity. This paragenetic sequence is consistent with an extended history of syndepositional through post-depositional diagenesis in the presence of a slowly fluctuating, chemically evolving, but persistently high ionic strength groundwater system.  相似文献   

9.
Early diagenetic modification of magnetic properties is an important process in marine sediments, but temporal and spatial variability of diagenetic processes have rarely been reported for recent coastal sediments. The magnetic properties of sediments from the Ria de Vigo (NW Spain) define a marked three-part zonation with depth. The uppermost zone is magnetically dominated by (titano-)magnetite. In the intermediate zone, rapid down-core dissolution of (titano-)magnetite increases the relative influence of high-coercivity magnetic minerals, which react more slowly during reductive dissolution than (titano-)magnetite. This zone is characterized by the ubiquitous occurrence of framboidal iron sulphides. Pyrite is the dominant iron sulphide, but framboidal ferrimagnetic greigite is also frequently observed in association with pyrite. The lowermost zone is characterized by an almost complete depletion of magnetic minerals associated with progressive reduction of detrital iron oxides with depth. This zonation is controlled by organic matter diagenesis, which varies with water depth and wave-induced sediment resuspension and organic matter reoxidation in the water column. This leads to a shallowing and thinning of each zone with more intense reductive diagenesis toward the interior of the ria. Such a zonation seems to be a common feature in shallow water marine environments. If preserved, the described zonation and its spatial variability provide a potential tool for detecting estuarine-like environments in the geological record. Magnetic detection of current or past reductive conditions also has important implications for assessing paleoenvironmental proxies that are sensitive to diagenetic redox state.  相似文献   

10.
The microaerobic iron-oxidizing bacteria in circumneutral environment produce extracellular polymeric substances(EPS)with unique morphologic features,such as stalks or sheaths,which can be regarded as geobiological signatures.The Archean and early Palaeoproterozoic oceans were anoxic with high soluble Fe(II)that were suggested to have been oxidized through the metabolism of Fe(II)-oxidizing bacteria.The precursor of the ultrafine hematite in banded iron formation(BIF),e.g.,ferrihydrite,was suggested to be the mineral record of microbial Fe(II)-oxidation at that time.However,both the biological materials and primary iron minerals were prone to being altered by diagenetic or low-grade metamorphic processes.This makes it difficult to interpret the genesis of Precambrian BIFs.Here,we report experimental simulation on the effects of diagenesis or low-grade metamorphism on neutrophilic microaerobic Fe(II)-oxidizing bacteria and their biomass.Stalks,sheaths,and iron oxide spheroidal aggregates are partially preserved after the 100 MPa/300°C treatments,which indicates the mixed organic matters and iron oxides could survive the diagenetic or low-grade metamorphic processes.Some organic-mineral mixing structures carry information on microbial processes,though they appear similar to pseudomorphs of fossilized bacteria.  相似文献   

11.
Most metallic minerals in ore deposits are sulfides. When a sulfide mineral coexists with rock-forming minerals, its solubility is distinctly different from itself alone. The change in dissolution character of a mineral with coexisting rock-forming minerals leads to particular geochemical behavior. The concept of solubility of a metallic mineral with coexisting rock-forming minerals and its theory and model of calculation are put forward. Taking Tianmashan Cu-Au ore deposit of sulfide minerals in Tongling district as an example, solubilities of some metallic minerals with other coexisting minerals, such as pyrite or chalcopyrite with quartz (representing sandstone) or calcite (representing limestone), are calculated. The results show the mechanism of ore-forming processes. As the ore-forming fluid flows through sandstone, it dissolves pyrite in the sandstone at first, then transports the iron and sulfur to the interface between sandstone and limestone and eventually precipitates them on the interface.  相似文献   

12.
We use molecular dynamics simulation to study the mechanisms involved in the adsorption of aqueous uranyl species(UO_2~(2+)) to the basal surfaces of clay minerals,including kaolinite,pyrophyllite and montmorillonite.Uranyl ion can form various complexes with carbonates,namely,[UO_2(H_2O)_5]~(2+),[UO_2(H_2O)3(CO_3)],[UO_2(H_2O)2(CO_3)_2]~(2-),[UO_2(CO_3)_3]~(4-).The simulations show that at aqueous clay interfaces,both uranyl species and surface type control the adsorption pattern.The noncarbonato and monocarbonato uranyl species can form outer-sphere complexes on siloxane surfaces through electrostatic interaction,but the dicarbonato and tricarbonato uranyl complexes rarely adsorb on the siloxane surfaces.Strong outer-sphere adsorptions of the uranylcarbonate complexes on gibbsite surfaces are observed,which are fixed by hydrogen bonds between the ligands(carbonate and/or H_2O) and surface hydroxyls.The sorption behaviors derived in this study provide new insights into understanding the migration and enrichment of uranium and other radionuclides.  相似文献   

13.
The reservoirs of the Upper Triassic Xujiahe Formation in Sichuan Basin have the characteristics of low compositional maturity, low contents of cements and medium textural maturity. The general physical properties of the reservoirs are poor, with low porosity and low permeability, and there are only a few reservoirs with medium porosity and low permeability in local areas. Based on the diagenetic mineral association, a diagenetic sequence of cements is established: early calcites (or micrite siderites) →first quartz overgrowth→chlorite coatings→dissolution of feldspars and debris→chlorite linings→ second quartz overgrowth (quartz widen or filled in remain intergranular pores and solution pores)→dissolution→third quartz overgrowth (quartz filled in intergranular and intragranular solution pores)→intergrowth (ferro) calcites→dolomites→ferro (calcites) dolomites→later dissolution→veins of quartz and calcites formation. Mechanical compaction is the main factor in making the reservoirs tight in the basin, followed by the second and third quartz overgrowth. In a long-term closed system, only feld-spars and some lithic fragments are dissolved by diagenetic fluids, while intergranular cements such as quartz and calcit are not dissolved and thus have little influence on the porosity of the Xujiahe Formation. This is the third factor that may have kept the sandstones of Xujiahe Formation tight finally. The hydrocarbon was extensively generated from organic materials after the second quartz overgrowth, and selectively entered favorable reservoirs to form tight sandstone gas reservoirs.  相似文献   

14.
The observation of oil inclusions trapped prior to 2.0 Ga in Palaeoproterozoic rocks and the ability to obtain detailed molecular geochemical information from them provide a robust way for understanding the early biogeochemical evolution of the Earth. Oil-bearing fluid inclusions (FI) in ca. 2.45 Ga fluvial metaconglomerate of the Matinenda Formation at Elliot Lake, Canada were trapped in quartz and feld-spar during diagenesis and early metamorphism of the host rock, probably before ca. 2.2 Ga. The 2.1 Ga FA Formation sandstone of the Franceville Basin in Gabon that hosts the Oklo natural fission reactors has also been discovered to contain abundant Palaeoproterozoic oil-bearing FIs. This oil occurs within H2O and CO2-dominated inclusions trapped in syntaxial quartz overgrowths and intragranular and transgranular microfractures in detrital quartz, and was most likely trapped 2.1–1.98 Ga. Molecular geochemical analyses of both FI oils reveal a wide range of compounds, including n-alkanes, isoprenoids, monomethylalkanes, aromatic hydrocarbons, and trace amounts of complex multi-ring biomarkers including terpanes, hopanes, methylhopanes, steranes and diasteranes. To ensure a reliable interpretation of oil inclusions, a comprehensive series of outside-rinse blanks and procedural system blanks was analysed by gas chromatography-mass spectrometry; quantitative amounts of the hydrocarbons in these blanks were compared to the FI extracts, so as to provide confidence limits on the experimental integrity of each compound class. Maturity ratios based on reliably detected compound classes show that the FI oils were generated in the oil window, with no evidence of extensive thermal cracking. The presence of biomarkers for cyanobacteria and eukaryotes derived from and trapped in rocks deposited prior to 2.0 Ga is consistent with early evolution of oxygenic photosynthesis and suggests that some aquatic settings had become sufficiently oxygenated for sterol biosynthesis by this time. The extraction of biomarker molecules from Palaeoproterozoic oil-bearing FIs thus establishes a new method, using low detection limits and system blank levels, to trace evolution through Earth’s early history that avoids the potential contamination problems affecting shale-hosted hydrocarbons. Supported by the ARC Discovery Grant, which includes a QEII Fellowship to A.D., the Natural Sciences and Engineering Research Grant to D.M., and by the National Aeronautics and Space Administration Astrobiology Institute (R.B.)  相似文献   

15.
五峰-龙马溪组页岩是目前国内页岩气勘探的首选层位,而其地震岩石物理特征是利用地震方法进行"甜点"预测的重要基础之一,但对五峰-龙马溪组页岩地震弹性特征变化规律的研究并未考虑沉积、成岩过程的影响,致使相应的规律性认识缺乏地质意义.在对五峰-龙马溪组页岩样品系统声学测量基础上,分析了页岩样品地震弹性性质的变化规律.利用X射线衍射分析、扫描电镜(SEM)、阴极发光(CL)与能谱分析确定了五峰-龙马溪组页岩在不同沉积环境下的成岩过程,并讨论了成岩过程与地震弹性性质变化规律的因果关系.研究结果表明,页岩中有机质(TOC)受高热演化程度的影响,其密度通常高于1.4 g·cm-3,并接近于有机碳密度上限1.6 g·cm-3(石墨密度).五峰-龙马溪组页岩地震弹性性质变化规律整体受沉积环境控制,沉积环境的差异形成不同的成岩过程,致使地震弹性特征也表现出不同的变化规律.表现在五峰-龙马溪页岩样品动态岩石物理特征主要受岩石结构控制(支撑颗粒弹性性质),而孔隙度、TOC含量以及孔隙形状则为对地震弹性特征影响的次一级因素.五峰-龙马溪组页岩上段为浅水陆棚相,机械压实与化学压实(硅质胶结)为先后两个过程,造成样品表现出高的速度-孔隙度变化率、高速度比(泊松比)、高各向异性以及低TOC含量的特征.五峰-龙马溪组页岩下段为深水陆棚相,机械压实过程中同时伴有生物成因的硅质胶结,造成岩石样品表现出较高TOC含量与孔隙度、各向异性较弱以及较小的速度-孔隙度变化率.研究结果可为五峰-龙马溪页气储层的测井解释和地震"甜点"预测提供依据.  相似文献   

16.
Wettability is an essential property of reservoirs that is of great importance for enhancing oil recovery(EOR) and oil migration. The wettability of reservoirs is generally believed to be strongly affected by mineral compositions but it is not always the case. An integrated study of petrography and wettability was carried out to determine the impact of chlorite minerals on the wettability of the sandstone reservoirs in the Upper Triassic Yanchang Formation. Chlorites are found to be commonly present in the reservoir sandstones as detrital grains, rim-shaped cements, and biotite-chloritized forms with the pore peripheries being largely coated by chlorite, which is the main mineral in direct contact with pores. At pore scale, the wetting state of chlorites can either be oil-wet or water-wet in the tight sandstone reservoirs depending on wettability alteration by oil charge. Chlorites in contact with pores occupy a large of proportions of oil-wet pore walls and are crucial for the formation of oil-wetting state of reservoir sandstones. At core scale, the contents of chlorites in direct contact with pores do not correlate well with the AmottHarvey index due to other factors such as heterogeneity, oil-bearing degrees of samples.  相似文献   

17.
The analyzing data on stratigraphic temperature measurement, thermal conductivity of the strata and radioactive heat production rate show that the present average geothermal gradient in the Ordos Basin is 2.93 °C/100 m, and the average heat flow value is 61.78 mW/m2, which belongs to the mesothermal basin, and the value of the present geothermal gradient and heat flow in the east is higher than that in the west. The sandstone radioactive heat production rate of Zhiluo Group in Dongsheng Uranium deposits of Yimeng uplift is obviously higher in the mudstone, indicating that there exists a uranium anomaly. Based on studies of the present thermal field of the basin, the late-Mesozoic paleotemperature and paleogeothermal gradient are determined by using different kinds of paleotemperature methods. According to the anomaly of the late-Mesozoic paleotemperature gradient and magmatic event age, there was a tectonic thermal event in the early Cretaceous epoch of late-Mesozoic. This article rebuilds tectonic thermal history of different tectonic units by thermal history simulation using basin simulating software. The evolution of oil-gas and coal, and accumulation (mineralization) of mineral uranium are all controlled by the tectonic thermal history in the Ordos basin, especially by the tectonic thermal event that happened in the late Mesozoic. For both the gas source rocks of upper Paleozoic group and lower paleozoic group, the gas was largely generated in the early Cretaceous epoch of the late Mesozoic. The main petroleum generation period for Yanchang Group in Triassic system is the early Cretaceous epoch too, and the highest thermal maturity of the coal of Permo-Carboniferous, Triassic, and Jurassic reaches is the early Cretaceous epoch also. Early Cretaceous epoch is still one of the most important mineralizing periods of uranium.  相似文献   

18.
《国际泥沙研究》2023,38(5):754-768
The current study utilizes a range of diagenetic fingerprints to differentiate between sandstone facies deposited in the Nile Delta before and during the Messinian salinity crisis (MSC), which is normally a challenging task considering the complex bio- and lithostratigraphic subdivisions of Messinian rock units. Subaerial exposure of the pre-MSC (Qawasim deltaic sandstone), during drawdown of the Mediterranean Sea at the time of the MSC, triggered pervasive dissolution of unstable rock fragments, kaolinization of feldspar, and meteoric dolomitization of carbonate. This was followed by mesogenetic calcite cementation and kaolinite transformation into dickite in deeply buried Qawasim sandstone. Comparatively, the Abu Madi estuarine facies, deposited during transgression after drawdown related to the MSC, is characterized by eogenetic iron (Fe)-calcite, glauconite, and pyrite (averages of 14.5%, 6%, and 2%, respectively). This facies transition is marked by abundance of mature glauconite (with potassium oxide (K2O) at about 8%) whose content abates upward from the transgression surface. Moreover, the compositional variability of the Abu Madi sandstone gave rise to multiple diagenetic trajectories that resulted in chlorite formation presumably following smectite and kaolinite. Listed diagenetic variations in the studied Messinian sandstone resulted from a complex interplay between rocks’ compositional, depositional, and burial attributes, ultimately serving as a basis for high-resolution stratigraphic correlation in continental and marginal marine settings with poor biostratigraphic controls.  相似文献   

19.
Zou  Caineng  Yang  Zhi  Sun  Shasha  Zhao  Qun  Bai  Wenhua  Liu  Honglin  Pan  Songqi  Wu  Songtao  Yuan  Yilin 《中国科学:地球科学(英文版)》2020,63(7):934-953
The Sichuan Basin is rich in shale oil and gas resources, with favorable geological conditions that the other shale reservoirs in China cannot match. Thus, the basin is an ideal option for fully "exploring petroleum inside source kitchen" with respect to onshore shale oil and gas in China. This paper analyzes the characteristics of shale oil and gas resources in the United States and China, and points out that maturity plays an important role in controlling shale oil and gas composition. US shale oil and gas exhibit high proportions of light hydrocarbon and wet gas, whereas Chinese marine and transitional shale gas is mainly dry gas and continental shale oil is generally heavy. A comprehensive geological study of shale oil and gas in the Sichuan Basin reveals findings with respect to the following three aspects. First, there are multiple sets of organic-rich shale reservoirs of three types in the basin, such as the Cambrian Qiongzhusi Formation and Ordovician Wufeng Formation-Silurian Longmaxi Formation marine shale, Permian Longtan Formation transitional shale, Triassic Xujiahe Formation lake-swamp shale, and Jurassic lacustrine shale. Marine shale gas enrichment is mainly controlled by four elements: Deep-water shelf facies, moderate thermal evolution, calcium-rich and silicon-rich rock association, and closed roof/floor. Second, the "sweet section" is generally characterized by high total organic carbon, high gas content, large porosity, high brittle minerals content, high formation pressure,and the presence of lamellation/bedding and natural microfractures. Moreover, the "sweet area" is generally characterized by very thick organic-rich shale, moderate thermal evolution, good preservation conditions, and shallow burial depth, which are exemplified by the shale oil and gas in the Wufeng-Longmaxi Formation, Longtan Formation, and Daanzhai Member of the Ziliujing Formation. Third, the marine, transitional, and continental shale oil and gas resources in the Sichuan Basin account for 50%, 25%, and 30% of the respective types of shale oil and gas geological resources in China, with great potential to become the cradle of the shale oil and gas industrial revolution in China. Following the "Conventional Daqing-Oil"(i.e., the Daqing oilfield in the Songliao Basin) and the "Western Daqing-Oil Gas"(i.e., the Changqing oilfield in the Ordos Basin), the Southwest oil and gas field in the Sichuan Basin is expected to be built into a "Sichuan-Chongqing Daqing-Gas" in China.  相似文献   

20.
江西省相山火山盆地是我国第一大、世界第三大火山岩型铀矿田,其西部牛头山一带铀矿勘探中发现深部有大垂幅的Pb-Zn-Ag矿化.60多年来,以该矿田为对象开展的研究取得了一系列丰硕成果,但对火山机构的认识仍不确定.我们采集了涵盖该火山盆地主要地质体的1386块钻孔岩芯标本和243块地表岩石标本,开展了电阻率、磁化率、密度等物性参数测量,并在火山盆地中施测了19条MT剖面(2条骨干剖面和17条精细剖面),对3000 m以浅主要地层、岩体和断裂带等目标地质体的三维展布特征进行了解译和三维建模.研究结果表明:(1)相山火山盆地具有变质岩-花岗岩双基底.基底变质岩系顶界面表现为南北分带(三隆间两凹)和东西分块(两垒夹一堑)的三维地质格局;南西部有加里东期花岗岩侵人,具有似层状的空间展布特征;盆地基底变质岩系与上覆火山-沉积岩盖层之间呈连续的水平低阻异常带,不整合界面清晰.(2)打鼓顶组火山岩呈似层状产出,主要分布于盆地西部;在河元背一船坑一杏树下一带识别出近东西走向厚层的流纹英安岩凹槽,相山铀矿田西部探明的主要铀矿床分布在该凹槽内或其边缘.鹅湖岭组火山岩总体形态呈蘑菇状,在盆地中部厚度较大.在相山主峰半径约2 km的范围内,发现自下而上贯通式的低阻异常,推测是鹅湖岭组碎斑熔岩喷发的通道相(火山颈相),其火山颈呈陡立管状,深部向南东倾伏,浅部向南东撒开.后期花岗斑岩呈岩墙-岩床组合状,总体构成一个向西开口的环形岩体.打鼓顶期主要岩浆通道位于相山顶一巴山之间,次岩浆通道位于河元背;鹅湖岭期火山活动主岩浆通道也位于相山顶一巴山之间,次岩浆通道位于河元背、阳家山(芙蓉山)、严坑和柏昌.(3)火山盆地中断裂构造发育,MT测量结果显示存在7条北东向、4条北西向和1条南北向格架性断裂构造(其中一条新发现的北东向断裂隐伏于白垩纪红盆之下),盆地北部发育1条弧形火山塌陷构造,表现为大规模延续的低阻异常带.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号