首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hetianhe gasfield in Bachu region of the Tarim Basin is mainly composed of three reservoir-caprock assembly, namely regional caprock of upper mudstone, middle mudstone and lower mudstone of the Carboniferous and reservoir of Bachu bioclastic limestone, glutenite and the Ordovician carbonate buried hill. Natural gas in Hetianhe gasfield sourced from the Cambrian source rock. It is thought that gases in Ma4 well block in the east of Hetianhe gasfield are mainly crude-oil cracked gases, while those in Ma3 and Ma8 well blocks in the west are the mixture gases of kerogen cracked gases and crude-oil cracked gases. Natural gas is rich in H2S and accumulated in multiply stages as the result of TSR. The accumulation history is divided into three stages, namely accumulation and breakage in the late Caledonian-early Hercynian, migration and dissipation in the late Hercynian and accumulation in Himalayan. The main accumulation of reformed gas reservoir is in Himalayan.  相似文献   

2.
Hetianhe gasfield in Bachu region of the Tarim Basin is mainly composed of three reservoir-caprock assembly,namely regional caprock of upper mudstone,middle mudstone and lower mudstone of the Carboniferous and reservoir of Bachu bioclastic limestone,glutenite and the Ordovician carbonate buried hill.Natural gas in Hetianhe gasfield sourced from the Cambrian source rock.It is thought that gases in Ma4 well block in the east of Hetianhe gasfield are mainly crude-oil cracked gases,while those in Ma3 and Ma8 well blocks in the west are the mixture gases of kerogen cracked gases and crude-oil cracked gases.Natural gas is rich in H2S and accumulated in multiply stages as the result of TSR.The accumulation history is divided into three stages,namely accumulation and breakage in the late Caledonian-early Hercynian,migration and dissipation in the late Hercynian and accumulation in Himalayan. The main accumulation of reformed gas reservoir is in Himalayan.  相似文献   

3.
The effectiveness of gas accumulation processes is controlled by several main geological factors in-cluding charging force,features of gas conduit,sealing properties of caprock,etc. Based on the analysis and statistics of the large-medium size gas accumulations in China,the main parameters,in-cluding the excess pressure difference between the source rock and reservoir bed,the area coefficient of the gas conduit,and the thickness or displacement pressure of caprock,and the criteria for the as-sessment of gas accumulation processes have been established. Using the parameters and the criteria above,the effectiveness of gas accumulation processes in the Kuqa depression was quantitatively evaluated. By integrating the parameters of the excess pressure difference between the source rock and reservoir bed,the area coefficient of fault conduit system,and the caprock thickness in gas charging period,a comprehensive assessment of the effectiveness of gas accumulation in the Kuqa depression has been made. The result reveals that the Tubei-Dawan area,the Central Kelasu area and the Dongqiu-Dina area are three highly-effective areas for gas accumulation in the Kuqa depression.  相似文献   

4.
There exists a petroleum system rich of oil and gas around Halahatang depression,where the oil and gas possess obvious local distinctions of properties in different parts.The research proved that the discovered crude oil and natural gas in the region derived mainly from O2 3 source rock,and the differences of its properties were controlled by the oil and gas filling intensity.The comprehensive study result shows the oil and gas reservoirs of the region mainly underwent three important accumulation phases:late Caledonian-Early Hercynian epoch,late Hercynian epoch,and Yanshan-Himalayan epoch. In the first phase,the oil and gas derived mostly from Cambrian source rock,which formed the primary ancient oil reservoirs,then suffered strong degradation and remained a great quantity of pyrobitumen in the high position of Tabei uplift in the present.In the second phase,the O2 3 source rock of Manjia'er depression started its generation of hydrocarbon,which accumulated in the high position of Tabei uplift afterwards,and then biodegradated to heavy oil in the late Hercynian epoch.In the last phase,the O2 3 source rock of southern Halahatang depression and margin of Manjia'er depression started its peak of generating liquid hydrocarbon,which mostly accumulated in the trap formed before the Indo-China and Yanshan epoch,and in somewhere the heavy oil suffered dilutions in various degrees or serious gas invading,to lead to obvious crude oil divergence.  相似文献   

5.
There exists a petroleum system rich of oil and gas around Halahatang depression, where the oil and gas possess obvious local distinctions of properties in different parts. The research proved that the discovered crude oil and natural gas in the region derived mainly from O2+3 source rock, and the differences of its properties were controlled by the oil and gas filling intensity. The comprehensive study result shows the oil and gas reservoirs of the region mainly underwent three important accumulation phases: late Caledonian-Early Hercynian epoch, late Hercynian epoch, and Yanshan-Himalayan epoch. In the first phase, the oil and gas derived mostly from Cambrian source rock, which formed the primary ancient oil reservoirs, then suffered strong degradation and remained a great quantity of pyrobitumen in the high position of Tabei uplift in the present. In the second phase, the O2+3 source rock of Manjia’er depression started its generation of hydrocarbon, which accumulated in the high position of Tabei up-lift afterwards, and then biodegradated to heavy oil in the late Hercynian epoch. In the last phase, the O2+3 source rock of southern Halahatang depression and margin of Manjia’er depression started its peak of generating liquid hydrocarbon, which mostly accumulated in the trap formed before the Indo-China and Yanshan epoch, and in somewhere the heavy oil suffered dilutions in various degrees or serious gas invading, to lead to obvious crude oil divergence.  相似文献   

6.

There exists a petroleum system rich of oil and gas around Halahatang depression, where the oil and gas possess obvious local distinctions of properties in different parts. The research proved that the discovered crude oil and natural gas in the region derived mainly from O2+3 source rock, and the differences of its properties were controlled by the oil and gas filling intensity. The comprehensive study result shows the oil and gas reservoirs of the region mainly underwent three important accumulation phases: late Caledonian-Early Hercynian epoch, late Hercynian epoch, and Yanshan-Himalayan epoch. In the first phase, the oil and gas derived mostly from Cambrian source rock, which formed the primary ancient oil reservoirs, then suffered strong degradation and remained a great quantity of pyrobitumen in the high position of Tabei uplift in the present. In the second phase, the O2+3 source rock of Manjia’er depression started its generation of hydrocarbon, which accumulated in the high position of Tabei up-lift afterwards, and then biodegradated to heavy oil in the late Hercynian epoch. In the last phase, the O2+3 source rock of southern Halahatang depression and margin of Manjia’er depression started its peak of generating liquid hydrocarbon, which mostly accumulated in the trap formed before the Indo-China and Yanshan epoch, and in somewhere the heavy oil suffered dilutions in various degrees or serious gas invading, to lead to obvious crude oil divergence.

  相似文献   

7.
Bitumen from the Nanpanjiang Basin occurs mainly in the Middle Devonian and Upper Permian reef limestone paleo-oil reservoirs and reserves primarily in holes and fractures and secondarily in minor matrix pores and bio-cavities. N2 is the main component of the natural gas and is often associated with pyrobitumen in paleo-oil reservoirs. The present study shows that the bitumen in paleo-oil reservoirs was sourced from the Middle Devonian argillaceous source rock and belongs to pyrobitumen by crude oil cracking under high temperature and pressure. But the natural gas with high content of N2 is neither an oil-cracked gas nor a coal-formed gas generated from the Upper Permian Longtan Formation source rock, instead it is a kerogen-cracked gas generated at the late stage from the Middle Devonian argilla- ceous source rock. The crude oil in paleo-oil reservoirs completely cracked into pyrobitumen and methane gas by the agency of hugely thick Triassic deposits. After that, the abnormal high pressure of methane gas reservoirs was completely destroyed due to the erosion of 2000--4500-m-thick Triassic strata. But the kerogen-cracked gas with normal pressure was preserved under the relatively sealed condition and became the main body of the gas shows.  相似文献   

8.
The Sebei gasfield is the largest biogas accumulation found in China and many reservoirs and seal rocks superposed on a syndepositional anticline in Quaternary.The biogas charging and dissipating process and its distribution have been a research focus for many years.The authors suggest a diffusing and accumulating model for the biogas,as they find that the shallower the gas producer,the more methane in the biogas,and the lighter stable carbon isotope composition of methane.Based on the diffusing model,diffused biogas is quantitatively estimated for each potential sandy reservoir in the gasfield,and the gas charging quantity for the sandy reservoir is also calculated by the diffused gas quantity plus gas reserve in-place.A ratio of diffusing quantity to charging quantity is postulated to describe biogas accumulating state in a sandy reservoir,if the ratio is less than 0.6,the reservoir forms a good gas-pool and high-production layer in the gasfield,which often occurs in the reservoirs deeper than 900 m;if the ratio is greater than 0.6,a few gas accumulated in the reservoir,which frequently exists in the reservoirs shallower than 900 m.Therefore,a biogas accumulation model is built up as lateral direct charging from gas source for the sands deeper than 900 m and indirect charging from lower gas-bearing sands by diffusion at depth shallower than 900 m.With this charging and diffusion quantitative model,the authors conducted re-evaluation on each wildcat in the central area of the Qaidam Basin,and found many commercial biogas layers.  相似文献   

9.
The Sebei gasfield is the largest biogas accumulation found in China and many reservoirs and seal rocks superposed on a syndepositional anticline in Quaternary. The biogas charging and dissipating process and its distribution have been a research focus for many years. The authors suggest a diffusing and accumulating model for the biogas, as they find that the shallower the gas producer, the more methane in the biogas, and the lighter stable carbon isotope composition of methane. Based on the diffusing model, diffused biogas is quantitatively estimated for each potential sandy reservoir in the gasfield, and the gas charging quantity for the sandy reservoir is also calculated by the diffused gas quantity plus gas reserve in-place. A ratio of diffusing quantity to charging quantity is postulated to describe biogas accumulating state in a sandy reservoir, if the ratio is less than 0.6, the reservoir forms a good gas-pool and high-production layer in the gasfield, which often occurs in the reservoirs deeper than 900 m; if the ratio is greater than 0.6, a few gas accumulated in the reservoir, which frequently exists in the reservoirs shallower than 900 m. Therefore, a biogas accumulation model is built up as lateral direct charging from gas source for the sands deeper than 900 m and indirect charging from lower gas-bearing sands by diffusion at depth shallower than 900 m. With this charging and diffusion quantitative model, the authors conducted re-evaluation on each wildcat in the central area of the Qaidam Basin, and found many commercial biogas layers.  相似文献   

10.
Jin  Qiang  Cheng  FuQi  Su  AiGuo  Zhu  GuangYou  Wang  Li  Cao  Qian 《中国科学:地球科学(英文版)》2008,51(1):36-44

The Sebei gasfield is the largest biogas accumulation found in China and many reservoirs and seal rocks superposed on a syndepositional anticline in Quaternary. The biogas charging and dissipating process and its distribution have been a research focus for many years. The authors suggest a diffusing and accumulating model for the biogas, as they find that the shallower the gas producer, the more methane in the biogas, and the lighter stable carbon isotope composition of methane. Based on the diffusing model, diffused biogas is quantitatively estimated for each potential sandy reservoir in the gasfield, and the gas charging quantity for the sandy reservoir is also calculated by the diffused gas quantity plus gas reserve in-place. A ratio of diffusing quantity to charging quantity is postulated to describe biogas accumulating state in a sandy reservoir, if the ratio is less than 0.6, the reservoir forms a good gas-pool and high-production layer in the gasfield, which often occurs in the reservoirs deeper than 900 m; if the ratio is greater than 0.6, a few gas accumulated in the reservoir, which frequently exists in the reservoirs shallower than 900 m. Therefore, a biogas accumulation model is built up as lateral direct charging from gas source for the sands deeper than 900 m and indirect charging from lower gas-bearing sands by diffusion at depth shallower than 900 m. With this charging and diffusion quantitative model, the authors conducted re-evaluation on each wildcat in the central area of the Qaidam Basin, and found many commercial biogas layers.

  相似文献   

11.
Here I collected natural gas samples from 41 industrial gas wells in the Tarim Basin,and studied the mercury distribution in the area.My data show that there is certain regularity in the distribution of mercury in the Tarim Basin.Generally,the mercury concentration is high at the edge of the basin and low in the central basin.The highest mercury concentration occurs in the Southwest Depression,ranging from 15428.5 to 296763.0ng/m3 with an average of 156095.7ng/m3,followed by the Kuqa Depression ranging from 15.0 to 56964.3ng/m3 with an average of 11793.7ng/m3,and the Hade oil and gas field in the North Depression has the lowest mercury concentration ranging from 17.7 to 3339.5ng/m3 with an average of 1678.6ng/m3.The mercury concentrations in the natural gases of different structural units are various,with the highest mercury concentration in the zone of strong structural activity of Southwest Depression.It is profitable of Hg accumulation in the self sourced and self accumulated gas reservoirs or volcanic existence;in contrast,the low Hg concentration exists in the secondary gas reservoir.The mercury concentration in the natural gas generated under continental depositional environment is higher than that in marine gas.Therefore,the mercury concentration in the natural gases is constrained by gas genesis,depositional environment of source rocks,tectonic activity,and volcanic activity,and the tectonic activity is the main factor for the mercury concentration in the natural gas,followed by volcanic activity and depositional environments.  相似文献   

12.
The gas field in the center of Ordos Basin has been conventionally considered as a large gas pool with thin reservoirs. However, lots of phenomena contrary to this concept occur in the exploration and production process. It is proposed that the gas field is composed of many small lithological gas pools, sourced from and reservoired in the same Ordovician formation which is an underpressured fluid compartment. A dynamic equilibrium moldel of natural gas migration and accumulation has been developed to illustrate the formation mechanism of these gas pools.  相似文献   

13.
Extant research on Paleozoic mudstone is well developed in the Tarim Basin, while the research on Carboniferous mudstone is relatively weak. Through systematic study of lithology, geochemical characteristics,reservoir characteristics and gas–bearing properties of Carboniferous mudstone in the Tarim Basin, this study aims to provide a geological basis for the Paleozoic shale gas exploration and development, favorable zone optimization, and resource potential evaluation in the Tarim Basin. The results show that the sedimentary environments of organic-rich mudstone in the study area were mainly basin facies and slope facies. Lithology is dominated by black carbonaceous mudstone, followed by calcareous mudstone, siliceous mudstone, and siliceous rocks. Mudstone is mainly developed in the Kalashayi Formation,which is located in the Bachu and Markit slope belt, with the cumulative thickness of 30–200 m. The organic carbon content is commonly more than 0.4%, and the organic matter types are type II and type III. Thermal evolution degree is widely distributed from a low mature to over mature stage, and different tectonic units have a greater difference. The contents of quartz plus feldspar are between 12% and 82.5%, with an average of 45.8%. Thecontent distribution of clay mineral is from 12% to 57%,with an average of 38.2%. Carbonate minerals(mainly siderite) content is below 50%. The brittle mineral content of the mudstone is approximately 65%, with a strong compressibility, and the mudstone has the material basis of forming crack and natural fracture. Microscopic pores in micro–nanometer level are well developed in the mudstone, including micro bedding joint, microcrack,interbedded pores of clay mineral, nanoscale intragranular or edge pores in the massive organic matter, bioclastic micropores, and mineral dissolution pores, etc. According to the standards provided by the Ministry of Land and Resources in China, the Kalashayi Formation in Bamai Area is a favorable area for shale gas development.  相似文献   

14.

Well Yingnan 2, an important exploratory well in the east of Tarim Basin, yields high commercial oil and gas flow in Jurassic. Natural gas components and carbon isotopic composition indicate that it belongs to sapropel type gas. Because this region presents many suits of hydrocarbon source rocks, there are some controversies that natural gases were generated from kerogen gas or crude oil cracking gas at present. By using the kinetics of hydrocarbon generation and carbon isotope, natural gas of Well Yingnan 2 is composed mainly of crude oil cracking gas, about 72%, it is generated from secondary kerogen gas of Cambrian-Lower Ordovician source rock and crude oil cracking gas of Mid-Upper Ordovician oil reservoir. The main oil and gas filling time is 65 Ma later in the Jurassic gas reservoir of Well Yingnan 2, so the gas reservoir belongs to late accumulation and continuous filling type.

  相似文献   

15.
Well Yingnan 2, an important exploratory well in the east of Tarim Basin, yields high commercial oil and gas flow in Jurassic. Natural gas components and carbon isotopic composition indicate that it belongs to sapropel type gas. Because this region presents many suits of hydrocarbon source rocks, there are some controversies that natural gases were generated from kerogen gas or crude oil cracking gas at present. By using the kinetics of hydrocarbon generation and carbon isotope, natural gas of Well Yingnan 2 is composed mainly of crude oil cracking gas, about 72%, it is generated from secondary kerogen gas of Cambrian-Lower Ordovician source rock and crude oil cracking gas of Mid-Upper Ordovician oil reservoir. The main oil and gas filling time is 65 Ma later in the Jurassic gas reservoir of Well Yingnan 2, so the gas reservoir belongs to late accumulation and continuous filling type.  相似文献   

16.
17.
The origin and genetic types of natural gas in the Sichuan Basin are still disputed.To classify the origin and genetic types in different areas,the paper analyzes the carbon isotopic composition of gases and geologic features in the Sichuan Basin.The results showed that the gas sourced from terrestrial layers is typically characterized by terrestrial origin and was mainly accumulated nearby to form reservoir.The carbon isotopic composition of gas showed a normal combination sequence distribution,suggesting that natural gas in continental strata is not affected by secondary alteration or that this deformation is very weak.The gas source is singular,and only gas from the southern and northern Sichuan Basin shows the characteristic of mixed sources.However,marine gas presents the characteristics of an oil-formed gas.The carbon isotopic composition of natural gas in the western and central part of the basin mostly distributes in a normal combination sequence,and few of them showed an inversion,indicating that the gas perhaps had not experienced secondary alteration.The carbon isotopic composition of marine-origin gas in the southern,northern and eastern Sichuan Basin displays a completely different distribution pattern,which is probably caused by different mixing ratio of gas with multi-source and multi-period.  相似文献   

18.
Carbonates are the main exploratory layers in Tarim Paleozoic cratonic basin. With abundant oil and gas sources, the lower Paleozoic carbonate in which traps develop over a large area and at a high amplitude, has the basic condition to form large oil and (or) gas fields. Three types of petroleum accumulation models, which consist of buried-hill petroleum accumulation in the high part of the uplift, inner structure petroleum accumulation in the pitching part of the uplift and fault horst petroleum accumulation on the border of the uplift, are found in the lower Paleozoic carbonates. Petroleum occurrence is mainly controlled by paleo-uplift, fault, unconformity and fracture system. The pitching part of the paleo-uplift and the fault belts on the paleo-uplift are the favorable exploratory areas.  相似文献   

19.
20.
A type of authigenic pyrites that fully fill or semi-fill the rock fractures of drillholes with gas hydrate anomalies are found in the Qilian Mountain permafrost; this type of pyrite is known as “fracture-filling” pyrite. The occurrence of “fracture-filling” pyrite has a certain similarity with that of the hydrate found in this region, and the pyrite is generally concentrated in the lower part of the hydrate layer or the hydrate anomaly layer. The morphology, trace elements, rare earth elements, and sulfur isotope analyses of samples from drillhole DK-6 indicate that the “fracture-filling” pyrites are dominated by cubic ones mainly aligned in a step-like fashion along the surfaces of rock fractures and are associated with a circular structure, lower Co/Ni and Sr/Ba, lower ΣREE, higher LREE, significant Eu negative anomalies, and Δ34SCDT positive bias. In terms of the pyrites’ unique crystal morphology and geochemical characteristics and their relationship with the hydrate layers or abnormal layers, they are closely related with the accumulation system of the gas hydrate in the Qilian Mountain permafrost. As climate change is an important factor in affecting the stability of the gas hydrate, formation of fracture-filling pyrites is most likely closely related to the secondary change of the metastable gas hydrate under the regional climate warming. The distribution intensity of these pyrites indicates that when the gas hydrate stability zone (GHSZ) is narrowing, the hydrate decomposition at the bottom of the GHSZ is stronger than that at the top of the GHSZ, whereas the hydrate decomposition within the GHSZ is relatively weak. Thus, the zone between the shallowest and the deepest distribution of the fracture-filling pyrite recorded the largest possible original GHSZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号