首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Archaean Murchison Province of Western Australia, granitoid batholiths and plutons that intruded into the ca. 2.7–2.8 Ga and ca. 3.0 Ga greenstone belts can be divided into three major suites. Suite I is a ca. 2.69 Ga monzogranite-granodiorite suite, which was derived from anatexis of old continental crust and occurs as syn-tectonic composite batholiths over the entire province. Suite II is a trondhjemite-tonalite suite (termed I-type) derived from partial melting of subducted basaltic crust, which intruded as syn- to late-tectonic plutons into the greenstone belts in the northeastern part of the province where most of the major gold deposits are situated. One of the Suite II trondhjemite plutons has a Pb−Pb isochron age of 2641±36 Ma, and one of the structurally youngest tonalite plutons has a minimum Pb−Pb isochron age of 2630.1±4.3 Ma. Suite III is a ca. 2.65–2.62 Ga A-type monzogranite-syenogranite suite which is most abundant in the largely unmineralised southwestern part of the province. Gold deposits in the province are mostly hosted in brittle-ductile shear zones, and were formed at a late stage in the history of metamorphism, deformation and granitoid emplacement. At one locality, mineralisation has been dated at 2636.8±4.2 Ma through a pyritetitanite Pb−Pb isochron. Lead and Sr isotope studies of granitoids and gold deposits indicate that, although most gold deposits have initial Pb isotope compositions most closely similar to those of Suite II intrusions, both Suite I and Suite II intrusions or their source regions could have contributed solutes to the ore fluids. These preliminary data suggest that gold mineralisation in the Murchison Province was temporally and spatially associated with Suite II I-type granitoids in the northeastern part of the province. This association is consistent with the concept that Archaean gold mineralisation was related to convergent-style tectonic settings, as generation of both Suite II I-type granitoids and hydrothermal ore fluids could have been linked to the dehydration and partial fusion of subducted oceanic crust, and old sialic crust or its anatectic products may also contribute solutes to the ore fluids. Integration of data from this study with other geological and radiogenic isotope constraints in the Yilgarn Block argue against direct derivation of gold ore fluids from specific I-type granitoid plutons, but favour a broad association with convergent tectonics and granitoid magmatism in the late Archaean.  相似文献   

2.
Available petrological, structural and geochronological data suggest that metamorphism and deformation of greenstone sequences and the evolution of intrusive granitoids in the Eastern Goldfields Province, Yilgarn Block, were related to a widespread and integrated tectonic event in the time interval 2700-2600 m.y.Polyphase deformation of the greenstone sequences involved the superimposition of a series of upright folds and related subvertical foliations on earlier macroscopic recumbent folds. Metamorphism was imposed rapidly on these previously deformed but relatively unaltered greenstone sequences, synchronously with a third phase of deformation. Static-style metamorphic recrystallization at very low to medium grades occurred over most of the province, but contemporaneous high grade recrystallization of dynamic style was restricted to elongate narrow zones which were also the sites of synkinematic granitoid diapirism. These zones commonly mark the present margins of greenstone belts.The extensive areas between greenstone belts are dominated by outcrops of post-kinematic granitoids whose abundance may be overestimated because of the limited exposure. Their emplacement caused only minor contact metamorphic overprinting on the pre-existing metamorphic patterns. Also present are banded gneisses interpreted as modified basement to the greenstone sequences. These gneisses are enclosed in post-kinematic granitoid batholiths or occur as remnants in synkinematic diapirs within the dynamic domains. All major granitoid groups, including gneisses, are geochemically similar and show parallel but limited variations. Both field and chemical evidence points to the gneisses being parental to intrusive granitoids derived by both anatectic and solid-state processes.The data provide important constraints on any model for greenstone belt evolution. Our preferred model involves a widespread disturbance resembling the kind currently referred to as a “mantle plume”, which initially led to extrusion of mafic and ultramafic magmas via tensional fractures in a sialic crust, then subsequently caused their deformation and metamorphism and generated the intrusive granitoids by widespread reactivation of the basement. The dynamic metamorphic domains may reflect pre-greenstone crustal lineaments that controlled the initial vulcanism. The evolution of Archean greenstone terrains proposed here appears distinct from that of subsequent Proterozoic and Phanerozoic tectonic belts.  相似文献   

3.
Southern Cross was one of the earliest gold mining centres in Western Australia. Over 142 tonnes of gold have been produced from the district, and, on a gold per hectare basis, the Southern Cross greenstone belt in the southwestern Yilgarn Craton is the most productive of Western Australia's Archaean greenstone belts. The SW Yilgarn Craton is characterised by high-grade (amphibolite- to granulite-facies) metamorphism, extensive granitoid magmatism and older greenstone volcanism ages, compared to the well-known greenschist-facies metamorphism and younger (2.7 Ga) eruption ages which dominate in the Eastern Goldfields Province. The Pb-isotope compositions of deep-seated granitoids in the SW Archaean Yilgarn Craton, which were emplaced coeval with a craton-wide major orogenic lode-gold mineralization event at about 2.64–2.63 Ga, have been determined for 96 whole-rock and 24 K-feldspar samples. The Pb isotope data of the granitoids are consistent with a crustal origin for their genesis, probably by reworking (partial melting) of older continental crust. The Pb isotope composition of greenstones, which are the main host rocks for gold mineralisation, and pyrites from the komatiite-hosted syngenetic Ni deposits in the amphibolite-facies Forrestania greenstone belt, have also been determined, with initial Pb-isotope ratios higher than that for the Eastern Goldfields Province. The Pb isotopic character of the orogenic lode-gold deposits in the region is intermediate between coeval granitoid and greenstone Pb, indicating that the ore fluids contained metals from both reservoirs. The Pb in the ore fluid of the most deeply formed deposit, Griffin's Find, overlaps the isotopic composition of coeval granitoids, indicating the deep-seated granitoid magmatism was the primary source for Pb in the ore fluids. Received: 8 October 1998 / Accepted 22 December 1998  相似文献   

4.
Dalstra  H.J.  Bloem  E.J.M.  Ridley  J.R.  Groves  D.I. 《Geologie en Mijnbouw》1997,76(4):321-338
The Southern Cross Province in the Archean Yilgarn Block of Western Australia comprises large dome-shaped granitoid bodies surrounded by narrow greenstone belts. Determination of the emplacement mechanism of these domes is fundamental for understanding the tectonic history of this region. Many structures in the greenstone belts show trends which reflect their tectonic relationships with the granitoid domes. Some of these structures host large gold occurrences. The domes have concentric foliation patterns, both within the granitoids themselves, and in the neighbouring greenstone belts. The smaller domes only have radial mineral lineation patterns in their wall rocks, but the largest dome, the Ghooli Dome, has also a tangential pattern. The prevailing gentle dip of the foliation in the centre of this dome and the abundance of greenstone xenoliths suggest that the present exposures are close to its roof. Geothermometry and geobarometry on mineral assemblages in the Ghooli granitoid and its xenoliths show that its crystallisation temperature was just above 700 °C at a relatively high pressure of 4.3 to 6.2 kbar. These P-T conditions are higher than those inferred for peak metamorphism in the greenstones. Therefore, this granitoid must have been emplaced initially at crustal levels deeper than the maximum burial of the greenstones which flank the dome. The Ghooli Dome has a SHRIMP U-Pb zircon age of 2691 ± 7 Ma. Diapiric rise of the granitoid plutons taking place in a regional compressive tectonic regime is considered to be the most likely mechanism for the final emplacement of these bodies into their host rock at about 2636–2620 Ma. This concept is preferred over the alternatives because it best reconciles the calculated P-T data, the observed structural patterns, the presence of pegmatites and aplites in the host rock, and the orientation of the mineral-bearing structures.  相似文献   

5.
《Precambrian Research》2004,132(3):303-326
The granitoid rock dominated central Wabigoon subprovince of the Superior Province records low-K trondhjemite–tonalite–granodiorite (TTG) type magmatic episodes at <2.83–2.74 and 2.722–2.709 Ga, and high-K mafic to felsic plutonism at 2.690–2.685 Ga. High-K units consist of granite to granodiorite dykes and sills, a K-feldspar megacrystic granodiorite suite of sanukitoid affinity and a suite of mafic dykes and intrusions. Initial ϵNd values (−3.1 to +3.3) indicate variable input to all units from light REE-enriched older crustal materials. The δ18O (VSMOW) range of felsic compositions (+7.1 to +8.9%) overlaps closely that of average upper Superior Province crust. The granite/granodiorite units probably received melt components derived from both older tonalitic crust and isotopically juvenile supracrustal material. The thermal flux for partial melting was provided by mafic components of the coeval megacrystic granodiorite suite. This latter suite likely formed by extensive crustal assimilation and fractionation of enriched-mantle-derived high-Mg dioritic magmas in a post-collisional setting, possibly resulting from slab breakoff or broader scale lithospheric delamination. A genetic link is inferred between mafic magmatism and the late- to post-tectonic high-K granitoid magmatism that typically represents the last stabilization event within Superior subprovinces. That crustal recycling processes played a major role in the petrogenesis of central Wabigoon high-K granitoid suites is consistent with other evidence that supports repeated and substantial continental recycling within this subprovince as far back as the Mesoarchean.  相似文献   

6.
Many elongated, lenticular plutons of porphyritic granitoids are distributed mainly near the southern and northern margin of the Chhotanagpur Gneissic Complex (CGC) which belongs to the EW to ENE-WSW tending 1500 km long Proterozoic orogenic belt amalgamat ng the North and South Indian cratonic blocks. The late Grenvillian (1071 ±64 Ma) Raghunathpur porphyritic granitoid gneiss (PGG) batholith comprising alkali feldspar granite, granite, granodiorite, tonalite, quartz syenite and quartz monzonite intruded into the granitoid gneisses of southeastern part of CGC in the Purulia district, West Bengal and is aligned with ENE-WSW trending North Purulia sr~ear zone, Mineral chemistry, geochemistry, physical condition of crystallization and petrogenetic model of Raghunathpur PGG have been discussed for the first time. The petrographic and geochemical features (including major and trace- elements, mineral chemistry and S7Sr/S6Sr ratio) suggest these granitoids to be classified as the shosh- onitic type. Raghunathpur batholith was emplaced at around 800 ~C and at 6 kbar pressure tectonic discrimination diagrams reveal a post-collision tectonic setting while structural studies reveal its emplacement in the extensional fissure of North Purulia shear zone. l'he Raghunathpur granitoid is compared with some similar granitoids of Europe and China to draw its petrogenetic model. Hybridi- zation of mantle-generated enriched mafic magma and crustal magma at lower crust and later fractional crystallization is proposed for the petrogenesis of this PGG. Mafic magma generated in a post-collisional extension possibly because of delamination of subducting slab. Raghunathpur batholith had emplaced in the CGC during the final amalgamation (~ 1.0 Ga) of the North and South Indian cratonic blocks. Granitoid magma, after its generation at depth, was transported to its present level along megadyke channel, ways within shear zones.  相似文献   

7.
辽北-吉南地区太古宙花岗岩-绿岩带地质地球化学   总被引:9,自引:0,他引:9  
辽北-吉南地区是我国典型太古宙花岗岩-绿岩带出露区之一。根据其地质地球化学特征,本区绿岩带可划分为清原型和夹皮沟型,其形成的古构造环境分别为与现代岛弧的大陆边缘活动带和弧后盆地或大陆边缘裂谷相类似的裂谷型构造环境。与绿岩带有关的花岗质岩石可划分为三类:即片麻状花岗质杂岩体、花岗闪长岩和英云闪长岩底辟岩基以及钾质花岗岩。花岗岩-绿岩带的形成时代为2.5-2.9Ga。  相似文献   

8.
耿元生 《岩石学报》2009,25(8):1830-1842
位于华北克拉通西缘的贺兰山杂岩主要由孔兹岩系和变形花岗岩(正片麻岩)所组成,前者主要由夕线石榴片麻岩、石榴二长片麻岩、变粒岩和少量的大理岩及麻粒岩所组成,后者主要包括黑云斜长片麻岩、石榴子石花岗岩、斑状花岗岩和片麻状变质闪长岩。本文报道了该区变形花岗岩的锆石SHRIMP U-Pb定年结果。黑云二长片麻岩和石榴子石花岗岩分别形成于2053±58Ma和2047±42Ma,斑状花岗岩和片麻状闪长岩分别在1955Ma和 1920Ma侵位。大量的年代学资料表明,在华北克拉通北缘存在一条古元古代晚期的花岗杂岩带,该带中的花岗杂岩主要形成于三个阶段,第一阶段大于2.0Ga,第二阶段主要出现在2.0~1.87Ga期间,第三阶段的花岗杂岩在1.85~1.80Ga期间侵位。年代学研究还表明,古元古代晚期的花岗岩浆作用常常与变质事件紧密相关。  相似文献   

9.
Field studies in the Eucalyptus area, northeastern Yilgarn Block have shown intrusive and extrusive rocks in an Archaean greenstone sequence to be comagma‐tic, and have suggested the sequence of subsequent granitoid intrusion and gold mineralisation. Andesitic volcanic rocks and related subvolcanic granodiorite porphyry and epiclastic sediments were followed by tholeiitic basalt with gabbro/dolerite sills and dykes, which were in turn succeeded by high‐Mg basalt with associated peridotite intrusions. Large, irregular gabbro and peridotite intrusions, which are inferred to represent subvolcanic magma chambers, occur in lower stratigraphic levels, whereas comformable subvolcanic sills occur in higher stratigraphic levels. Granodiorite plutons were followed by adamellite plutons; at least some gold mineralisation was contemporaneous with granitoid emplacement.  相似文献   

10.
The northwestern part of southwest Chad is one of the best regions to find exposed Precambrian terrains and their Phanerozoic cover. In this area, it is easy to establish the lithostratigraphic and structural relationships between sedimentary and granitic rocks, greenstone belts and dolerite dykes. Based on petrographic and structural studies, we distinguished the greenstone belts that belong to the Neoproterozoic Zalbi Series. The Neoproterozoic greenstone belts that are intruded by three generations of Pan-African granitoids (gabbro-diorite, biotite monzogranite and leucogranite) host the mineral resources in the region. The Precambrian rocks are covered by Cretaceous shale, sandstone and microconglomerate in the Kebbi Basin, and intruded by dolerite dykes. These late dolerite dykes, have a continental tholeiitic composition, which is supported by the presence of orthopyroxene in the mineralogical assemblage. Structurally, two major deformation events are present in the Zalbi Series. The earliest D1 event is the most intensive and is associated with vertical to subvertical north-trending S1 foliation, a vertical L1 lineation and P1 folds; the metamorphism associated with this phase is equilibrated in greenschist facies conditions. The second D2 event is discrete and is characterised by large-amplitude folds and fractures.  相似文献   

11.
青海南山东段花岗岩类岩石类型为二长花岗岩、花岗闪长岩及英云闪长岩。通过高精度LA-ICP-MS锆石U-Pb同位素测年,获得二长花岗岩、花岗闪长岩的年龄分别为241±3Ma、245±2Ma和249±3Ma,可代表其成岩年龄。花岗岩类构造环境判别图显示,岩石具俯冲型花岗岩类特征,可能代表早三叠世宗务隆洋的北向俯冲过程。通过对青海南山东段侵入岩体形成时代、岩石成因、构造环境等的研究,为青海宗务隆造山带在印支期的构造环境演化和动力学机制提供了重要的依据。  相似文献   

12.
Zircons from porphyry and granitoid samples collected in and around the Marymia Gold Mine in the Marymia Inlier, Western Australia, record a complex history. The results of U-Pb studies confirm that the Plutonic Well greenstone belt, and the surrounding granitoid envelope (including a 2,721Lj Ma intrusion), represent an Archaean terrain, which was intruded by high-level, felsic to intermediate porphyries at 2,694lj Ma and potentially also at 2,660dž Ma. Zircon xenocrysts (Sca. 3.35, 2.93 and 2.74 Ga) indicate that there was older crust within, or below, the greenstone belt at the time of porphyry emplacement. Zircons from the granitoid envelope and intrusions within the greenstone belt record subsequent metamorphism and/or hydrothermal activity coeval with magmatism in the Late Archaean (ca. 2.66-2.63 Ga), and peak metamorphism, magmatism and gold mineralisation in the Yilgarn Block. A later period of metamorphism and hydrothermal activity at ca. 1.72 Ga is coeval with orogenesis in the southern Capricorn Orogen. Both the Late Archaean and Palaeoproterozoic thermal events have altered zircons, redistributed trace elements and caused zircon recrystallisation, which is distinctive in its isotope chemistry (in particular Th/U ratios >1) and morphology (e.g. homogeneous in transmitted light and back-scattered electron images, but sector-zoned in cathodoluminescence).  相似文献   

13.
A 500 m wide shear zone occurs between the base of an Archaean greenstone sequence and adjacent granitoid gneiss complex on the shores of Lake Dundas, Western Australia. The dynamothermal margin remains distinguishable due to the preservation of upper amphibolite facies assemblages, related granitoid anatectites and mylonitic, schistose and gneissose fabrics developed parallel to the contact, which itself lies subparallel to the greenstone bedding surface. The margin contrasts with less deformed greenschist to low amphibolite facies assemblages which characterize lithologies within the greenstone belt, many of which retain igneous textures and relict primary phases. Structural, petrological and textural evidence indicates that the dynamothermal contact originally evolved as a subhorizontal ductile shear zone during juxtaposition of the greenstone pile with granitoid gneiss and that its formation preceded regional folding, greenschist facies overprinting and granitoid intrusion which occurred at about 2700 Ma. The amount of heat generated within the transition zone during thrusting was limited to maximum temperatures of c. 650°C due to the buffering effect of granitoid anatexis.  相似文献   

14.
Ion probe U‐Th‐Pb dating of zircons from the Late Archaean granites of the Norseman region of the southeastern Yilgarn shows the existence of two distinct magmatic episodes. Large regional tonalite and granodiorite plutons were emplaced between 2685 and 2690 Ma, whereas large regional granite, and small tonalite and leucogranite plutons that intrude the greenstones have ages of 2660–2665 Ma. A small body of granite that intrudes the western edge of the greenstones has an inferred emplacement of 2672 ± 7Ma, and contains inherited zircon that is ~2800 Ma. The monzogranite core from a second pluton in a similar structural position also contains ~2800 Ma zircon; this age is similar to published Sm‐Nd and Rb‐Sr whole rock ages for banded gneisses associated with other members of this suite of domal plutons and is interpreted as representing the age of a significant component within the source region for these distinctive rocks.

Available geochemical and isotopic data are interpreted as indicating derivation of both the older granodiorite and younger granite suites through anatexis of pre‐existing crust of broadly andesitic composition, whereas both the domal granites and the small, late tonalite plutons could have been derived by anatexis of heterogeneous material similar to that represented by the banded gneisses.

If regional metamorphism was related to the emplacement of large volumes of felsic magma within the upper crust, as suggested by Binns et al. (1976), then the Norseman area has probably undergone two periods of regional metamorphism of comparable intensity at approximately 2660 and 2685 Ma.  相似文献   

15.
Rocks of the Moruya Batholith range from gabbros and gabbroic diorites through quartz diorites and tonalites to granodiorites and rare adamellites. The gabbros and gabbroic diorites appear as small, early bodies intruded and enclosed by quartz diorites and tonalites. These early gabbroids are petrographically and chemically distinct from the granitoids. The latter occur as a meridionally‐oriented sequence of nine separate plutons. Mafic xenoliths are most abundant in the quartz diorites and tonalites; they are petrographically similar to their host granitoids and are chemically a more mafic extension of the variation in granitoid compositions. The various granitoid bodies are considered to be derived from similar source rocks, with the xenoliths representing modified material relict from partial melting of that source.

Comparison of chemical data from the Moruya granitoids with those of the I‐types of the Jindabyne Suite in the Kosciusko Batholith, shows that the potassium content is indistinguishable in the two suites from each side of the Moruya‐Kosciusko Province, although elsewhere it has been shown to vary systematically across an orogenic belt. The most outstanding difference is the higher Na and Ti and lower Ca in the Moruya Batholith compared with those in Kosciusko Batholith I‐type granitoids.  相似文献   

16.
The Archean basement of Sierra Leone is a typical example of granite-greenstone terrains found in ancient continental nucleii. Reconnaissance field mapping showed that the area can be subdivided into old gneiss, which predates the greenstone belts, and young granite which is later than the greenstone belts.New Rb-Sr whole-rock age determinations on two suites of old tonalitic gneiss yield ages of 2786 ± 49 Ma and 2770 ± 137 Ma, which either reflect the time of formation of the original tonalites or their metamorphism. Three new Rb-Sr whole-rock age determination on young granites yield ages of 2786 ± 143 Ma, 2780 ± 79 Ma and 2770 ± 50 Ma, which are interpreted as the time of emplacement. The widespread occurrence of similar young granites, throughout the Archaean of West Africa, suggests that these results date a major event in the evolution of this segment of the crust.A published Pb-Pb age of the old gneiss and the new ages of the young granite bracket the age of the greenstone belts to 3000-2770 Ma. However, if the Rb-Sr ages of the old gneiss reported in this paper reflect the time of their formation, the age of the greenstone belts is tightly bracketed to ca. 2770 Ma. There is no isotopic evidence for rocks substantially older than 3000 Ma in the West African Archaean.  相似文献   

17.
UPb zircon systematics for granitic and gneissic clasts from the Moodies conglomerate of the Barberton Greenstone Belt, South Africa, exhibit discordancy patterns that suggest variable and multi-episodic lead loss and indicate crystallisation ages for the parent granitoids between 3.3 and 3.47 Ga. Metamict zircons in some of these clasts indicate complete resetting of the older material or new growth at about 2.8–2.9 Ga ago that is ascribed to a regional thermal event as also shown by published RbSr data for a nearby granitoid pluton. Since the Moodies clasts consist largely of potassic granites our ages suggest the presence of highly evolved continental crust in the source region of the greenstone belt sediments, a feature that contradicts the commonly accepted model for the primitive nature of the granitoid crust in early Archaean granite-greenstone terrains. The maximum age of 3.3 Ga for the Moodies Group also shows that greenstone belt evolution in the Barberton region took place over a period of at least 150 Ma from about 3450 to 3300 Ma ago.The Kaap Valley and Stentor plutons intrude the lower part of the greenstone succession, and their diapiric emplacement caused large-scale deformation of earlier structures in the entire greenstone belt sequence at about 3.23–3.25 Ga ago.Detrital zircons in the sediments of the Fig Tree Group date the mean age of their source terrain at c. 3520 Ma which is also the maximum age of deposition for these strata. This age is indistinguishable from the oldest age reported from the Barberton greenstones and suggests the possibility that pre-greenstone granitoid crust may exist in the eastern Kaapvaal craton.  相似文献   

18.
The Maevatanana greenstone belt in north-central Madagascar contains widespread exposures of tonalite-trondhjemite-granodiorite(TTG) gneisses,and is important for its concentrations of various metal deposits(e.g.,chromium,nickle,iron,gold).In this paper we report on the petrography,and major and trace element compositions of the TTG gneisses within the Berere Complex of the Maevatanana area,as well as LA-ICP-MS U-Pb ages and Lu-Hf isotopic compositions of zircons from the gneisses.The gneisses consist mainly of granitoid gneiss and biotite(±hornblende) plagiogneiss,and analysis of thin sections provides evidence of crushing,recrystallization,and metasomatism related to dynamic metamorphism.Samples have large variations in their major and trace element contents,with SiO_2 = 55.87-68.06 wt%,Al_2O_3 = 13.9-17.8 wt%,and Na_2O/K_2O =0.97-2.13.Geochemically,the granitoid gneisses and biotite plagiogneisses fall on a low-Al trondhjemite to granodiorite trend,while the biotite-hornblende plagiogneisses represent a high-Al tonalite TTG assemblage.Zircon U-Pb dating shows that the Berere Complex TTG gneisses formed at2.5-2.4 Ga.Most ε_(Hf(t)) values of zircons from the biotite(± hornblende) plagiogneisses are positive,while most ε_(Hf(t)) values from the granitoid gneisses are negative,suggesting a degree of crustal contamination.Two-stage Hf model ages suggest that the age of the protolith of the TTG gneisses was ca.3.4-2.6 Ga,representing a period of paleocontinent formation in the Mesoarchean.Geothermometries indicate the temperature of metamorphism of the TTG gneisses was 522-612℃.Based on these data,the protolith of the TTG gneisses is inferred to have formed during the development of a Mesoarchean paleocontinent that is now widely exposed as a TTG gneiss belt(mostly lower amphibolite facies) in the Maevatanana area,and which records a geological evolution related to the subduction of an ancient oceanic crust and the collision of microcontinents during the formation of the Rodinia supercontinent.The lithological similarity of Precambrian basement,the close ages of metamorphism within greenstone belts and the comparable distribution of metamorphic grade all show a pronounced Precambrian geology similarity between Madagascar and India,which can provide significative clues in understanding the possible Precambrian Supercontinent tectonics,and also important constraints on the correlation of the two continental fragments.  相似文献   

19.
U-Pb锆石测年结果表明,东宁地区太平岭岩体形成于201 Ma,与区域上七十二顶子、闹枝沟及珲春大荒沟等岩体形成时代一致,均为晚三叠世末.岩石类型以花岗闪长岩和二长花岗岩为主,地球化学特征表明该期花岗岩属于中钾钙碱性系列,并有向高钾钙碱性系列演化的趋势;富集大离子亲石元素Rb、Th、K、La,相对亏损Sr、P、Ti和高场强元素Nb、Ta、Zr、Hf等,Ba相对Rb、Th具有轻微的负异常.同位素地球化学研究表明,本区花岗岩具有低ISr、高εNd(t)、年轻Nd模式年龄的特点.综合研究表明,该期花岗岩的形成与大洋板块的俯冲作用有关,标志着古太平洋板块对东北地区俯冲作用的开始.  相似文献   

20.
The In Ouzzal granulitic massif is composed mainly of various meta-igneous rocks which, in spite of Rb, U, Th, Cs and some K and Sr mobility, can be dated and generally classified according to their chemical composition as follows. Basic and ultrabasic granulites interlayered with the metasediments correspond to (1) ultrabasic cumulates from dislocated tholeiitic bodies, (2) ancient komatiitic to high-Mg tholeiitic basalts similar to the suites found in Archaean greenstone belts and (3) calcalkaline protoliths of high-K andesitic composition. No geochronological constraints are available apart from the depositional age of some associated sediments which is younger than 2.70 Ga detrital zircons, and the Nd model age of the andesitic granulites of c. 3.4 Ga. In spite of the high-grade metamorphism, the acidic magmatic precursors of the charnockites can be divided in three groups. (1) The most juvenile acid orthogneisses are trondhjemitic or tonalitic in composition, being similar to the TTG suites which are classically considered to be formed by partial melting of mantle-derived protoliths. The 3.3–3.2 Ga TDM indicates a possible age of separation from the mantle reservoir while the plutons may have been emplaced between 3.3 and 2.7 Ga (U–Pb zircon & Nd ages). (2) A group of alkaline granitic gneisses, similar in composition to rift-related-granites, were emplaced at 2650±10 Ma (U–Pb & Rb–Sr ages) in a thick continental crust. (3) Calcalkaline granodioritic and monzogranitic suites derived from the partial melting of continental precursors (3.5–3.3 Ga), in lower to middle levels of the continental crust. They were emplaced close to 2.5 Ga during crustal thickening. The very high-temperature metamorphism occurred at 2002±7 Ma from the age of synfoliation intrusions and was probably related to major overthrusting. Retrogressive metamorphism is dated at 1.95 Ga from garnet-Nd ages. In spite of the very high-temperature conditions, partial melting during granulite facies metamorphism may be restricted to scarce cordierite-bearing monzogranitic gneisses. The 2.0 Ga VHT metamorphism could be related to overthrusting, extensional or underplating processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号