首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-term measurement of carbon metabolism of old-growth forests is critical to predict their behaviors and to reduce the uncertainties of carbon accounting under changing climate. Eddy covariance technology was applied to investigate the long-term carbon exchange over a 200 year-old Chinese broad-leaved Korean pine mixed forest in the Changbai Mountains (128°28'E and 42°24'N, Jilin Province, P. R. China) since August 2002. On the data obtained with open-path eddy covariance system and CO2 profile measurement system from Jan. 2003 to Dec. 2004, this paper reports (i) annual and seasonal variation of FNEE, FGPP and Re; (ii) regulation of environmental factors on phase and amplitude of ecosystem CO2 uptake and release Corrections due to storage and friction velocity were applied to the eddy carbon flux. Lal and soil temperature determined the seasonal and annual dynamics of FGPP and RE separately. VPD and air temperature regulated ecosystem photosynthesis at finer scales in growing seasons. Water condition at the root zone exerted a significant influence on ecosystem maintenance carbon metabolism of this forest in winter. The forest was a net sink of atmospheric CO2 and sequestered -449 g C·m-2 during the study period; -278 and -171 gC·m-2 for 2003 and 2004 respectively. FGPP and FRE over 2003 and 2004 were -1332, -1294 g C·m-2. and 1054, 1124 g C·m-2 respectively. This study shows that old-growth forest can be a strong net carbon sink of atmospheric CO2. There was significant seasonal and annual variation in carbon metabolism. In winter, there was weak photosynthesis while the ecosystem emitted CO2. Carbon exchanges were active in spring and fall but contributed little to carbon sequestration on an annual scale. The summer is the most significant season as far as ecosystem carbon balance is concerned. The 90 days of summer contributed 66.9, 68.9% of FGPp, and 60.4, 62.1% of RE of the entire year.  相似文献   

2.
Long-term measurement of carbon metabolism of old-growth forests is critical to predict their behaviors and to reduce the uncertainties of carbon accounting under changing climate. Eddy covariance technology was applied to investigate the long-term carbon exchange over a 200 year-old Chinese broad-leaved Korean pine mixed forest in the Changbai Mountains (128°28′E and 42°24′N, Jilin Province, P. R. China) since August 2002. On the data obtained with open-path eddy covariance system and CO2 profile measurement system from Jan. 2003 to Dec. 2004, this paper reports (i) annual and seasonal variation of F NEE, F GPP and R E; (ii) regulation of environmental factors on phase and amplitude of ecosystem CO2 uptake and release Corrections due to storage and friction velocity were applied to the eddy carbon flux.LAI and soil temperature determined the seasonal and annual dynamics of FGPP and RE separately. VPD and air temperature regulated ecosystem photosynthesis at finer scales in growing seasons. Water condition at the root zone exerted a significant influence on ecosystem maintenance carbon metabolism of this forest in winter.The forest was a net sink of atmospheric CO2 and sequestered ?449 g C·m?2 during the study period; ?278 and ?171 gC·m?2 for 2003 and 2004 respectively. F GPP and F RE over 2003 and 2004 were ?1332, ?1294 g C·m?2. and 1054, 1124 g C·m?2 respectively. This study shows that old-growth forest can be a strong net carbon sink of atmospheric CO2.There was significant seasonal and annual variation in carbon metabolism. In winter, there was weak photosynthesis while the ecosystem emitted CO2. Carbon exchanges were active in spring and fall but contributed little to carbon sequestration on an annual scale. The summer is the most significant season as far as ecosystem carbon balance is concerned. The 90 days of summer contributed 66.9, 68.9% of F GPP, and 60.4, 62.1% of R E of the entire year.  相似文献   

3.
The impacts of temperature, photosynthetic active radiation (PAR) and vapor pressure deficit (VPD) on CO2 flux above broad-leaved Korean pine mixed forest in the Changbai Mountains were studied based on eddy covariance and meteorological factors measurements.The results showed that, daytime CO2 flux was mainly controlled by PAR and they fit Michaelis-Menten equation. Meanwhile VPD also had an influence on the daytime flux. Drier air reduced the CO2 assimilation of the ecosystem, the drier the air, the more the reduction of the assimilation. And the forest was more sensitive to VPD in June than that in July and August. The respiration of the ecosystem was mainly controlled by soil temperature and they fit exponential equation. It was found that this relationship was also correlated with seasons; respiration from April to July was higher than that from August to November under the same temperature. Daily net carbon exchange of the ecosystem and the daily mean air temperature fit exponential equation. It was also found that seasonal trend of net carbon exchange was the result of comprehensive impacts of temperature and PAR and so on. These resulted in the biggest CO2 uptake in June and those in July and August were next. Annual carbon uptake of the forest ecosystem in 2003 was -184 gC. m-2.  相似文献   

4.
Based on analysis of mechanisms causing energy no-closure and nocturnal low fluxes issues for CO2 exchange studies by eddy covariance method, corrections were done with the raw data sets obtained from Changbai Mountains forest flux site, to evaluate the impacts of sonic anemometer tilt, frequency response limitations and advection on estimation of CO2 exchange, respectively. The results show that the planar fit coordinate transforming method is superior to the streamline coordinate transforming method in tilt correction. The latter could cause a systematical underestimation of eddy fluxes relating with the angle of sensor and terrain tilt. The underestimation of CO2 and energy fluxes for frequency response limitations average 3.0% and 2.0% during daytime, respectively, which increase by 9.0% and 5.5% during nighttime, respectively. The corrections of frequency response limitations are closely related to atmospheric stability. The advection loss of CO2 fluxes is dominated by nocturnal vertical advection, which is at least 18% when the horizontal advection is neglected. It is suggested that more work be done to understand the characteristics of horizontal advection and turbulent eddies under a complexcircumstance.  相似文献   

5.
Wang  Chunlin  Yu  Guirui  Zhou  Guoyi  Yan  Junhua  Zhang  Leiming  Wang  Xu  Tang  Xuli  Sun  Xiaomin 《中国科学:地球科学(英文版)》2006,49(2):127-138

The Dinghushan flux observation site, as one of the four forest sites of ChinaFLUX, aims to acquire long-term measurements of CO2 flux over a typical southern subtropical evergreen coniferous and broad-leaved mixed forest ecosystem using the open path eddy covariance method. Based on two years of data from 2003 to 2004, the characteristics of temporal variation in CO2 flux and its response to environmental factors in the forest ecosystem are analyzed. Provided two-dimensional coordinate rotation, WPL correction and quality control, poor energy-balance and underestimation of ecosystem respiration during nighttime implied that there could be a CO2 leak during the nighttime at the site. Using daytime (PAR > 1.0 μmol−1·m−2·s−1) flux data during windy conditions (u* > 0.2 m·s−1), monthly ecosystem respiration (Reco) was derived through the Michaelis-Menten equation modeling the relationship between net ecosystem C02 exchange (NEE) and photosynthetically active radiation (PAR). Exponential function was employed to describe the relationship between Reco and soil temperature at 5 cm depth (Ts05), then Reco of both daytime and nighttime was calculated respectively by the function. The major results are: (i) Derived from the Michaelis-Menten equation, the apparent quantum yield (α) was 0.0027±0.0011 mgCO2·μmol−1 photons, and the maximum photosynthetic assimilation rate (Amax) was 1.102±0.288 mgCO2·m−2·s−1. Indistinctive seasonal variation of α or Amax was consistent with weak seasonal dynamics of leaf area index (LAf) in such a lower subtropical evergreen mixed forest, (ii) Monthly accumulated Reco was estimated as 95.3±21.1 gC·m−2mon−1, accounting for about 68% of the gross primary product (GPP). Monthly accumulated WEE was estimated as −43.2±29.6 gC·m−2·mon−1. The forest ecosystem acted as carbon sink all year round without any seasonal carbon efflux period. Annual NEE of 2003 and 2004 was estimated as −563.0 and −441.2 gC·m−2·a−1 respectively, accounting for about 32% of GPP.

  相似文献   

6.
We measured soil, stem and branch respiration of trees and shrubs, foliage photosynthesis and respiration in ecosystem of the needle and broad-leaved Korean pine forest in Changbai Mountain by LI-6400 CO2 analysis system. Measurement of forest microclimate was conducted simultaneously and a model was found for the relationship of soil, stem, leaf and climate factors. CO2 flux of different components in ecosystem of the broad-leaved Korean pine forest was estimated based on vegetation characteristics. The net ecosystem exchange was measured by eddy covariance technique. And we studied the effect of temperature and photosynthetic active radiation on ecosystem CO2 flux. Through analysis we found that the net ecosystem exchange was affected mainly by soil respiration and leaf photosynthesis. Annual net ecosystem exchange ranged from a minimum of about ?4.671 μmol·m?2·s?1 to a maximum of 13.80 μmol·m?2·s?1, mean net ecosystem exchange of CO2 flux was ?2.0 μmol·m?2·s?1 and 3.9 μmol·m?2·s?1 in winter and summer respectively (mean value during 24 h). Primary productivity of tree, shrub and herbage contributed about 89.7%, 3.5% and 6.8% to the gross primary productivity of the broad-leaved Korean pine forest respectively. Soil respiration contributed about 69.7% CO2 to the broad-leaved Korean pine forest ecosystem, comprising about 15.2% from tree leaves and 15.1% from branches. The net ecosystem exchange in growing season and non-growing season contributed 56.8% and 43.2% to the annual CO2 efflux respectively. The ratio of autotrophic respiration to gross primary productivity (R a:GPP) was 0.52 (NPP:GPP=0.48). Annual carbon accumulation underground accounted for 52% of the gross primary productivity, and soil respiration contributed 60% to gross primary productivity. The NPP of the needle and broad-leaved Korean pine forest was 769.3 gC·m?2·a?1. The net ecosystem exchange of this forest ecosystem (NEE) was 229.51 gC·m?2·a?1. The NEE of this forest ecosystem acquired by eddy covariance technique was lower than chamber estimates by 19.8%.  相似文献   

7.
We measured soil, stem and branch respiration of trees and shrubs, foliage photosynthesis and respiration in ecosystem of the needle and broad-leaved Korean pine forest in Changbai Mountain by LI-6400 CO2 analysis system. Measurement of forest microclimate was conducted simultaneously and a model was found for the relationship of soil, stem, leaf and climate factors. CO2 flux of different components in ecosystem of the broad-leaved Korean pine forest was estimated based on vegetation characteristics. The net ecosystem exchange was measured by eddy covariance technique. And we studied the effect of temperature and photosynthetic active radiation on ecosystem CO2 flux. Through analysis we found that the net ecosystem exchange was affected mainly by soil respiration and leaf photosynthesis. Annual net ecosystem exchange ranged from a minimum of about -4.671μmol·m-2·s-1 to a maximum of 13.80μmol·m-2·s-1, mean net ecosystem exchange of CO2 flux was -2.0μmol·m-2·s-1 and 3.9μmol·m-2·s-1 in winter and summer respectively (mean value during 24 h). Primary productivity of tree, shrub and herbage contributed about 89.7%, 3.5% and 6.8% to the gross primary productivity of the broad-leaved Korean pine forest respectively. Soil respiration contributed about 69.7% CO2 to the broad-leaved Korean pine forest ecosystem, comprising about 15.2% from tree leaves and 15.1% from branches. The net ecosystem exchange in growing season and non-growing season contributed 56.8% and 43.2% to the annual CO2 efflux respectively. The ratio of autotrophic respiration to gross primary productivity (Ra:GPP) was 0.52 (NPP:GPP=0.48). Annual carbon accumulation underground accounted for 52% of the gross primary productivity, and soil respiration contributed 60% to gross primary productivity. The NPP of the needle and broad-leaved Korean pine forest was 769.3 gC·m-2·a-1. The net ecosystem exchange of this forest ecosystem (NEE) was 229.51 gC·m-2·a-1. The NEE of this forest ecosystem acquired by eddy covariance technique was lower than chamber estimates by 19.8%.  相似文献   

8.
A process-based ecosystem productivity model BEPS (Boreal Ecosystem Productivity Simulator) was updated to simulate half-hourly exchanges of carbon, water and energy between the atmosphere and terrestrial ecosystem at a temperate broad-leaved Korean pine forest in the Changbai Mountains, China. The BEPSh model is able to capture the diurnal and seasonal variability in carbon dioxide, water vapor and heat fluxes at this site in the growing season of 2003. The model validation showed that the simulated net ecosystem productivity (NEP), latent heat flux (LE), sensible heat flux (Hs) are in good agreement with eddy covariance measurements with an R2 value of 0.68, 0.86 and 0.72 for NEP, LE and Hs, respectively. The simulated annual NEP of this forest in 2003 was 300.5 gC/m2, and was very close to the observed value. Driving this model with different climate scenarios, we found that the NEP in the Changbai Mountains temperate broad-leaved Korean pine mixed forest ecosystem was sensitive to climate variability, and the current carbon sink will be weakened under the condition of global warming. Furthermore, as a process-based model, BEPSh was also sensitive to physiological parameters of plant, such as maximum Rubisco activity (Vcmax) and the maximum stomatal conductance (gmax), and needs to be carefully calibrated for other applications.  相似文献   

9.
The Dinghushan flux observation site, as one of the four forest sites of ChinaFLUX, aims to acquire long-term measurements of CO2 flux over a typical southern subtropical evergreen coniferous and broad-leaved mixed forest ecosystem using the open path eddy covariance method. Based on two years of data from 2003 to 2004, the characteristics of temporal variation in CO2 flux and its response to environmental factors in the forest ecosystem are analyzed. Provided two-dimensional coordinate rotation, WPL correction and quality control, poor energy-balance and underestimation of ecosystem respiration during nighttime implied that there could be a CO2 leak during the nighttime at the site. Using daytime (PAR > 1.0μmol-1·m-2·s-1) flux data during windy conditions (u* > 0.2 m·s-1), monthly ecosystem respiration (Reco) was derived through the Michaelis-Menten equation modeling the relationship between net ecosystem CO2 exchange (NEE) and photosynthetically active radiation (PAR). Exponential function was employed to describe the relationship between Reco and soil temperature at 5 cm depth (Ts05), then Reco of both daytime and nighttime was calculated respectively by the function. The major results are: (i) Derived from the Michaelis-Menten equation, the apparent quantum yield (α) was 0.0027±0.0011 mgCO2·μmol-1 photons, and the maximum photosynthetic assimilation rate (Amax) was 1.102±0.288 mgCO2·m-2·s-1. Indistinctive seasonal variation of o or Amax was consistent with weak seasonal dynamics of leaf area index (LAI) in such a lower subtropical evergreen mixed forest. (ii) Monthly accumulated Reco was estimated as 95.3±21.1 gC·m-2 mon-1, accounting for about 68% of the gross primary product (GPP). Monthly accumulated NEE was estimated as -43.2±29.6 gC·m-2·mon-1. The forest ecosystem acted as carbon sink all year round without any seasonal carbon efflux period. Annual NEE of 2003 and 2004 was estimated as -563.0 and -441.2 gC·m-2·a-1 respectively, accounting for about 32% of GPP.  相似文献   

10.
The effects of environmental factors on carbon flux were analyzed, the spatial and temporal variation of carbon flux was studied at the two heights of 23 m and 39 m with the eddy covariance technique, and the carbon budget was evaluated for evergreen coniferous plantation in the red earth hilly area during the year 2003. The results showed that photosynthetically active radiation (PAR) and soil temperature are essential factors strongly affecting the net ecosystem exchange (NEE); in the daytime, the response of NEE to PAR shows a rectangular hyperbola trend, and in the nighttime, the significant correlation was observed between soil temperature and soil respiration which was filtered using friction velocity. This ecosystem appeared as a carbon sink along the whole year of 2003, and the carbon flux showed the obvious seasonal fluctuation and diurnal variability. The seasonal peak of NEE occurred in May and June with the daily sum about 0.61-0.67 mg · CO2 · m-2 · s-1. For the severe drought in the mid-summer, the daily sum was 0.40-0.44 mg · CO2 · m-2 · s-1 in July which was only 2/3 of that in the last two months. For the lasted drought of the year, the nadir of NEE happened in the winder with the daily sum about -0.29 to -0.35 mg · CO2 · m-2 · s-1. The sink intensity of the ecosystem was about -0.553 to -0.645 kg · Cm-2 per year in 2003.  相似文献   

11.
The water and energy exchanges in forests form one of the most important hydro‐meteorological systems. There have been far fewer investigations of the water and heat exchange in high latitude forests than of those in warm, humid regions. There have been few observations of this system in Siberia for an entire growing season, including the snowmelt and leaf‐fall seasons. In this study, the characteristics of the energy and water budgets in an eastern Siberian larch forest were investigated from the snowmelt season to the leaf‐fall season. The latent heat flux was strongly affected by the transpiration activity of the larch trees and increased quickly as the larch stand began to foliate. The sensible heat dropped at that time, although the net all‐wave radiation increased. Consequently, the seasonal variation in the Bowen ratio was clearly ‘U’‐shaped, and the minimum value (1·0) occurred in June and July. The Bowen ratio was very high (10–25) in early spring, just before leaf opening. The canopy resistance for a big leaf model far exceeded the aerodynamic resistance and fluctuated over a much wider range. The canopy resistance was strongly restricted by the saturation deficit, and its minimum value was 100 s m?1 (10 mm s?1 in conductance). This minimum canopy resistance is higher than values obtained for forests in warm, humid regions, but is similar to those measured in other boreal conifer forests. It has been suggested that the senescence of leaves also affects the canopy resistance, which was higher in the leaf‐fall season than in the foliated season. The mean evapotranspiration rate from 21 April 1998 to 7 September 1998 was 1·16 mm day?1, and the maximum rate, 2·9 mm day?1, occurred at the beginning of July. For the growing season from 1 June to 31 August, this rate was 1·5 mm day?1. The total evapotranspiration from the forest (151 mm) exceeded the amount of precipitation (106 mm) and was equal to 73% of the total water input (211 mm), including the snow water equivalent. The understory evapotranspiration reached 35% of the total evapotranspiration, and the interception evaporation was 15% of the gross precipitation. The understory evapotranspiration was high and the interception evaporation was low because the canopy was sparse and the leaf area index was low. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
Components of the energy budget were measured continuously above a 300‐year‐old temperate mixed forest at the Changbaishan site, northeastern China, from 1 January to 31 December 2003, as a part of the ChinaFlux programme. The albedo values above the canopy were lower than most temperate forests, and the values for snow‐covered canopy were over 50% higher than for the snow‐free canopy. In winter, net radiation Rn was generally less than 5% of the summer value due to high albedo and low incoming solar radiation. The annual mean latent heat LE was 37·5 W m?2, accounting for 52% of Rn. The maximum daily evaporation was about 4·6 mm day?1 in summer. Over the year, the accumulated precipitation was 578 mm; this compares with 493 mm of evapotranspiration, which shows that more than 85% of water was returned to the atmosphere through evapotranspiration. The LE was strongly affected by the transpiration activity and increased quickly as the broadleaved trees began to foliate. The sensible heat H dropped at that time, although Rn increased. Consequently, the seasonal variation in the Bowen ratio β was clearly U‐shaped, and the minimum value (0·1) occurred on a sunny day just after rain, when most of the available energy was used for evapotranspiration. Negative β values occurred occasionally in the non‐growing season as a result of intensive radiative cooling and the presence of water on the surface. The β was very high (up to 13·0) in snow‐covered winter, when evapotranspiration was small due to low surface temperature and available soil water. Vegetation phenology and soil moisture were the key variables controlling the available energy partitioning between H and LE. Energy budget closure averaged better than 86% on a half‐hourly basis, with slightly greater closure on a daily basis. The degree of closure showed a dependence on friction velocity u*. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
The Dinghushan flux observation site, as one of the four forest sites of ChinaFLUX, aims to acquire long-term measurements of CO2 flux over a typical southern subtropical evergreen coniferous and broad-leaved mixed forest ecosystem using the open path eddy covariance method. Based on two years of data from 2003 to 2004, the characteristics of temporal variation in CO2 flux and its response to environmental factors in the forest ecosystem are analyzed. Provided two-dimensional coordinate rotation, WPL correction and quality control, poor energy-balance and underestimation of ecosystem respiration during nighttime implied that there could be a CO2 leak during the nighttime at the site. Using daytime (PAR > 1.0 μmol?1·m?2·s?1) flux data during windy conditions (u* > 0.2 m·s?1), monthly ecosystem respiration (Reco) was derived through the Michaelis-Menten equation modeling the relationship between net ecosystem C02 exchange (NEE) and photosynthetically active radiation (PAR). Exponential function was employed to describe the relationship between Reco and soil temperature at 5 cm depth (Ts05), then Reco of both daytime and nighttime was calculated respectively by the function. The major results are: (i) Derived from the Michaelis-Menten equation, the apparent quantum yield (α) was 0.0027±0.0011 mgCO2·μmol?1 photons, and the maximum photosynthetic assimilation rate (Amax) was 1.102±0.288 mgCO2·m?2·s?1. Indistinctive seasonal variation of α or Amax was consistent with weak seasonal dynamics of leaf area index (LAf) in such a lower subtropical evergreen mixed forest, (ii) Monthly accumulated Reco was estimated as 95.3±21.1 gC·m?2mon?1, accounting for about 68% of the gross primary product (GPP). Monthly accumulated WEE was estimated as ?43.2±29.6 gC·m?2·mon?1. The forest ecosystem acted as carbon sink all year round without any seasonal carbon efflux period. Annual NEE of 2003 and 2004 was estimated as ?563.0 and ?441.2 gC·m?2·a?1 respectively, accounting for about 32% of GPP.  相似文献   

14.
Gu  Fengxue  Cao  Mingkui  Wen  Xuefa  Liu  Yunfen  Tao  Bo 《中国科学:地球科学(英文版)》2006,49(2):241-251

Using data from eddy covariance measurements in a subtropical coniferous forest, a test and evaluation have been made for the model of Carbon Exchange in the Vegetation-Soil-Atmosphere (CEVSA) that simulates energy transfers and water, carbon and nitrogen cycles based on ecophysiological processes. In the present study, improvement was made in the model in calculating LAI, carbon allocation among plant organs, litter fall, decomposition and evapotranspiration. The simulated seasonal variations in carbon and water vapor flux were consistent with the measurements. The model explained 90% and 86% of the measured variations in evapotranspiration and soil water content. However, the modeled evapotranspiration and soil water content were lower than the measured systematically, because the model assumed that water was lost as runoff if it was beyond the soil saturation water content, but the soil at the flux site with abundant rainfall is often above water saturated. The improved model reproduced 79% and 88% of the measured variations in gross primary production (GPP) and ecosystem respiration (R e), but only 31% of the variations in measured net ecosystem exchange (NEP) despite the fact that the modeled annual NEP was close to the observation. The modeled NEP was generally lower in winter and higher in summer than the observations. The simulated responses of photosynthesis and respiration to water vapor deficit at high temperatures were different from measurements. The results suggested that the improved model underestimated ecosystem photosynthesis and respiration in extremely condition. The present study shows that CEVSA can simulate the seasonal pattern and magnitude of CO2 and water vapor fluxes, but further improvement in simulating photosynthesis and respiration at extreme temperatures and water deficit is required.

  相似文献   

15.
We report observations of seasonal and local time variation of the averaged electron and iron concentrations, as well as simultaneous measurements of the two species, above the Arecibo Observatory (18.35°N, 66.75°N), Puerto Rico. The average Fe profile between 21:00 and 24:00 LT has a single peak at about 85 km with the exception of the summer when an additional peak exists at about 95 km. The higher Fe peak in the summer is correlated with higher electron concentrations in this season. The three nights of simultaneous measurements of electron and iron concentrations show that narrow layers of Fe and electrons are well correlated. Comparison of the climatological and simultaneous Fe and electron data suggests that recombination of Fe+ plays an important role in determining the Fe profile in the upper part of the Fe layer. Above 93 km, the Fe concentration appears to increase after sunset if the electron concentration exceeds about 4000 electrons cm−3. The average rate of Fe production is about 0.1 atom cm−3 s−1 for all seasons at 100 km in the early evening hours. A chemical model reveals that the concentration of Fe+ must be 50–80% of the total ionization over Arecibo for typical equinox conditions to explain the observed rate of Fe production. These high relative Fe+ concentrations are consistent with in situ observations that Fe+ is usually the dominant ion in sporadic E layers in the nighttime lower E region. This suggests that the source of Fe+ is provided by sporadic E layers descending over Arecibo after sunset. The Fe density between 80 and 85 km decreases during the night, for all seasons. This is attributed to the formation of stable molecular Fe species, such as FeOH, due to the increase in O3 and decrease in atomic O and H during the night at these altitudes.  相似文献   

16.
The long-term and continuous carbon fluxes of Changbaishan temperate mixed forest (CBS), Qianyanzhou subtropical evergreen coniferous forest (QYZ), Dinghushan subtropical evergreen mixed forest (DHS) and Xishuangbana tropical rainforest (XSBN) have been measured with eddy covariance techniques. In 2003, different responses of carbon exchange to the environment appeared across the four ecosystems. At CBS, the carbon exchange was mainly determined by radiation and temperature. 0℃and 10℃were two important temperature thresholds; the former determined the length of the growing season and the latter affected the magnitude of carbon exchange. The maximum net ecosystem exchange (NEE) of CBS occurred in early summer because maximum ecosystem photosynthesis (GPP) occurred earlier than maximum ecosystem respiration (Rθ). During summer, QYZ experienced severe drought and NEE decreased significantly mainly as a result of the depression of GPP. At DHS and XSBN, NEE was higher in the drought season than the wet season, especially the conversion between carbon sink and source occurring during the transition season at XSBN. During the wet season, increased fog and humid weather resulted from the plentiful rainfall, the ecosystem GPP was dispressed. The Q10 and annual respiration of XSBN were the highest among the four ecosystems, while the average daily respiration of CBS during the growing season was the highest. Annual NEE of CBS, QYZ, DHS and XSBN were 181.5, 360.9, 536.2 and -320.0 g·C·m-2·a-1, respectively. From CBS to DHS, the temperature and precipitation increased with the decrease in latitude. The ratio of WEE/Rθincreased with latitude, while Rθ/Gpp, ecosystem light use efficiency (LUE), precipitation use efficiency and average daily GPP decreased gradually. However, XSBN usually escaped such latitude trend probably because of the influence of the south-west monsoon climate which does not affect the other ecosystems. Long-term measurement and more research were necessary to understand the adaptation of forest ecosystems to climate change and to evaluate the ecosystem carbon balance due to the complexity of structure and function of forest ecosystems.  相似文献   

17.
The long-term and continuous carbon fluxes of Changbaishan temperate mixed forest (CBS), Qianyanzhou subtropical evergreen coniferous forest (QYZ), Dinghushan subtropical evergreen mixed forest (DHS) and Xishuangbana tropical rainforest (XSBN) have been measured with eddy covariance techniques. In 2003, different responses of carbon exchange to the environment appeared across the four ecosystems. At CBS, the carbon exchange was mainly determined by radiation and temperature. 0°C and 10°C were two important temperature thresholds; the former determined the length of the growing season and the latter affected the magnitude of carbon exchange. The maximum net ecosystem exchange (N EE) of CBS occurred in early summer because maximum ecosystem photosynthesis (G PP) occurred earlier than maximum ecosystem respiration (R e). During summer, QYZ experienced severe drought and N EE decreased significantly mainly as a result of the depression of G PP. At DHS and XSBN, N EE was higher in the drought season than the wet season, especially the conversion between carbon sink and source occurring during the transition season at XSBN. During the wet season, increased fog and humid weather resulted from the plentiful rainfall, the ecosystem G PP was dispressed. The Q 10 and annual respiration of XSBN were the highest among the four ecosystems, while the average daily respiration of CBS during the growing season was the highest. Annual N EE of CBS, QYZ, DHS and XSBN were 181.5, 360.9, 536.2 and ?320.0 g·C·m?2·a?1, respectively. From CBS to DHS, the temperature and precipitation increased with the decrease in latitude. The ratio of N EE/R e increased with latitude, while R e/G PP, ecosystem light use efficiency (L UE), precipitation use efficiency and average daily G PP decreased gradually. However, XSBN usually escaped such latitude trend probably because of the influence of the south-west monsoon climate which does not affect the other ecosystems. Long-term measurement and more research were necessary to understand the adaptation of forest ecosystems to climate change and to evaluate the ecosystem carbon balance due to the complexity of structure and function of forest ecosystems.  相似文献   

18.
Based on the light-photosynthesis response measurement at leaf level, combined with over- and under-canopy eddy covariance measurements, research on photosynthetic characteristics of single trees and forest canopy was conducted. The relationship between light intensity and photo-synthetic rates for leaves and canopy can be well fitted by a non-rectangular hyperbola model. Mongolian oak presented a high light compensation point, Lcp (28μmol·m-2·s-1), a light saturation point Lsp (>1800μmol·m-2·s-1), and a maximal net photosynthetic rate Pmax (9.96μmol·m-2·s-1), which suggest that it is a typical heliophilous plant. Mono maple presented the highest apparent quantum efficiencyα(0.066) but the lowest, Lcp (16μmol·m-2·s-1), Lsp (=800μmol·m-2·s-1), and Pmax (4.51μmol·m-2·s-1), which suggest that it is heliophilous plant. Korean pine showed the lowestαvalue but a higher Pmax, which suggest that it is a semi-heliophilous plant. At the canopy level, the values of both or and Pmax approached the upper limit of reported values in temperate forests, while Lcp was within the lower limit. Canopy photosynthetic characteristics were well consistent with those of leaves. Both showed a high ability to photosynthesize. However, environmental stresses, especially high vapor pressure deficits, could significantly reduce the photosynthetic ability of leaves and canopy.  相似文献   

19.
Based on the light-photosynthesis response measurement at leaf level, combined with over-and under-canopy eddy covariance measurements, research on photosynthetic characteristics of single trees and forest canopy was conducted. The relationship between light intensity and photosynthetic rates for leaves and canopy can be well fitted by a non-rectangular hyperbola model. Mongolian oak presented a high light compensation point, L cp (28 μmol·m?2·s?1), a light saturation point L sp (>1800 μmol·m?2·s?1), and a maximal net photosynthetic rate P max (9.96 μmol·m?2·s?1), which suggest that it is a typical heliophilous plant. Mono maple presented the highest apparent quantum efficiency α (0.066) but the lowest, L cp (16 μmol·m?2·s?1), L sp (≈800 μmol·m?2·s?1), and P max (4.51 μmol·m?2·s?1), which suggest that it is heliophilous plant. Korean pine showed the lowest α value but a higher P max, which suggest that it is a semi-heliophilous plant. At the canopy level, the values of both α and P max approached the upper limit of reported values in temperate forests, while L cp was within the lower limit. Canopy photosynthetic characteristics were well consistent with those of leaves. Both showed a high ability to photosynthesize. However, environmental stresses, especially high vapor pressure deficits, could significantly reduce the photosynthetic ability of leaves and canopy.  相似文献   

20.
不同生态系统CO2通量和浓度特征分析研究   总被引:3,自引:0,他引:3       下载免费PDF全文
本文利用1993~1994年日本国家农业环境研究所与中国科学院沙漠研究所合作在内蒙古奈曼地区实测的7种不同生态系统(沙丘、轻度放牧草原、中度放牧草原、重度放牧草原、无放牧草原、玉米田和大豆田)的净辐射、土壤热通量、两个高度的CO2浓度、温度、湿度和风速等资料,采用空气动力学方法,计算了CO2通量及其与环境和人为干扰因子的关系,并分析了不同下垫面的光合作用特征. 结果表明:各种下垫面CO2通量的共同特点是:在白天,CO2通量和梯度的输送方向是从大气向植被,在中午(11~13时)输送达到负的最大值; 在夜间,CO2通量和梯度输送方向与白天相反,是从植被向大气,在早晨(3~5时)达到正的最大值. 植被覆盖率及生物量不同的下垫面光合作用强度有明显差异,天气状况对光合作用也有一定影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号