首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Solund–Hyllestad–Lavik area affords an excellent opportunity to understand the ultrahigh‐pressure Scandian orogeny because it contains a near‐complete record of ophiolite emplacement, high‐pressure metamorphism and large‐scale extension. In this area, the Upper Allochthon was intruded by thec. 434 Ma Sogneskollen granodiorite and thrust eastward over the Middle/Lower Allochthon, probably in the Wenlockian. The Middle/Lower Allochthon was subducted to c. 50 km depth and the structurally lower Western Gneiss Complex was subducted to eclogite facies conditions at c. 80 km depth by c. 410–400 Ma. Within < 5–10 Myr, all these units were exhumed by the Nordfjord–Sogn detachment zone, producing shear strains > 100. Exhumation to upper crustal levels was complete by c. 403 Ma. The Solund fault produced the last few km of tectonic exhumation, bringing the near‐ultrahigh‐pressure rocks to within c. 3 km vertical distance from the low‐grade Solund Conglomerate.  相似文献   

2.
Thermobarometry suggests that ultrahigh‐pressure (UHP) to high‐pressure (HP) rocks across the Western Gneiss Region ponded at the Moho following as much as 100 km of exhumation through the mantle and before exhumation to the upper crust. Eclogite across the c. 22 000 km2 study area records minimum pressures of c. 8–18 kbar and temperatures of c. 650–780 °C. One orthopyroxene eclogite yields an UHP of c. 28.5 kbar, and evidence of former coesite has been found c. 50 km farther east than previously known. Despite this widespread evidence of UHP to HP, thermobarometry of metapelite and garnet amphibolite samples reveals a surprisingly uniform ‘supra‐Barrovian’ amphibolite‐facies overprint at c. 11 kbar and c. 650–750 °C across the entire area. Chemical zoning analysis suggests that garnet in these samples grew during heating and decompression, presumably during the amphibolite‐facies event. These data indicate that the Norwegian UHP/HP province was exhumed from mantle depths of c. 150 km to lower crustal depths, where it stalled and underwent a profound high‐temperature overprint. The ubiquity of late‐stage supra‐Barrovian metamorphic overprints suggests that large‐scale, collisional UHP terranes routinely stall at the continental Moho where diminishing body forces are exceeded by boundary forces. Significant portions of the middle or lower crust worldwide may be formed from UHP terranes that were arrested at the Moho and never underwent their final stage of exhumation.  相似文献   

3.
New petrographic evidence and a review of the latest radiometric age data are taken to indicate that formation of the ultra‐high pressure (UHP) eclogites within the Western Gneiss Region of Norway probably occurred within the 400–410 Ma time frame. Thus, this event took place significantly later than the previous, widely accepted age of c. 425 Ma for the timing of the high pressure metamorphism in this part of the Scandinavian Caledonides. Garnet growth under UHP (coesite‐stable) conditions is recognised as a discrete, younger event following on from earlier garnet formed under firstly amphibolite facies then quartz‐stable, eclogite facies conditions. Currently, the best constrained and most precise age, specifically for UHP mineral growth, is the 402 ± 2 Ma U–Pb age for metamorphic zircon (some of which retain coesite inclusions) from the Hareidland eclogite. Exhumation must have followed shortly thereafter and, based on synoptic pressure–temperature and depth–time curves, must have been very fast. Our data and those of others indicate an initial fast exhumation to about 35 km depth by about 395 Ma at a mean rate of about 10 mm a?1. This rapid exhumation rate may have been driven by the appreciable residual buoyancy of the deeply subducted continental crustal slab due to incomplete eclogitization of the dominant Proterozoic orthogneisses during the short‐lived UHP event. Subsequent exhumation to 8–10 km depth by about 375 Ma occurred at a much slower mean rate of about 1.3 mm a?1 with the late‐stage extensional collapse of the Caledonian orogen playing an increasingly important role, especially in the final unroofing of the Western Gneiss Region with some remarkably preserved UHP rocks.  相似文献   

4.
Eclogites from the Jæren nappe in the Caledonian orogenic belt of SW Norway contain aragonite, magnesite and dolomite in quartz‐rich layers. The carbonates comprise composite grains that occur interstitially between phases of the eclogite facies assemblage: garnet + omphacite + zoisite + clinozoisite + quartz + apatite + rutile ± dolomite ± kyanite ± phengite. Pressure and temperature conditions for the main eclogite stage are estimated to be 2.3–2.8 GPa and 585–655 °C. Published ultrahigh pressure (UHP) experiments on CaO‐, MgO‐ and CO2‐bearing systems have shown that equilibrium assemblages of aragonite and magnesite form as a result of dolomite breakdown at pressures >5 GPa. As a result, recognition of magnesite and aragonite in eclogite facies rocks has been used as an indicator for UHP conditions. However, petrological testing showed that the samples studied here have not experienced such conditions. Aragonite and magnesite show disequilibrium textures that indicate replacement of magnesite by aragonite. This process is inferred to have occurred via a coupled dissolution–precipitation reaction. The formation of aragonite is constrained to eclogite facies conditions, which implies that the studied rocks have experienced metasomatic, reactive fluid flow during their residence at high pressure (HP) conditions. During decompression, the bimineralic carbonate aggregates were overgrown by rims of dolomite, which partially reacted with aragonite to form Mg‐calcite. The well‐preserved carbonate assemblages and textures observed in the studied samples provide a detailed record of the reaction series that affected the rocks during and after their residence at P–T conditions near the coesite stability field. Recognition of the HP mechanism of magnesite replacement by aragonite provides new insight into metasomatic processes that occur in subduction zones and illustrates how fluids facilitate HP carbonate reactions that do not occur in dry systems at otherwise identical physiochemical conditions. This study documents that caution is warranted in interpreting aragonite‐magnesite associations in eclogite facies rocks as evidence for UHP metamorphic conditions.  相似文献   

5.
In the Western Gneiss Region in Norway, mafic eclogites form lenses within granitoid orthogneiss and contain the best record of the pressure and temperature evolution of this ultrahigh-pressure (UHP) terrane. Their exhumation from the UHP conditions has been extensively studied, but their prograde evolution has been rarely quantified although it represents a key constraint for the tectonic history of this area. This study focused on a well-preserved phengite-bearing eclogite sample from the Nordfjord region. The sample was investigated using phase-equilibrium modelling, trace-element analyses of garnet, trace- and major-element thermobarometry and quartz-in-garnet barometry by Raman spectroscopy. Inclusions in garnet core point to crystallization conditions in the amphibolite facies at 510–600°C and 11–16 kbar, whereas chemical zoning in garnet suggests growth during isothermal compression up to the peak pressure of 28 kbar at 600°C, followed by near-isobaric heating to 660–680°C. Near-isothermal decompression to 10–14 kbar is recorded in fine-grained clinopyroxene–amphibole–plagioclase symplectites. The absence of a temperature increase during compression seems incompatible with the classic view of crystallization along a geothermal gradient in a subduction zone and may question the tectonic significance of eclogite facies metamorphism. Two end-member tectonic scenarios are proposed to explain such an isothermal compression: Either (1) the mafic rocks were originally at depth within the lower crust and were consecutively buried along the isothermal portion of the subducting slab or (2) the mafic rocks recorded up to 14 kbar of tectonic overpressure at constant depth and temperature during the collisional stage of the orogeny.  相似文献   

6.
Microstructural and petrological analysis of samples with increasing strain in high‐pressure (HP) shear zones from the Haram garnet corona gabbro give insights into the deformation mechanisms of minerals, rheological properties of the shear zone and the role of deformation in enhancing metamorphic reactions. Scanning electron microscopy with electron backscattering diffraction (SEM–EBSD), compositional mapping and petrographic analysis were used to evaluate the nature of deformation in both reactants and products associated with eclogitization. Plagioclase with a shape‐preferred orientation that occurs in the interior part of layers in the mylonitic sample deformed by intracrystalline glide on the (0 0 1)[1 0 0] slip system. In omphacite, crystallographic preferred orientations indicate slip on (1 0 0)[0 0 1] and (1 1 0)[0 0 1] during deformation. Fine‐grained garnet deformed by diffusion creep and grain‐boundary sliding. Ilmenite deformed by dislocation glide on the basal and, at higher strains, prism planes in the a direction. Relationships among the minerals present and petrological analysis indicate that deformation and metamorphism in the shear zones began at 500–650 °C and 0.5–1.4 GPa and continued during prograde metamorphism to ultra‐high‐pressure (UHP) conditions. Both products and reactants show evidence of syn‐ and post‐kinematic growth indicating that prograde reactions continued after strain was partitioned away. The restriction of post‐kinematic growth to narrow regions at the interface of garnet and plagioclase and preservation of earlier syn‐kinematic microstructures in older parts layers that were involved in reactions during deformation show that diffusion distances were significantly shortened when strain was partitioned away, demonstrating that deformation played an important role in enhancing metamorphic reactions. Two important consequences of deformation observed in these shear zones are: (i) the homogenization of chemical composition gradients occurred by mixing and grain‐boundary migration and (ii) composition changes in zoned metamorphic garnet by lengthening diffusion distances. The application of experimental flow laws to the main phases present in nearly monomineralic layers yield upper limits for stresses of 100–150 MPa and lower limits for strain rates of 10?12 to 10?13 s?1 as deformation conditions for the shear zones in the Haram gabbro that were produced during subduction of the Baltica craton and resulted in the production of HP and UHP metamorphic rocks.  相似文献   

7.
Two crust-forming events dominate the Precambrian history of the Western Gneiss Region (WGR) at about 1800–1600 Ma and 1550–1400 Ma. The influence of the Sveconorwegian orogeny (1200–900 Ma) is restricted to the region south of Moldefjord-Romsdalen. A series of anorthosites and related intrusives are present, possibly derived from the now-lost western margin of the Baltic craton that may have been emplaced in the WGR as an allochthonous unit before the Ordovician.The Caledonian development is split into two orogenic phases, the Finnmarkian (Cambrian — Early Ordovician) and the Scandian (Late Ordovician/Early Silurian — Devonian). The lower tectonic units west of the Trondheim Trough may be Finnmarkian nappes ; they were part of the lower plate during the Scandian continental collision. The Blåhö nappe is correlated with dismembered eclogite bodies along the coast. A regional change of nappe transport direction from 090 to 135 marks the initiation of an orogen-parallel sinistral shear component around 425 Ma. The change caused the development of a complex sinistral strike-slip system in the Trondheim region consisting of the Möre-Tröndelag Fault Zone and the Gränse contact. The latter cut the crust underneath the already emplaced Trondheim Nappe Complex, thus triggering the intrusion of the Fongen-Hyllingen igneous complex, and initiating subsidence of the Trondheim Trough, and was subsequently turned from a strike-slip zone into an extensional fault. Minor southward transport of the Trondheim Nappe Complex rejuvenated some thrusts between the Lower and the Middle Allochthon. A seismic reflector underneath the WGR is interpreted to be a blind thrust which subcrops into the Faltungsgraben. During Middle Devonian orogenic collapse, detachment faulting brought higher units, now eroded elsewhere, down to the present outcrop level, such as the Bergen and Dalsfjord nappe and the Old Red basins.  相似文献   

8.
ABSTRACT The high-grade migmatitic core to the southern Brittany metamorphic belt has mineralogical and textural features that suggest high-temperature decompression. The chronology of this decompression and subsequent cooling history have been constrained with 40Ar/39 Ar ages determined for multigrain concentrates of hornblende and muscovite prepared from amphibolite and late-orogenic granite sheets within the migmatitic core, and from amphibolite of the structurally overlying unit. Three hornblende concentrates yield plateau isotope correlation ages of c. 303–298 Ma. Two muscovite concentrates record well-defined plateau ages of c. 306–305 Ma. These ages are geologically significant and date the last cooling through temperatures required for intracrystalline retention of radiogenic argon. The concordancy of the hornblende and muscovite ages suggest rapid post-metamorphic cooling. Extant geochronology and the new 40Ar/39Ar data suggest a minimum time-integrated average cooling rate between c. 725 °C and c. 125 °C of c. 14 ± 4°C Ma-1, although below 600 °C the data permit an infinitely fast rate of cooling. Mineral assemblages and reaction textures in diatexite migmatites suggest c. 4 kbar decompression at 800–750 °C. This must have pre-dated the rapid cooling. Emplacement of two-mica granites into the metamorphic belt occurred between 345 and 300 Ma. The youngest plutons were emplaced synkinematically along shallow-dipping normal faults interpreted to be reactivated Eo-Variscan thrusts. A penetrative, west-plunging stretching lineation developed in these granites suggests that extension was orogen-parallel. Extension was probably related to regional uplift and gravitational collapse of thermally weakened crust during constrictional (escape) tectonics in this narrow part of the Variscan orogen. This followed slab breakoff during the terminal stages of convergence between Gondwana and Laurasia; detachment may have been consequent upon a change in kinematics leading to dextral displacement within the orogen. Dextral ductile strike-slip displacement was concentrated in granites emplaced synkinematically along the South Armorican Shear Zone. Rapid cooling is interpreted to have resulted from tectonic unroofing with emplacement of granite along decollement surfaces. The high-grade migmatitic core of the southern Brittany metamorphic belt represents a type of metamorphic core complex formed during orogen-parallel extensional unroofing and regional-scale ductile flow.  相似文献   

9.
Fluid inclusions in garnet, kyanite and quartz from microdiamond-bearing granulites in the Western Gneiss Region, Norway, document a conspicuous fluid evolution as the rocks were exhumed following Caledonian high- and ultrahigh-pressure (HP–UHP) metamorphism. The most important of the various fluid mixtures and daughter minerals in these rocks are: (N2 + CO2 + magnesian calcite), (N2 + CO2 + CH4 + graphite + magnesian calcite), (N2 + CH4), (N2 + CH4 + H2O), (CO2) and (H2O + NaCl + CaCl2 + nahcolite). Rutile also occurs in the N2 + CO2 inclusions as a product of titanium diffusion from the garnet host into the fluid inclusions. Volatiles composed of N2 + CO2 + magnesian calcite characterise the ambient metamorphic environment between HP–UHP (peak) and early retrograde metamorphism. During progressive decompression, the mole fraction of N2 increased in the fluid mixtures; as amphibolite-facies conditions were reached, CH4 and later, H2O, appeared in the fluids, concomitant with the disappearance of CO2 and magnesian calcite. Graphite is ubiquitous in the host lithologies and fluid inclusions. Thermodynamic modelling of the metamorphic volatiles in a graphite-buffered C-O-H system demonstrates that the observed metamorphic volatile evolution was attainable only if the f O2 increased from c. −3.5 (±0.3) to −0.8 (±0.3) log units relative to the FMQ oxygen buffer. External introduction of oxidising aqueous solutions along a system of interconnected ductile shear zones adequately explains the dramatic increase in the f O2. The oxidising fluids introduced during exhumation were likely derived from dehydration of oceanic crust and continental sediments previously subducted during an extended period of continental collision in conjunction with the Caledonian orogeny. Received: 15 December 1997 / Accepted: 25 May 1998  相似文献   

10.
Ar/Ar analyses of phengites and paragonites from the ultrahigh-pressure metamorphic rocks (zoisite–clinozoisite schist, garnet–phengite schist and piemontite schist) in the Lago di Cignana area, Western Alps were carried out with a laser probe step-heating method using single crystals and a spot dating method on thin sections. Eight phengite and two paragonite crystals give the plateau ages of 37–42 Ma with 96–100% of 39Ar released. Each rock type also contains mica crystals showing discordant age spectra with age fractions (20–35 Ma) significantly younger than the plateau ages. Phengite inclusions in garnet give ages of 43.2 ± 1.1 Ma and 44.4 ± 1.5 Ma, which are significantly older than the spot age (36.4 ± 1.4 Ma) from the matrix phengites, and the plateau ages from the step-heating analyses. Inclusion ages (43 and 44 Ma) are consistent with a zircon SHRIMP age (44 ± 1 Ma) in this area. These results suggest that the oceanic materials that underwent a simple subduction related UHPM, form excess 40Ar-free phengite and that the peak metamorphism is ca. 44 Ma or little older. We suggest that matrix phengites experienced a retrogression reaction changing their chemistry contemporaneously with deformation related to the exhumation of rocks releasing significant radiogenic 40Ar from the crystals. This has lead to the apparent ages of the matrix phengites that are significantly younger than the inclusion age.  相似文献   

11.
超高压变质岩多硅白云母的外来40Ar探讨   总被引:1,自引:0,他引:1  
采用激光阶段加热 40Ar-39Ar定年技术, 测定了碧溪岭榴辉岩 6个多硅白云母的 Ar同位素组成.02BX030MS形成基本平坦的 40Ar-39Ar年龄谱, 数据点构成很好的正等时线, 加权平均年龄和等时线年龄均为 697 Ma, 这一年龄可能接近原岩年龄.DB-1MS、02BX018MS和 02BX019MS之 40Ar-39Ar年龄谱起伏较大, 表观年龄范围为~ 400 Ma至~ 680 Ma.在 40Ar/36Ar-39Ar/36Ar正等时线图解上, 这 3个样品数据点落在下拟合线 Reg-Ⅰ和上拟合线 Reg-Ⅲ之间.Reg-Ⅰ对应的年龄为 436~ 463 Ma, 与榴辉岩石榴子石原生流体包裹体年龄基本一致, 可能代表了榴辉岩超高压变质作用峰期的年龄;Reg-Ⅲ对应的年龄为 541~ 659 Ma, 最高年龄值小于 02BX030MS的年龄, 表明超高压变质作用使多硅白云母产生了不同程度的放射成因 40Ar部分丢失.继承 40Ar模型可以合理解释高压-超高压变质岩石之多硅白云母 40Ar-39Ar年龄明显偏老等地质现象.  相似文献   

12.
Based on the new data of isotopic ages and geochemical analyses, three types of Mesozoic granites have been identified for the Xiong'ershan-Waifangshan region in western Henan Province: high-Ba-SrⅠ-type granite emplaced in the early stage (~160 Ma),Ⅰ-type granite in the middle stage (~130 Ma) and anorogenic A-type granite in the late stage (~115 Ma). Geochemical characteristics of the high-Ba-SrⅠ-type granite suggest that it may have been generated from the thickened lower crust by partial melting with primary residues of amphibole and garnet. Gradual increase of negative Eu anomaly and Sr content variations reflect progressive shallowing of the source regions of these granites from the early to late stage. New 40Ar/39Ar plateau ages of the early-stage Wuzhangshan granite (156.0±1.1 Ma, amphibole) and middle-stage Heyu granite (131.8±0.7 Ma, biotite) are indistinguishable from their SHRIMP U-Pb ages previous published, indicating a rapid uplift and erosion in this region. The representative anorogenic A-type granite, Taishanmiao pluton, was emplaced at~115 Ma. The evolution of the granites in this region reveals a tectonic regime change from post-collisional to anorogenic between~160 Ma and~115 Ma. The genesis of the early- and middle-stageⅠ-type granites could be linked to delamination of subducted lithosphere of the Qiniing orogenic belt, while the late-stage A-type granites represent the onset of extension and the end of orogenic process. In fact, along the Qiniing -Dabie-Sulu belt, the Mesozoic granitoids in western Henan, Dabieshan and Jiaodong regions are comparable on the basis of these temporal evolutionary stages and their initial 87Sr/86Sr ratios, which may suggest a similar geodynamic process related to the collision between the North China and Yangtze cratons.  相似文献   

13.
Ultrahigh‐pressure (UHP) rocks from the Western Gneiss Region (WGR) of Norway record subduction of Baltican continental crust during the Silurian to Devonian Scandian continental collision. Here, we report a new coesite locality from the island of Harøya in the Nordøyane UHP domain, the most northerly yet documented in the WGR, and reconstruct the P–T history of the host eclogite. The coesite–eclogite lies within migmatitic orthogneiss, interpreted as Baltica basement, that underwent multiple stages of deformation and partial melting during exhumation. Two stages of metamorphism have been deduced from petrography and mineral chemistry. The early (M1) assemblage comprises garnet (Pyr38–41Alm35–37Grs23–26Spss1) and omphacite (Na0.35–0.40Ca0.57–0.60Fe2+0.08–0.10Mg0.53Fe3+0.01AlVI0.40–0.42)2(AlIV0.03–0.06Si1.94–1.97)2O6, with subordinate phengite, kyanite, rutile, coesite and apatite, all present as inclusions in garnet. The later (M2) assemblage comprises retrograde rims on garnet (Pyr38–40Alm40–44Grs16–21Spss1), diopside rims on omphacite (Na0.04–0.06Ca0.88–0.91Fe2+0.09–0.13Mg0.81–83Fe3+0.08AlVI0.03)2(AlIV0.07–0.08Si1.92–1.93)2O6, plagioclase, biotite, pargasite, orthopyroxene and ilmenite. Metamorphic P–T conditions estimated using thermocalc are ~3 GPa and 760 °C for M1, consistent with the presence of coesite, and ~1 GPa and 813 °C for M2, consistent with possible phengite dehydration melting during decompression. Comparison with other WGR eclogites containing the same assemblage shows a broad similarity in peak (M1) P–T conditions, confirming suggestions that large portions of the WGR were buried to depths of ~100 km during Scandian subduction. Field relations suggest that exhumation, accompanied by widespread partial melting, involved an early phase of top‐northwest shearing, followed by subhorizontal sinistral shearing along northwest‐dipping foliations, related to regional transtension. The present results add to the growing body of data on the distribution, maximum P–T conditions, and exhumation paths of WGR coesite–eclogites and their host rocks that is required to constrain quantitative models for the formation and exhumation of UHP metamorphic rocks during the Scandian collision.  相似文献   

14.
Based on the new data of isotopic ages and geochemical analyses, three types of Mesozoic granites have been identified for the Xiong'ershan-Waifangshan region in western Henan Province: high-Ba-SrⅠ-type granite emplaced in the early stage (~160 Ma),Ⅰ-type granite in the middle stage (~130 Ma) and anorogenic A-type granite in the late stage (~115 Ma). Geochemical characteristics of the high-Ba-SrⅠ-type granite suggest that it may have been generated from the thickened lower crust by partial melting with primary residues of amphibole and garnet. Gradual increase of negative Eu anomaly and Sr content variations reflect progressive shallowing of the source regions of these granites from the early to late stage. New 40Ar/39Ar plateau ages of the early-stage Wuzhangshan granite (156.0±1.1 Ma, amphibole) and middle-stage Heyu granite (131.8±0.7 Ma, biotite) are indistinguishable from their SHRIMP U-Pb ages previous published, indicating a rapid uplift and erosion in this region. The representative anorogenic A-type granite, Taishanmiao pluton, was emplaced at~115 Ma. The evolution of the granites in this region reveals a tectonic regime change from post-collisional to anorogenic between~160 Ma and~115 Ma. The genesis of the early- and middle-stageⅠ-type granites could be linked to delamination of subducted lithosphere of the Qiniing orogenic belt, while the late-stage A-type granites represent the onset of extension and the end of orogenic process. In fact, along the Qiniing -Dabie-Sulu belt, the Mesozoic granitoids in western Henan, Dabieshan and Jiaodong regions are comparable on the basis of these temporal evolutionary stages and their initial 87Sr/86Sr ratios, which may suggest a similar geodynamic process related to the collision between the North China and Yangtze cratons.  相似文献   

15.
Based on the new data of isotopic ages and geochemical analyses, three types of Mesozoic granites have been identified for the Xiong'ershan-Waifangshan region in western Henan Province: high-Ba-SrⅠ-type granite emplaced in the early stage (~160 Ma),Ⅰ-type granite in the middle stage (~130 Ma) and anorogenic A-type granite in the late stage (~115 Ma). Geochemical characteristics of the high-Ba-SrⅠ-type granite suggest that it may have been generated from the thickened lower crust by partial melting with primary residues of amphibole and garnet. Gradual increase of negative Eu anomaly and Sr content variations reflect progressive shallowing of the source regions of these granites from the early to late stage. New 40Ar/39Ar plateau ages of the early-stage Wuzhangshan granite (156.0±1.1 Ma, amphibole) and middle-stage Heyu granite (131.8±0.7 Ma, biotite) are indistinguishable from their SHRIMP U-Pb ages previous published, indicating a rapid uplift and erosion in this region. The representative anorogenic A-type granite, Taishanmiao pluton, was emplaced at~115 Ma. The evolution of the granites in this region reveals a tectonic regime change from post-collisional to anorogenic between~160 Ma and~115 Ma. The genesis of the early- and middle-stageⅠ-type granites could be linked to delamination of subducted lithosphere of the Qiniing orogenic belt, while the late-stage A-type granites represent the onset of extension and the end of orogenic process. In fact, along the Qiniing -Dabie-Sulu belt, the Mesozoic granitoids in western Henan, Dabieshan and Jiaodong regions are comparable on the basis of these temporal evolutionary stages and their initial 87Sr/86Sr ratios, which may suggest a similar geodynamic process related to the collision between the North China and Yangtze cratons.  相似文献   

16.
在扎河坝.阿尔曼泰蛇绿岩岩块内分布着高压-超高压成因的二辉橄榄岩、石榴辉石岩、石英菱镁岩及榴闪岩。石英菱镁岩内多硅白云母的Si(pfu)值均大于3.35,最高可达3.77,是典型高压-超高压成因的矿物。石英菱镁岩及其围岩蛇纹石化二辉橄榄岩的K2O含量极低,且多硅白云母的Na/(Na+K)比值小于0.04,这些地球化学特征显示,扎河坝多硅白云母不应含有过剩Ar,是一个理想的^40Ar/^39Ar定年对象。精确的^40Ar/^39Ar年代学研究结果表明,扎河坝石英菱镁岩中多硅白云母的^40Ar/^39Ar同位素年龄为281.6±2.5Ma。而矿物化学特征表明,扎河坝石英菱镁岩中的多硅白云母曾经历了退变质作用的改造,因此,它代表的应该是超高压变质石英菱镁岩的折返年龄。多硅白云母的^40Ar/^39Ar年代学研究结果表明,扎河坝-阿尔曼泰蛇绿混杂岩内超高压石英菱镁岩的折返事件应发生在早二叠世。  相似文献   

17.
松多地区的区域构造变形与糜棱质白云母石英片岩和绿片岩的白云母单矿物40Ar-39Ar年代学测试表明拉萨地体内的松多地区于220~240 Ma经历过印支期碰撞造山事件.这次造山事件为晚二叠世松多榴辉岩带代表的古特提斯洋盆消失闭合之后北拉萨地体与南冈瓦那大陆碰撞的结果.该区榴辉岩与退变榴辉岩白云母和角闪石的40Ar-39A...  相似文献   

18.
Metamorphic provinces such as the^1 Ga Grenvillian,~400 Ma Caledonide and Triassic Qinling Provinces often contain rocks with high-pressure assemblages such as eclogites,which formed at mantle depths in subduction zones.These are evidence of the accretion of terranes by subduction of oceans and collision to form large tectonostratigraphic provinces.The Mesoproterozoic Namaqua-Natal Province comprises a number of terranes thought to have been assembled by plate-tectonic processes,but they have generally yielded metamorphic pressures below 5 kbar,corresponding to<20 km,crustal depths,lacking evidence for subduction processes.The Kaaien Terrane in the Namaqua Front contains two large garbenschiefer units with the unusual paragenesis garnet-hornblende-epidote-white mica-plagioclase-ilmenite-quartz.Their protoliths are graywackes influenced by andesitic volcanism during their deposition at^1870 Ma,in a passive margin of the Rehoboth Province or Kaapvaal Craton.Prograde garnet growth dated at 11655 Ma culminated in peak metamorphic conditions of 64530C and 10.40.7 kbar,corresponding to 40 km depth.This is attributed to subduction of these rocks before collision between the overriding arc-related Areachap Terrane,the Kaaien Terrane and the Kaapvaal-Rehoboth cratonic block during the Namaqua orogeny.Exhumation of the garbenschiefer slabs was followed by rapid cooling,as the 11435 Ma argon dates of hornblende and white mica,with closure temperatures^540C and^440C respectively,are the same within error.This was probably due to tectonic juxtaposition of the garbenschiefer slab with much cooler rock units.The exhumation was accommodated along the Trooilapspan-Brakbosch Shear Zone due to ongoing transpression.Other components of the Namaqua Front have distinctly different P-T-t paths,exemplified by greenschist metamorphism in the 1300 Ma Wilgenhoutsdrift Group,and medium-pressure metamorphism in the Areachap Terrane.They were juxtaposed by late-tectonic uplift and transpressional movements.The^40 km depth of garbenschiefer peak metamorphism is the deepest yet found in the Namaqua-Natal Province and strengthens the plate tectonic model of accretion by collision of terranes at the end of a Wilson cycle.The high pressure paragenesis of the garbenschiefer was preserved due to its location in the Namaqua Front,whereas most other parts of the Namaqua-Natal Province were overprinted by 1100–1020 Ma thermal events after the collision events.  相似文献   

19.
段亮 《地质通报》2010,29(1):70-78
对喜马拉雅前陆盆地和孟加拉海扇中各地层的碎屑白云母40Ar/39Ar资料的系统分析揭示了喜马拉雅造山带自印度-欧亚板块碰撞开始造山以来的整个剥落历史: 剥落速率开始较为稳定,然后开始上升,在22Ma左右达到峰值,为4~5mm/a,随后急剧下降,最终以2mm/a的速率保持平稳。喜马拉雅造山带与青藏高原周缘剥落历史的对比约束了印度-欧亚板块碰撞造成青藏高原东缘和北缘的不同反应方式。即开始时的挤压主要被青藏高原北缘的大规模左旋走滑吸收, 到30Ma左右,喜马拉雅造山带冷却、剥落速率显著增强,北缘左旋走滑造成的柴达木地块的向东运动被华北板块阻挡而停滞,因此在北缘发生了一些重要的冷却和抬升剥落事件。至18Ma左右,喜马拉雅造山带的冷却、剥落速率继续增高并维持在较高水平,而该时间段内无论是北缘还是东缘,均未发生显著的抬升剥落事件,因此青藏高原的整体隆升和地壳增厚可能发生在此期间。中新世末—上新世初开始至今,青藏高原东缘龙门山地区发生了一些显著的抬升剥落事件,导致了大量的山崩和河流侵蚀,即此时来自喜马拉雅的挤压主要被青藏高原向东方向的地壳逃逸所吸收。  相似文献   

20.
Based on the new data of isotopic ages and geochemical analyses, three types of Mesozoic granites have been identified for the Xiong'ershan-Waifangshan region in western Henan Province: high-Ba-Sr I-type granite emplaced in the early stage (~160 Ma), I-type granite in the middle stage (~130 Ma) and anorogenic A-type granite in the late stage (~115 Ma).Geochemical characteristics of the high-Ba-Sr I-type granite suggest that it may have been generated from the thickened lower crust by partial melting with primary residues of amphibole and garnet. Gradual increase of negative Eu anomaly and Sr content variations reflect progressive shallowing of the source regions of these granites from the early to late stage. New 40Ar/39Ar plateau ages of the early-stage Wuzhangshan granite (156.0±1.1 Ma, amphibole) and middle-stage Heyu granite (131.8±0.7 Ma, biotite) are indistinguishable from their SHRIMP U-Pb ages previous published, indicating a rapid uplift and erosion in this region. The representative anorogenic A-type granite, Taishanmiao pluton, was emplaced at ~115 Ma. The evolution of the granites in this region reveals a tectonic regime change from post-collisional to anorogenic between ~160 Ma and ~115 Ma. The genesis of the early- and middle-stage I-type granites could be linked to delamination of subducted lithosphere of the Qinling orogenic belt, while the late-stage A-type granites represent the onset of extension and the end of orogenic process. In fact, along the Qinling -Dabie-Sulu belt, the Mesozoic granitoids in western Henan, Dabieshan and Jiaodong regions are comparable on the basis of these temporal evolutionary stages and their initial 87Sr/86Sr ratios,which may suggest a similar geodynamic process related to the collision between the North China and Yangtze cratons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号