首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The red edge position (REP) in the vegetation spectral reflectance is a surrogate measure of vegetation chlorophyll content, and hence can be used to monitor the health and function of vegetation. The Multi-Spectral Instrument (MSI) aboard the future ESA Sentinel-2 (S-2) satellite will provide the opportunity for estimation of the REP at much higher spatial resolution (20 m) than has been previously possible with spaceborne sensors such as Medium Resolution Imaging Spectrometer (MERIS) aboard ENVISAT. This study aims to evaluate the potential of S-2 MSI sensor for estimation of canopy chlorophyll content, leaf area index (LAI) and leaf chlorophyll concentration (LCC) using data from multiple field campaigns. Included in the assessed field campaigns are results from SEN3Exp in Barrax, Spain composed of 35 elementary sampling units (ESUs) of LCC and LAI which have been assessed for correlation with simulated MSI data using a CASI airborne imaging spectrometer. Analysis also presents results from SicilyS2EVAL, a campaign consisting of 25 ESUs in Sicily, Italy supported by a simultaneous Specim Aisa-Eagle data acquisition. In addition, these results were compared to outputs from the PROSAIL model for similar values of biophysical variables in the ESUs. The paper in turn assessed the scope of S-2 for retrieval of biophysical variables using these combined datasets through investigating the performance of the relevant Vegetation Indices (VIs) as well as presenting the novel Inverted Red-Edge Chlorophyll Index (IRECI) and Sentinel-2 Red-Edge Position (S2REP). Results indicated significant relationships between both canopy chlorophyll content and LAI for simulated MSI data using IRECI or the Normalised Difference Vegetation Index (NDVI) while S2REP and the MERIS Terrestrial Chlorophyll Index (MTCI) were found to have the strongest correlation for retrieval of LCC.  相似文献   

2.
对于航空航天大气偏振遥感来说,下垫面偏振辐射噪声影响扣除至关重要。本文基于航空偏振遥感数据,探讨了典型自然下垫面对可见光及短波红外波段偏振敏感性。研究发现,在可见光波段与短波红外(2250 nm)波段,植被下垫面偏振反射率线性拟合斜率都接近1,相关系数大于0.95,表明植被偏振反射率对光谱波段不敏感。比较分析了平静水面和存在耀光水面在670 nm和2250 nm两波段的偏振特性,存在耀光的水面其偏振反射率大约是平静水面的3倍。此外,在实验室测量了红砂土和河沙土的偏振反射率,偏振反射率随波段的改变量很小,其与波段的线性拟合斜率仅为10-5量级,说明两者的偏振反射率对波段很不敏感。因此,利用典型自然下垫面在可见和短波红外波段的偏振反射特性,将能够有效进行地气解耦,提高大气偏振遥感精度。  相似文献   

3.
利用MERIS数据植被指数分析福建省植被长势季节变化   总被引:1,自引:0,他引:1  
监测植被长势动态变化可以提供生态系统状况有价值的信息,可以检测到人类或气候作用引起的变化。本研究利用2004—2005年间10期MERIS影像数据,以福建省为例,探讨MERIS数据在区域植被长势季节变化监测中的应用效果;分析了MERIS数据用于区域植被季节变化监测时的数据处理方法;比较了MERIS数据几种植被指数,提出了利用10和8波段组合改进MERISNDVI的建议;利用多时相合成的NDVI简单分析了2004年夏季—2005年夏季三个季节的植被长势状况。结果表明,MERIS植被指数的时空变化有效反映了气候变化对植被长势的影响。  相似文献   

4.
This letter is aimed at better understanding of Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) reflectance radiometric calibration errors using the Medium Resolution Imaging Spectrometer (MERIS) onboard ENVISAT. Earlier investigations showed that the SCIAMACHY calibration error can reach 20% in the visible bands, which prevents aerosol retrievals using the SCIAMACHY data. Recent improvements of the SCIAMACHY calibration are discussed. It is found that the differences in reflectances for the wavelengths 443, 560, 665, 754, and 865 nm between MERIS and improved Processor 6 SCIAMACHY data are close to the MERIS radiometric calibration error, which is below 4%  相似文献   

5.
Particulate organic carbon (POC) plays an important role in the carbon cycle in water due to its biological pump process. In the open ocean, algorithms can accurately estimate the surface POC concentration. However, no suitable POC-estimation algorithm based on MERIS bands is available for inland turbid eutrophic water. A total of 228 field samples were collected from Lake Taihu in different seasons between 2013 and 2015. At each site, the optical parameters and water quality were analyzed. Using in situ data, it was found that POC-estimation algorithms developed for the open ocean and coastal waters using remote sensing reflectance were not suitable for inland turbid eutrophic water. The organic suspended matter (OSM) concentration was found to be the best indicator of the POC concentration, and POC has an exponential relationship with the OSM concentration. Through an analysis of the POC concentration and optical parameters, it was found that the absorption peak of total suspended matter (TSM) at 665 nm was the optimum parameter to estimate POC. As a result, MERIS band 7, MERIS band 10 and MERIS band 12 were used to derive the absorption coefficient of TSM at 665 nm, and then, a semi-analytical algorithm was used to estimate the POC concentration for inland turbid eutrophic water. An accuracy assessment showed that the developed semi-analytical algorithm could be successfully applied with a MAPE of 31.82% and RMSE of 2.68 mg/L. The developed algorithm was successfully applied to a MERIS image, and two full-resolution MERIS images, acquired on August 13, 2010, and December 7, 2010, were used to map the POC spatial distribution in Lake Taihu in summer and winter.  相似文献   

6.
Canopy water content (CWC) is important for mapping and monitoring the condition of the terrestrial ecosystem. Spectral information related to the water absorption features at 970 nm and 1200 nm offers possibilities for deriving information on CWC. In this study, we compare the use of derivative spectra, spectral indices and continuum removal techniques for these regions. Hyperspectral reflectance data representing a range of canopies were simulated using the combined PROSPECT + SAILH model. Best results in estimating CWC were obtained by using spectral derivatives at the slopes of the 970 nm and 1200 nm water absorption features. Real data from two different test sites were analysed. Spectral information at both test sites was obtained with an ASD FieldSpec spectrometer, whereas at the second site HyMap airborne imaging spectrometer data were also acquired. Best results were obtained for the derivative spectra. In order to avoid the potential influence of atmospheric water vapour absorption bands the derivative of the reflectance on the right slope of the canopy water absorption feature at 970 nm can best be used for estimating CWC.  相似文献   

7.
Techniques for mapping and monitoring wetland species are critical for their sustainable management. Papyrus (Cyperus papyrus L.) is one of the most important species-rich habitats that characterize the Greater St. Lucia Wetlands Park (GSWP) in South Africa. This paper investigates whether papyrus could be discriminated from its co-existing species using ASD field spectrometer data ranging from 300 nm to 2500 nm, yielding a total of 2151 bands. Canopy spectral measurements from papyrus and three other species were collected in situ in the Greater St. Lucia Wetlands Park, South Africa. A new hierarchical method based on three integrated analysis levels was proposed and implemented to spectrally discriminate papyrus from other species as well as to reduce and subsequently select optimal bands for the potential discrimination of papyrus. In the first level of the analysis using ANOVA, we found that there were statistically significant differences in spectral reflectance between papyrus and other species on 412 wavelengths located in different portions of the electromagnetic spectrum. Using the selected 412 bands, we further investigated the use of classification and regression trees (CART) in the second level of analysis to identify the most sensitive bands for spectral discrimination. This analysis yielded eight bands which are considered to be practical for upscaling to airborne or space borne sensors for mapping papyrus vegetation. The final sensitivity analysis level involved the application of Jeffries-Matusita (JM) distance to assess the relative importance of the selected eight bands in discriminating papyrus from other species. The results indicate that the best discrimination of papyrus from its co-existing species is possible with six bands located in the red-edge and near-infrared regions of the electromagnetic spectrum. Overall, the study concluded that spectral reflectance of papyrus and its co-existing species is statistically different, a promising result for the use of airborne and satellite sensors for mapping papyrus. The three-step hierarchical approach employed in this study could systematically reduce the dimensionality of bands to manageable levels, a move towards operational implementation with band specific sensors.  相似文献   

8.
The main objective was to determine whether partial least squares (PLS) regression improves grass/herb biomass estimation when compared with hyperspectral indices, that is normalised difference vegetation index (NDVI) and red-edge position (REP). To achieve this objective, fresh green grass/herb biomass and airborne images (HyMap) were collected in the Majella National Park, Italy in the summer of 2005. The predictive performances of hyperspectral indices and PLS regression models were then determined and compared using calibration (n = 30) and test (n = 12) data sets. The regression model derived from NDVI computed from bands at 740 and 771 nm produced a lower standard error of prediction (SEP = 264 g m−2) on the test data compared with the standard NDVI involving bands at 665 and 801 nm (SEP = 331 g m−2), but comparable results with REPs determined by various methods (SEP = 261 to 295 g m−2). PLS regression models based on original, derivative and continuum-removed spectra produced lower prediction errors (SEP = 149 to 256 g m−2) compared with NDVI and REP models. The lowest prediction error (SEP = 149 g m−2, 19% of mean) was obtained with PLS regression involving continuum-removed bands. In conclusion, PLS regression based on airborne hyperspectral imagery provides a better alternative to univariate regression involving hyperspectral indices for grass/herb biomass estimation in the Majella National Park.  相似文献   

9.
利用多时相的高光谱航空图像监测冬小麦条锈病   总被引:31,自引:1,他引:31  
冬小麦发生锈病 ,叶绿素被大量破坏 ,水分蒸滕量大大增加 ,叶片细胞大小、形态、叶片结构发生了改变 ,从而改变了叶片和冠层的光学特性 ,使得遥感探测与评价成为可能。利用多时相的高光谱航空飞行图像数据 ,了解、分析和发现条锈病病害对作物光谱的影响及其光谱特征 ;设计了病害光谱指数 ,成功地监测了冬小麦条锈病病害程度与范围。对比 3个生育期的条锈病与正常生长冬小麦的PHI图像光谱及光谱特征 ,发现 :5 6 0— 6 70nm黄边、红谷波段 ,条锈病病害冬小麦的冠层反射率高于正常生长的冬小麦光谱反射率 ;近红外波段 ,条锈病病害的冠层反射率低于正常生长的冬小麦光谱反射率 ;条锈病冬小麦冠层光谱红谷吸收深度和绿峰的反射峰高度都会减小  相似文献   

10.
摘 要:MERIS数据以其更为合理的水色波段设置和300m较高的空间分辨率,在内陆湖泊水环境遥感监测中有较大的应用潜力, 对其进行有效的大气校正则是水环境参数定量化反演的前提。以太湖为研究区, 研究基于氧气和水汽吸收波段的暗象元假设, 改进传统的近红外波段暗像元假设的大气校正方法。采用MERIS L2p数据辅助获取湖区气溶胶参数, 并利用2007年11月11日、2008年11月20日以及2009年4月25日三景MERIS影像进行方法验证。结果表明, 该方法能够快速、有效地完成MERIS影像的大气校正, 与地面准同步实测数据相比, 三次校正的RMSP都在25%以下; 与BEAM自带的二类水体大气校正算法、气溶胶厚度辅助的6S大气校正以及改进的暗象元算法进行精度比较, 表明该算法校正精度较高。由于该算法不需要同步实测气溶胶数据, 因此具有一定的适用性。  相似文献   

11.
The top-of-atmosphere reflectance measurements by advanced along-track scanning radiometer (AATSR), medium-resolution imaging spectrometer (MERIS), and scanning imaging absorption spectrometer for atmospheric chartography (SCIAMACHY) onboard ENVISAT have been compared for collocated scenes. The AATSR and MERIS observations were averaged to the scale of a SCIAMACHY ground scene (30 km times 60 km). The SCIAMACHY reflectances were averaged to account for much coarser spectral resolution of AATSR and MERIS observations. It was found that SCIAMACHY reflectances coincide with those of MERIS within 4% MERIS calibration error. This is also the case for AATSR reflectances, except at the wavelength of 0.865 mum, where SCIAMACHY gives, on average, 6% lower reflectances as compared to those of AATSR. They are 3% too low as compared to MERIS observations at this wavelength.  相似文献   

12.
Sentinel-2 is planned for launch in 2014 by the European Space Agency and it is equipped with the Multi Spectral Instrument (MSI), which will provide images with high spatial, spectral and temporal resolution. It covers the VNIR/SWIR spectral region in 13 bands and incorporates two new spectral bands in the red-edge region, which can be used to derive vegetation indices using red-edge bands in their formulation. These are particularly suitable for estimating canopy chlorophyll and nitrogen (N) content. This band setting is important for vegetation studies and is very similar to the ones of the Ocean and Land Colour Instrument (OLCI) on the planned Sentinel-3 satellite and the Medium Resolution Imaging Spectrometer (MERIS) on Envisat, which operated from 2002 to early 2012. This paper focuses on the potential of Sentinel-2 and Sentinel-3 in estimating total crop and grass chlorophyll and N content by studying in situ crop variables and spectroradiometer measurements obtained for four different test sites. In particular, the red-edge chlorophyll index (CIred-edge), the green chlorophyll index (CIgreen) and the MERIS terrestrial chlorophyll index (MTCI) were found to be accurate and linear estimators of canopy chlorophyll and N content and the Sentinel-2 and -3 bands are well positioned for deriving these indices. Results confirm the importance of the red-edge bands on particularly Sentinel-2 for agricultural applications, because of the combination with its high spatial resolution of 20 m.  相似文献   

13.
Atmospheric correction (AC) is a necessary process when quantitatively monitoring water quality parameters from satellite data. However, it is still a major challenge to carry out AC for turbid coastal and inland waters. In this study, we propose an improved AC algorithm named N-GWI (new standard Gordon and Wang’s algorithms with an iterative process and a bio-optical model) for applying MERIS data to very turbid inland waters (i.e., waters with a water-leaving reflectance at 864.8 nm between 0.001 and 0.01). The N-GWI algorithm incorporates three improvements to avoid certain invalid assumptions that limit the applicability of the existing algorithms in very turbid inland waters. First, the N-GWI uses a fixed aerosol type (coastal aerosol) but permits aerosol concentration to vary at each pixel; this improvement omits a complicated requirement for aerosol model selection based only on satellite data. Second, it shifts the reference band from 670 nm to 754 nm to validate the assumption that the total absorption coefficient at the reference band can be replaced by that of pure water, and thus can avoid the uncorrected estimation of the total absorption coefficient at the reference band in very turbid waters. Third, the N-GWI generates a semi-analytical relationship instead of an empirical one for estimation of the spectral slope of particle backscattering. Our analysis showed that the N-GWI improved the accuracy of atmospheric correction in two very turbid Asian lakes (Lake Kasumigaura, Japan and Lake Dianchi, China), with a normalized mean absolute error (NMAE) of less than 22% for wavelengths longer than 620 nm. However, the N-GWI exhibited poor performance in moderately turbid waters (the NMAE values were larger than 83.6% in the four American coastal waters). The applicability of the N-GWI, which includes both advantages and limitations, was discussed.  相似文献   

14.
This study compares the ability of spectral approaches operating in the shortwave optical domain to predict absolute and relative vegetation water content (AWC and RWC, respectively) across northern prairie grassland–shrubland. We collected vegetation water content and spectral radiometer data over plots of comparable ground resolution (0.5 m) at seven field sites in the Canadian mixed grass prairie in June 2004. We then aggregated observations to scale these data “up” to an observational scale consistent with that of Landsat-TM satellite imagery (30 m). This allowed us to assess abilities of three spectral approaches to predict AWC and RWC at both observational scales. These approaches were: individual vegetation indices, a combination of spectral bands and a combination of spectral derivatives. Our results showed that (a) the band-combination approach provides the most accurate and precise estimates of AWC and RWC at both 0.5 and 30 m sampling resolutions; (b) the combination of bands providing the greatest predictive abilities are those that emphasize the contrast in reflectance between the NIR and SWIR spectral regions; (c) the band-combination approach predicts AWC with much greater accuracy and precision than RWC and (d) the predictive ability of the band-combination approach decreases only slightly when plot-level data are aggregated to a 30 m sampling resolution. These results are generally consistent with the results of other studies and with theory. While our results suggest that simple spectral methods (e.g. linear band-combinations or indices) are good predictors of AWC over grazed and ungrazed grassland–shrubland landscapes at plot- and Landsat spatial resolutions, they are less encouraging for the estimation of RWC. Despite their good predictive abilities, the temporal and geographical portabilities of the spectral approaches for estimating AWC must be further assessed before they can be considered reliable and robust predictive tools. Thus, the further testing of these techniques over larger geographical extents is required.  相似文献   

15.
Low and moderate spatial resolution satellite sensors (such as TOMS, AVHRR, SeaWiFS) have already shown their capability in tracking aerosols at a global scale. Sensors with moderate to high spatial resolution (such as MODIS and MERIS) seem also to be appropriate for aerosol retrieval at a regional scale. We investigated in this study the potential of MERIS-ENVISAT data to resolve the horizontal spatial distribution of aerosols over urban areas, such as the Athens metropolitan area, by using the differential textural analysis (DTA) code. The code was applied to a set of geo-corrected images to retrieve and map aerosol optical thickness (AOT) values relative to a reference image assumed to be clean of pollution with a homogeneous atmosphere. The comparison of satellite retrieved AOT against PM10 data measured at ground level showed a high positive correlation particularly for the AOT values calculated using the 5th MERIS’ spectral band (R2=0.83). These first results suggest that the application of the DTA code on cloud free areas of MERIS images can be used to provide AOT related to air quality in this urban region. The accuracy of retrieved AOT mainly depends on the overall quality, the pollution cleanness and the atmospheric homogeneity of the reference image.  相似文献   

16.
A field experiment was conducted to study the effect of vegetation cover on soil spectra and relationship of spectral indices with vegetation cover. Multi-date spectral measurements were carried out on twelve wheat fields. Five sets of measurements were taken during the growth period of wheat crop. Field reflectance data were collected in the range 350 to 1800 nm using ASD spectroradiometer. Analysis of data was done to select narrow spectral bands for estimation of ground cover. The ratio of reflectance from vegetation covered soil and reflectance from bare soil indicated that spectral reflectance at 670 and 710 nm are the most sensitive bands. Two bands in visible (670 and 560 nm), three bands in near infrared (710, 870 and 1100 nm) and three bands in middle infrared (1480, 1700 and 1800 nm) were found highly correlated with fractional cover. Vegetation indices developed using narrow band spectral data have been found to be better than those developed using broad- band data for estimation of ground cover.  相似文献   

17.
Large-scale farming of agricultural crops requires on-time detection of diseases for pest management. Hyperspectral remote sensing data taken from low-altitude flights usually have high spectral and spatial resolutions, which can be very useful in detecting stress in green vegetation. In this study, we used late blight in tomatoes to illustrate the capability of applying hyperspectral remote sensing to monitor crop disease in the field scale and to develop the methodologies for the purpose. A series of field experiments was conducted to collect the canopy spectral reflectance of tomato plants in a diseased tomato field in Salinas Valley of California. The disease severity varied from stage 1 (the light symptom), to stage 4 (the sever damage). The economic damage of the crop caused by the disease is around the disease stage 3. An airborne visible infrared imaging spectrometer (AVIRIS) image with 224 bands within the wavelength range of 0.4–2.5 μm was acquired during the growing season when the field data were collected. The spectral reflectance of the field samples indicated that the near infrared (NIR) region, especially 0.7–1.3 μm, was much more valuable than the visible range to detect crop disease. The difference of spectral reflectance in visible range between health plants and the infected ones at stage 3 was only 1.19%, while the difference in the NIR region was high, 10%. We developed an approach including the minimum noise fraction (MNF) transformation, multi-dimensional visualization, pure pixels endmember selection and spectral angle mapping (SAM) to process the hyperspectral image for identification of diseased tomato plants. The results of MNF transformation indicated that the first 28 eigenimages contain useful information for classification of the pixels and the rest were mainly noise-dominated due to their low eigenvalues that had few signals. Therefore, the 28 signal eigenimages were used to generate a multi-dimensional visualization space for endmember spectra selection and SAM. Classification with the SAM technique of plants’ spectra showed that the late blight diseased tomatoes at stage 3 or above could be separated from the healthy plants while the less infected plants (at stage 1 or 2) were difficult to separate from the healthy plants. The results of the image analysis were consistent with the field spectra. The mapped disease distribution at stage 3 or above from the image showed an accurate conformation of late blight occurrence in the field. This result not only confirmed the capability of hyperspectral remote sensing in detecting crop disease for precision disease management in the real world, but also demonstrated that the spectra-based classification approach is an applicable method to crop disease identification.  相似文献   

18.
Calibration comparison between SCIAMACHY and MERIS onboard ENVISAT   总被引:1,自引:0,他引:1  
We present a comparison of the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) and the Medium Resolution Imaging Spectrometer (MERIS) reflectance calibrations at wavelengths between 442 and 885 nm. Results show that SCIAMACHY underestimates the reflectance by /spl sim/13% at 442 nm reaching up to /spl sim/21% at 885 nm as compared to MERIS. We also find a small nonlinear effect for the lowest reflectance. This effect is more evident for pixels over ocean than over land.  相似文献   

19.
邱凤  霍婧雯  张乾  陈兴海  张永光 《遥感学报》2021,25(4):1013-1024
多角度遥感观测是研究植被冠层BRDF(Bidirectional Reflectance Distribution Function)特性的重要手段,但目前对森林冠层进行连续间隔采样的多角度遥感观测及数据较少,热点方向的观测尤为缺乏.本研究基于无人机多角度高光谱成像系统,在主平面上对针叶林冠层以等角度连续间隔采样进行多...  相似文献   

20.
The aim of this study is to use full spatial resolution Envisat MERIS data to drive an ecosystem productivity model for pine forests along the Mediterranean coast of Turkey. The Carnegie, Ames, Stanford Approach (CASA) terrestrial biogeochemical model, designed to simulate the terrestrial carbon cycle using satellite sensor and meteorological data, was used to estimate annual regional fluxes in terrestrial net primary productivity (NPP). At its core this model is based on light-use efficiency, influenced by temperature, rainfall and solar radiation. Present climate data was generated from 50 climate stations within the watershed using co-kriging. Regional scale pseudo-warming data for year 2070 were derived using a Regional Climate Model (RCM) these data were used to downscale the GCM General Circulation Model for the research area as part of an international research project called Impact of Climate Changes on Agricultural Production Systems in Arid Areas (ICCAP). Outputs of climate data can be moderated using the four variables of percent tree cover, land cover, soil texture and NDVI. This study employed 47 MERIS images recorded between March 2003 and September 2005 to derive percent tree cover, land cover and NDVI. Envisat MERIS data hold great potential for estimating NPP with the CASA model because of the appropriateness of both its spatial and its spectral resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号