首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Californian Mono Lake Basin (MLB) is a fragile ecosystem, for which a 1983 ruling carefully balanced water diversions with ecological needs without the consideration of global climate change. The hydroclimatologic response to the impact of projected climatic changes in the MLB has not been comprehensively assessed and is the focus of this study. Downscaled temperature and precipitation projections from 16 Global Climate Models (GCMs), using two emission scenarios (B1 and A2), were used to drive a calibrated Soil and Water Assessment Tool (SWAT) hydrologic model to assess the effects on streamflow on the two significant inflows to the MLB, Lee Vining and Rush Creeks. For the MLB, the GCM ensemble output suggests significant increases in annual temperature, averaging 2.5 and 4.1 °C for the B1 and A2 emission scenarios, respectively, with concurrent small (1–3 %) decreases in annual precipitation by the end of the century. Annual total evapotranspiration is projected to increase by 10 mm by the end of the century for both emission scenarios. SWAT modeling results suggest a significant hydrologic response in the MLB by the end of the century that includes a) decreases in annual streamflow by 15 % compared to historical conditions b) an advance of the peak snowmelt runoff to 1 month earlier (June to May), c) a decreased (10–15 %) occurrence of ‘wet’ hydrologic years, and d) and more frequent (7–22 %) drought conditions. Ecosystem health and water diversions may be affected by reduced water availability in the MLB by the end of the century.  相似文献   

2.
利用1961--2010年江西省26个气象站逐日气温和降水资料,研究分析鄱阳湖生态经济区历史气候变化事实;基于“中国地区气候变化预估数据集”(Version3.0)2014--2100年数据,预估未来不同RCP情景下区域气温和降水变化。结果表明,鄱阳湖生态经济区气温呈现显著上升趋势,升温趋势高于江西全省;降水强度呈增强趋势。未来气温依然呈现为上升趋势,如果从现在开始及时有效地采取应对措施,气温的上升趋势将在2040年后得到缓解。如果长时间存在高能源需求及高温室气体排放,则未来降水年际变化更大,极端降水事件发生将更为频繁。  相似文献   

3.
Observed climate variability and change in Urmia Lake Basin, Iran   总被引:2,自引:2,他引:2  
This paper analyzes climate variability and change in the Urmia Lake Basin, northwest of Iran. Annual average of the following data time series has been analyzed by statistical methods: dry bulb temperature, maximum and minimum temperature, precipitation, and number of rainy and snowy days. We have also used mean monthly temperature and precipitation data for analysis of drought spells for the period 1964–2005 to find out whether fluctuations in the lake level are attributable to natural drought. Our results indicate that mean precipitation has decreased by 9.2 % and the average maximum temperature has increased by 0.8°C over these four decades. The seasonal changes are particularly visible in winter and spring. Results of the Palmer Drought Severity Index show that on average, drought episodes have hit the Urmia Lake Basin every 5 years and most of them reached severe levels, but recent droughts have become more intense and last longer.  相似文献   

4.
The economics and crowded cities of north China play important roles in China’s overall economic development. Streamflow is a hot issue in ecohydrological studies, and research into changes in streamflow in north China is of great significance. In this study, the sensitivities of streamflow to the aridity index, precipitation, and potential evapotranspiration are evaluated to assess the impact of climatic variation in streamflow in north China. The results show that the average coefficient of sensitivity of streamflow to aridity index is ?2.24, and streamflow would decrease by 22.4 % with a 10 % increase in the aridity index. The average coefficients of sensitivity of streamflow to precipitation and potential evapotranspiration are 3.21 and ?2.21, respectively. A 10 % increase in precipitation or potential evapotranspiration would induce a 32.1 % increase or a 22.1 % decrease of streamflow, respectively. Basins with low streamflows would be more sensitive to climatic variation than basins with high streamflows.  相似文献   

5.
Theoretical and Applied Climatology - In this study, we investigated the consequences of climate change on bioclimatic indices in vineyards along the edge of Lake Neuchatel in Switzerland. Like in...  相似文献   

6.
基于江西79个气象站1961-2010年逐日气温和降水观测资料,采用滑动t检验和Mann-kendell法对鄱阳湖流域年平均气温进行突变检验分析,利用线性回归方法分别对鄱阳湖流域气温、降水量、降水日数、降水强度等要素的变化趋势进行了分析。结果表明:(1)1961-2010年鄱阳湖流域年平均气温为18.0℃,升温趋势明显,升温率达0.16℃/(10 a),在1996年出现显著突变。冬季升温趋势最明显,夏季气温虽呈上升趋势,但不显著。(2)流域平均年降水量为1643 mm,呈略增多趋势。20世纪60-80年代和21世纪00年代降水量偏少,90年代降水量相对偏多。最大年降水量出现在1975年,为2149.6 mm;最小年降水量出现在1963年,为1111.6 mm。(3)流域年降水日数总体呈现下降趋势,下降率约为6.9 d/(10 a)。其中,小雨日数下降最为显著,下降率约为7.1 d/(10 a);中雨日数呈略下降趋势;大雨和暴雨日数呈现略增加趋势。(4)流域年降水强度总体呈现上升趋势,每10 a上升约0.52 mm/d,说明流域降水集中度增大,强降水事件增多。  相似文献   

7.
8.
利用博斯腾湖流域开都河、黄水沟和清水河的出山口水文站月径流量和气象站月平均数据,开展变化特征分析和径流变化对气候因子的响应研究。结果表明,博斯腾湖流域年际气候变化以气温上升为主,降水量增加趋势不显著;域内主要河流径流量持续上升。突变检验发现,三条入湖河流90年代之前径流量增加主要是域内降水量增加的结果,随后受气温上升导致冰雪消融加快也对径流量的增加有贡献。相关分析结果显示,博斯腾湖三条入湖河流年径流量变化主要受4月和7月降水因子影响。此外,开都河的径流变化还表现出对8月气温和降水的显著响应,同时开都河流域集水区冰川的面积和占比均大于黄水沟和清水河流域,这表明冰川融水补给对开都河径流的影响大于黄水沟和清水河。所建立的气候因子-径流量多元线性回归模型,能够很好的模拟开都河、黄水沟和清水河的径流变化过程,证明了博斯腾湖流域水文变化受气候因子的显著影响。  相似文献   

9.
2022年夏秋季鄱阳湖流域发生了历史罕见的气象干旱事件,科学分析此次干旱过程气象要素特征和干旱发展演变对开展干旱预报预警以及防旱抗旱具有重要意义。利用鄱阳湖流域内87个国家站1961—2022年的逐日降水量、气温和蒸发资料,应用本地化的综合气象干旱指数,分析此次干旱过程的主要气象要素异常特征和气象干旱发展演变。结果表明:2022年夏秋季,鄱阳湖流域及其五大支流平均降水量为1961年以来同期最少;平均气温和高温日数为同期新高或次高,多站极端最高气温创新高;各流域蒸发量远远大于降水量,且秋季降水蒸发差大于夏季;流域各地出现了夏秋连旱,且秋旱重于伏旱,其中9—10月全流域出现重旱或特旱。  相似文献   

10.
Climate change signals in Saudi Arabia are investigated using the surface air temperature (SAT) data of 19 meteorological stations, well distributed across the country. Analyses are performed using cumulative sum, cumulative annual mean, and the Mann–Kendall rank statistical test for the period of 1978–2010. A notable change in SAT for the majority of stations is found around 1997. The results show a negative temperature trend (cooling) for all stations during the first period (1978–1997), followed by a positive trend (warming) in the second period (1998–2010) with reference to the entire period of analysis. The Mann–Kendall test confirms that there is no abrupt cooling at any station during the analysis period, reflecting the warming trend across the country. The warming trend is found to be 0.06 °C/year, while the cooling trend is 0.03 °C/year, which are statistically significant.  相似文献   

11.
Theoretical and Applied Climatology - Investigation of the impact of climate change on water resources is very necessary in dry and arid regions. In the first part of this paper, the climate model...  相似文献   

12.
Climate change will affect future flow and thermal regimes of rivers. This will directly affect freshwater habitats and ecosystem health. In particular fish species, which are strongly adapted to a certain level of flow variability will be sensitive to future changes in flow regime. In addition, all freshwater fish species are exotherms, and increasing water temperatures will therefore directly affect fishes’ biochemical reaction rates and physiology. To assess climate change impacts on large-scale freshwater fish habitats we used a physically-based hydrological and water temperature modelling framework forced with an ensemble of climate model output. Future projections on global river flow and water temperature were used in combination with current spatial distributions of several fish species and their maximum thermal tolerances to explore impacts on fish habitats in different regions around the world. Results indicate that climate change will affect seasonal flow amplitudes, magnitude and timing of high and low flow events for large fractions of the global land surface area. Also, significant increases in both the frequency and magnitude of exceeding maximum temperature tolerances for selected fish species are found. Although the adaptive capacity of fish species to changing hydrologic regimes and rising water temperatures could be variable, our global results show that fish habitats are likely to change in the near future, and this is expected to affect species distributions.  相似文献   

13.
14.
鄱阳湖水体淹没模型研究   总被引:3,自引:0,他引:3       下载免费PDF全文
根据丰水季鄱阳湖流域降水对鄱阳湖水位的影响研究, 建立鄱阳湖水位变化降水预测模型;并利用近10年卫星遥感对鄱阳湖水域面积的监测及相应时相鄱阳湖水位资料的分析, 研究出丰水季鄱阳湖水体淹没模型, 解决了洪水季, 云天状况下, 气象卫星难以监测下垫面洪涝灾害的难题。通过对鄱阳湖水体淹没模型进行模拟验证, 结果表明, 鄱阳湖实施退田还湖以后, 湖体水面模拟结果与遥感测算值相对误差为0.9%~3.6%, 模拟效果好。  相似文献   

15.
Under the impacts of climate variability and human activities, there are statistically significant decreasing trends for streamflow in the Yellow River basin, China. Therefore, it is crucial to separate the impacts of climate variability and human activities on streamflow decrease for better water resources planning and management. In this study, the Qinhe River basin (QRB), a typical sub-basin in the middle reach of the Yellow River, was chosen as the study area to assess the impacts of climate variability and human activities on streamflow decrease. The trend and breakpoint of observed annual streamflow from 1956 to 2010 were identified by the nonparametric Mann–Kendall test. The results showed that the observed annual streamflow decreased significantly (P?<?0.05) and a breakpoint around 1973 was detected. Therefore, the time series was divided into two periods: “natural period” (before the breakpoint) and “impacted period” (after the breakpoint). The observed annual streamflow decreased by 68.1 mm from 102.3 to 34.2 mm in the two periods. The climate elasticity method and hydrological model were employed to separate the impacts of climate variability and human activities on streamflow decrease. The results indicated that climate variability was responsible for 54.1 % of the streamflow decrease estimated by the climate elasticity method and 59.3 % estimated by the hydrological modeling method. Therefore, the climate variability was the main driving factor for streamflow decrease in the QRB. Among these driving factors of natural and anthropogenic, decrease in precipitation and increase in water diversion were the two major contributions of streamflow reduction. The finding in this study can serve as a reference for regional water resources management and planning.  相似文献   

16.
17.
刘松楠  汪君 《大气科学学报》2020,43(6):1031-1041
根据DELWARE温度和降水数据、GLDAS蒸散发数据和湄公河干流9个水文站的实测径流,采用回归分析、均值T检验和低通滤波,分析了该流域气候和径流在1950-2017年间的变化情况,经分析表明流域内气候和径流在研究时段内有较大变化,而且在不同的月份呈现不同的变化特征。流域年平均温度整体呈增加趋势,2008年后的平均温度相对2008年前平均温度有显著增加;流域年平均降水的变化幅度不大;流域平均蒸散发在12月-次年2月呈下降趋势,其他月份呈增加趋势,2008-2017年月平均蒸散发与1950-2007年月平均蒸散发相比大幅提升,尤其是在6-10月;湄公河流域年径流没有显著变化,但径流在12月-次年4月呈上升趋势,7-10月呈下降趋势,其中,上升趋势比下降趋势显著,1-4月径流上升趋势在2008年之后更为显著;最小径流在2008年后有显著增加趋势,最大径流在2008年后呈下降趋势;年流量逆转次数自20世纪90年代起有明显升高趋势。通过比较温度、降水、蒸散发和径流在不同时间段的变化情况,可以看出径流在2008年后变化趋势和气候自然变化关系不显著,但可能跟大坝蓄水能力显著提高等人为活动有较大关系。  相似文献   

18.
The Taoer River, a representative ecologically sensitive area in Northeast China, has undergone great climate changes and rapid social developments since 1961. Subsequently, a substantial alteration of the streamflow regime was observed and severe eco-environmental problems were becoming prominent. To provide decision makers the scientific basis for effective resource management and sound future planning, it is crucial to understand and assess the impacts of the climate variability and human activities on streamflow in this region. In this study, we combined an observation-based statistical analysis and physical modeling experiments to address this broad question. The Mann–Kendall and Sen’s slope were used to examine the trends and the moving t test was used to identify change points for the streamflow, precipitation, and potential evapotranspiration datasets. A statistically significant upward trend (α?=?5 %) was found for annual streamflow. An abrupt change point was identified in 1985 for the basin outlet station at Taonan. Accordingly, the streamflow was divided into baseline and changed period for attribution analysis. To investigate the impacts of climate change and human activities on annual streamflow, we applied a distributed hydrological model and six Budyko-type functions during the two periods. The results indicated that climate change and human activities accounted for about 45 and 55 % of the changes in streamflow, respectively.  相似文献   

19.
Summary A methodology is developed and applied to the area of Lake Balaton and its drainage basin, a region of Western Hungary, to estimate the space-time distribution of daily precipitation under climate change. Lake Balaton is the largest lake in Central and Western Europe; it has a central location in the country and its drainage basin covers about the 20% of Hungary (together with the Sió Canal). The methodology is based on an analysis of the semi-Markovian properties of atmospheric macrocirculation pattern types (MCP), and a stochastic linkage between daily (here 700 hPa) MCP types and daily precipitation events. Historical data and General Circulation Model (GCM) output of daily MCP corresponding to 1 · CO2 and 2 · CO2 scenarios are considered in this study. Time series of both local and areal precipitation corresponding for both scenarios are simulated and their statistical properties are compared. For the temperate continental climate of Western Hungary a slightly variable spatial response to climate change is obtained. Under 2 · CO2 conditions most of the local and the areal average precipitation suggests, a somewhat dryer precipitation regime in Western Hungary. The sensitivity of the results to the GCM utilized should be considered.With 10 Figures  相似文献   

20.
The response of Lake Tahoe to climate change   总被引:2,自引:0,他引:2  
Meteorology is the driving force for lake internal heating, cooling, mixing, and circulation. Thus continued global warming will affect the lake thermal properties, water level, internal nutrient loading, nutrient cycling, food-web characteristics, fish-habitat, aquatic ecosystem, and other important features of lake limnology. Using a 1-D numerical model—the Lake Clarity Model (LCM) —together with the down-scaled climatic data of the two emissions scenarios (B1 and A2) of the Geophysical Fluid Dynamics Laboratory (GFDL) Global Circulation Model, we found that Lake Tahoe will likely cease to mix to the bottom after about 2060 for A2 scenario, with an annual mixing depth of less than 200 m as the most common value. Deep mixing, which currently occurs on average every 3–4 years, will (under the GFDL B1 scenario) occur only four times during 2061 to 2098. When the lake fails to completely mix, the bottom waters are not replenished with dissolved oxygen and eventually dissolved oxygen at these depths will be depleted to zero. When this occurs, soluble reactive phosphorus (SRP) and ammonium-nitrogen (both biostimulatory) are released from the deep sediments and contribute approximately 51 % and 14 % of the total SRP and dissolved inorganic nitrogen load, respectively. The lake model suggests that climate change will drive the lake surface level down below the natural rim after 2085 for the GFDL A2 but not the GFDL B1 scenario. The results indicate that continued climate changes could pose serious threats to the characteristics of the Lake that are most highly valued. Future water quality planning must take these results into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号