首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Visible-range absorption bands at 600–750 nm were recently detected on two Edgeworth-Kuiper Belt (EKB) objects (Boehnhardt et al., 2002). Most probably the spectral features may be attributed to hydrated silicates originated in the bodies. We consider possibilities for silicate dressing and silicate aqueous alteration within them. According to present models of the protoplanetary disk, the temperatures and pressures at the EKB distances (30–50 AU) at the time of formation of the EKB objects (106 to 108 yr) were very low (15–30 K and 10-9–10-10 bar). At these thermodynamic conditions all volatiles excluding hydrogen, helium and neon were in the solid state. An initial mass fraction of silicates (silicates/(ices + dust)) in EKB parent bodies may be estimated as 0.15–0.30. Decay of the short-lived 26Al in the bodies at the early stage of their evolution and their mutual collisions (at velocities ≥1.5 km s-1) at the subsequent stage were probably two main sources of their heating, sufficient for melting of water ice. Because of the former process, large EKB bodies (R ≥ 100 km) could contain a large amount of liquid water in their interiors for the period of a few 106 yr. Freezing of the internal ocean might have begun at ≈ 5 × 106 yr after formation of the solar nebula (and CAIs). As a result, aqueous alteration of silicates in the bodies could occur. A probable mechanism of silicate dressing was sedimentation of silicates with refractory organics, resulting in accumulation of large silicate-rich cores. Crushing and removing icy covers under collisions and exposing EKB bodies' interiors with increased silicate content could facilitate detection of phyllosilicate spectral features.  相似文献   

2.
The extinction curves for spherical particles are subject to the errors of the particle material's refractive index. Their sensitivity to these errors has been investigated and is found to be dependent upon wavelength. For graphite, significant errors are produced in the far ultraviolet part of the extinction curve; for silicates, in the near ultraviolet; while for iron the error is relatively small. The wavelength dependence of the 10 μm and 20 μm absorption bands of small silicate spheroids upon their shape and alignment has been studied. It is found that the bands can be displaced by ~1 μm towards longer wavelengths from their positions for corresponding spheres: and that a further, though small, displacement can be superimposed upon this by their subsequent alignment.  相似文献   

3.
The distinct patterns, relatively low intensities and peak positions of overtone-combination bands of silicates and oxides suggest that the 5–8 μm spectral region can provide clues for the dust composition when near optically thick conditions exist for the 10-μm silicate feature. We present 1000–2500 cm−1 room-temperature laboratory spectra obtained from powders of silicate, aluminate and nitride minerals and silicate glasses. The spectra exhibit overtone absorption bands with mass absorption coefficients ∼100 times weaker than the fundamentals. These data are compared with the 5–8 μm spectra of deeply embedded young stellar objects observed with the Short Wavelength Spectrometer on the Infrared Space Observatory . Fits of the laboratory data to the observations, after subtraction of the 6.0-μm H2O ice feature and the 6.0-μm feature identified with organic refractory material, indicate that crystalline melilite (a silicate) or metamict hibonite (a radiation-damaged crystalline aluminate) may be responsible for much of the 6.9-μm absorption feature in the observations, with melilite providing the best match. A weaker 6.2-μm absorption in the young stellar object spectra is well matched by the spectra of hydrous crystalline amphibole silicates (actinolite and tremolite). Relative abundances of Si–O in room-temperature amphiboles to low-temperature H2O ice are in the range 0.46–3.9 and in melilite are in the range 2.5–8.6. No astronomical feature was matched by the overtones of amorphous silicates because these bands are too broad and peak at the wrong wavelength. Hence, this analysis is consistent with the 10-μm features of these objects being due to a mixture of crystalline and amorphous silicates, rather than only amorphous silicates.  相似文献   

4.
Spectroscopy at 8–13 μm with T-ReCS on Gemini-S is presented for three galaxies with substantial silicate absorption features, NGC 3094, NGC 7172 and NGC 5506. In the galaxies with the deepest absorption bands, the silicate profile towards the nuclei is well represented by the emissivity function derived from the circumstellar emission from the red supergiant, μ Cephei which is also representative of the mid-infrared absorption in the diffuse interstellar medium in the Galaxy. There is spectral structure near 11.2 μm in NGC 3094 which may be due to a component of crystalline silicates. In NGC 5506, the depth of the silicate absorption increases from north to south across the nucleus, suggestive of a dusty structure on scales of tens of parsecs. We discuss the profile of the silicate absorption band towards galaxy nuclei and the relationship between the 9.7-μm silicate and 3.4-μm hydrocarbon absorption bands.  相似文献   

5.
Abstract— The mid-infrared (4000–450 cm?1; 2.5–22.2 μm) transmission spectra of seven Antarctic ureilites and 10 Antarctic H-5 ordinary chondrites are presented. The ureilite spectra show a number of absorption bands, the strongest of which is a wide, complex feature centered near 1000 cm?1 (10 μm) due to Si-O stretching vibrations in silicates. The profiles and positions of the substructure in this feature indicate that Mg-rich olivines and pyroxenes are the main silicates responsible. The relative abundances of these two minerals, as inferred from the spectra, show substantial variation from meteorite to meteorite, but generally indicate olivine is the most abundant (olivine:pyroxene = 60:40 to 95:5). Both the predominance of olivine and the variable olivine-to-pyroxene ratio are consistent with the known composition and heterogeneity of ureilites. The H-5 ordinary chondrites spanned a range of weathering classes and were used to provide a means of addressing the extent to which the ureilite spectra may have been altered by weathering processes. It was found that, while weathering of these meteorites produces some weak bands due to the formation of small amounts of carbonates and hydrates, the profile of the main silicate feature has been little affected by Antarctic exposure in the meteorites studied here. The mid-infrared ureilite spectra provide an additional means of testing potential asteroidal parent bodies for the ureilites. At present, the best candidates include the subset of S-type asteroids having low albedos and weak absorption features in the near infrared.  相似文献   

6.
Silicates are one of the principal components present in Solar System objects.Silicates evolve in space modifying their physical properties according to theastronomical environments they go through. To characterise the nature of TNOsin the framework of the formation and evolution of the Solar System, experimentson structural transitions of silicates have been performed in the laboratoryto simulate some of the processing suffered by the dust. The infrared spectralproperties of possible silicate candidates thought to be present in TNOs have beenstudied. The results of thermal annealing of amorphous silicates and amorphisationof crystalline forsterite (pure-Mg olivine) by ion irradiation are presented. Theobservable properties of TNOs surfaces are inferred.  相似文献   

7.
We report spectroscopy of Comet C/1991 T1 (McNaught-Hartley) at 3-13 μm on January 31.62 and February 1.7 2001 UT (delta=1.29 AU, r=1.40 AU) using the broadband array spectrograph system on the IRTF. The spectrum showed a silicate emission feature extending about 20% above the continuum. Two emission features at 10.3 and 11.2 μm appeared above the silicate band, the latter seemingly indicative of crystalline olivine. The 10.3-μm feature is only a 1-2 sigma detection but if real could indicate the presence of hydrated silicates. The color temperature at 8-13 μm was 260±10 K, approximately 6% above the blackbody radiative equilibrium temperature of 235 K. The magnitude at [N] was 3.13±0.02. On the second night, the comet had brightened slightly ([N]=2.98±0.02) and the two prominent emission features were absent, although the silicate emission feature maintained its trapezoidal shape with shoulders at 9.5 and 11.2 μm.  相似文献   

8.
Abstract– Oxygen three‐isotope ratios of three anhydrous chondritic interplanetary dust particles (IDPs) were analyzed using an ion microprobe with a 2 μm small beam. The three anhydrous IDPs show Δ17O values ranging from ?5‰ to +1‰, which overlap with those of ferromagnesian silicate particles from comet Wild 2 and anhydrous porous IDPs. For the first time, internal oxygen isotope heterogeneity was resolved in two IDPs at the level of a few per mil in Δ17O values. Anhydrous IDPs are loose aggregates of fine‐grained silicates (≤3 μm in this study), with only a few coarse‐grained silicates (2–20 μm in this study). On the other hand, Wild 2 particles analyzed so far show relatively coarse‐grained (≥ few μm) igneous textures. If anhydrous IDPs represent fine‐grained particles from comets, the similar Δ17O values between anhydrous IDPs and Wild 2 particles may imply that oxygen isotope ratios in cometary crystalline silicates are similar, independent of crystal sizes and their textures. The range of Δ17O values of the three anhydrous IDPs overlaps also with that of chondrules in carbonaceous chondrites, suggesting a genetic link between cometary dust particles (Wild 2 particles and most anhydrous IDPs) and carbonaceous chondrite chondrules.  相似文献   

9.
The refractive indices of graphite, silicate and iron, which are believed to be candidates for interstellar dust grains, are shown to exhibit large experimental uncertainties. The Mie scattering theory has been used to demonstrate how errors in the refractive indices are manifested in the extinction curves for small spheres in the wavelength range from 0.1 μm to 2 μm. It is found that the transmitted errors in the extinction curves are wavelength dependent: for graphite, significant errors occur in the far ultraviolet part of the extinction curve; for silicates, in the near ultraviolet; while for iron the error is relatively small in the wavelength range considered.  相似文献   

10.
《Planetary and Space Science》1999,47(6-7):781-785
Amorphous silicate dust grains have been produced in the laboratory by means of laser ablation of solid targets in different ambient atmospheres. In this work we show that, if the condensation occurs in the presence of hydrogen, the spectra of silicate grains, together with the characteristic 10 and 20 μm features, exhibit an absorption band around 4.6 μm. Such features, absent in the spectra of the same silicate grains produced in an oxygen atmosphere, may be attributed to a fundamental stretching vibration of –SiH functional groups bound into the grains or on their surface.Based on the cosmic abundance of the elements, silicates are expected to condense in the atmospheres of oxygen-rich stars where hydrogen is also abundant. This means that –SiH functional groups may be present also in the circumstellar and interstellar silicate dust grains. An absorption feature at 4.6 μm has already been observed in the absorbing dust of several protostellar embedded sources. The observation of a similar feature in comets can give important information on the origin and evolution of cometary material. © 1999 Elsevier Science Ltd. All rights reserved.  相似文献   

11.
Absorption bands near 0.43 and 0.60–0.80 m, with a relative intensity of approximately 5–10%, were discovered in the reflectance spectra of five M asteroids (21, 75, 161, 201, and 497) and two S asteroids (11 and 198). It is highly probable that these absorption bands are related to oxidized and/or hydrated silicates that incorporate OH structural groups. Absorbed water in the surface material of about 24% of the known M asteroids and three E asteroids has been identified by a group of astronomers at the University of Arizona (Rivkin et al., 1995; Rivkin, 1997; Rivkin et al., 2000) on the basis of the characteristic 3-m absorption band. In addition to this, four of the six E-type asteroids observed spectrally in the visible region quite recently were found to have an absorption band at 0.5 m (Burbine et al., 1998; Fornasier and Lazzarin, 2001), which could likewise be associated with the presence of hydrated silicates in their material. The above data contradict the generally accepted viewpoint on the nature of M, S, and E asteroids, which is based on their common observed characteristics as bodies that arose at high temperatures (in the 1000–2000°C range). This contradiction, however, can be eliminated if use is made of the cosmogonic model developed by V.S. Safronov and co- workers. According to this model, the initial evolution of the main-belt asteroids was directly influenced by the process of the growth of Jupiter and was later controlled by its gravitational field.  相似文献   

12.
E.A. Cloutis  P. Hudon  T. Hiroi  M.J. Gaffey 《Icarus》2012,217(1):389-407
Powdered samples of a suite of 14 CR and CR-like chondrites, ranging from petrologic grade 1 to 3, were spectrally characterized over the 0.3–2.5 μm interval as part of a larger study of carbonaceous chondrite reflectance spectra. Spectral analysis was complicated by absorption bands due to Fe oxyhydroxides near 0.9 μm, resulting from terrestrial weathering. This absorption feature masks expected absorption bands due to constituent silicates in this region. In spite of this interference, most of the CR spectra exhibit absorption bands attributable to silicates, in particular an absorption feature due to Fe2+-bearing phyllosilicates near 1.1 μm. Mafic silicate absorption bands are weak to nonexistent due to a number of factors, including low Fe content, low degree of silicate crystallinity in some cases, and presence of fine-grained, finely dispersed opaques. With increasing aqueous alteration, phyllosilicate: mafic silicate ratios increase, resulting in more resolvable phyllosilicate absorption bands in the 1.1 μm region. In the most phyllosilicate-rich CR chondrite, GRO 95577 (CR1), an additional possible phyllosilicate absorption band is seen at 2.38 μm. In contrast to CM spectra, CR spectra generally do not exhibit an absorption band in the 0.65–0.7 μm region, which is attributable to Fe3+–Fe2+ charge transfers, suggesting that CR phyllosilicates are not as Fe3+-rich as CM phyllosilicates. CR2 and CR3 spectra are uniformly red-sloped, likely due to the presence of abundant Fe–Ni metal. Absolute reflectance seems to decrease with increasing degree of aqueous alteration, perhaps due to the formation of fine-grained opaques from pre-existing metal. Overall, CR spectra are characterized by widely varying reflectance (4–21% maximum reflectance), weak silicate absorption bands in the 0.9–1.3 μm region, overall red slopes, and the lack of an Fe3+–Fe2+ charge transfer absorption band in the 0.65–0.7 μm region.  相似文献   

13.
High resolution spectroscopic observations of asteroid 2 Pallas from 1.7-3.5 μm are reported. These data are combined with previous measurements from 0.4-1.7 μm to interpret Pallas' surface mineralogy. Evidence is found for low-Fe2+ hydrated silicates, opaque components, and low-Fe2+ anhydrous silicates. This assemblage is very similar to carbonaceous chondrite matrix material such as is found in type CI and CM meteorites, but it has been subjected to substantial aqueous alteration and there is a major extraneous anhydrous silicate component. This composition is compared to that of asteroid 1 Ceres. Although there are substantial differences in their broad band spectral reflectances, it appears that both asteroids are genetically related to known carbonaceous chondrites.  相似文献   

14.
We discuss the composition and size distribution of the dust in the coma of Comet Hale-Bopp. We do this using a model fit for the infrared emission measured by the Infrared Space Observatory (ISO) and the measured degree of linear polarization of scattered light at various phase angles and wavelengths. The effects of particle shape on the modeled optical properties of the dust grains are taken into account. Both the short wavelength (7-44 μm) and the long wavelength (44-120 μm) infrared spectrum are fitted using the same dust parameters, as well as the degree of linear polarization at twelve different wavelengths in the optical to near-infrared domains. We constrain our fit by forcing the abundances of the major rock forming chemical elements to be equal to those observed in meteorites. The infrared spectrum at long wavelengths reveals that large grains are needed in order to fit the spectral slope. The size and shape distribution we employ allows us to estimate the sizes of the crystalline silicates. The ratios of the strength of various forsterite features show that the crystalline silicate grains in Hale-Bopp must be submicrometer-sized. On the basis of our analysis the presence of large crystalline silicate grains in the coma can be excluded. Because of this lack of large crystalline grains combined with the fact that we do need large amorphous grains to fit the emission spectrum at long wavelengths, we need only approximately 4% of crystalline silicates by mass (forsterite and enstatite) to reproduce the observed spectral features. After correcting for possible hidden crystalline material included in large amorphous grains, our best estimate of the total mass fraction of crystalline material is ∼7.5%, which is significantly lower than deduced in previous studies in which the typical derived crystallinity is ∼20-30%. The implications of this low abundance of crystalline material on the possible origin and evolution of the comet are discussed. We conclude that the crystallinity we observe in Hale-Bopp is consistent with the production of crystalline silicates in the inner Solar System by thermal annealing and subsequent radial mixing to the comet forming region (∼30 AU).  相似文献   

15.
In this paper methods and results of laboratory experiments for the investigation of the silicate component of interstellar dust are reviewed. In Section 2 basic properties expected for astronomically important interstellar silicates (AIIS) are discussed. Chemical constraints coming from the abundance of elements, from the depletion in the interstellar gas and from theoretical calculations of the condensation processes point to magnesium silicates. Some basic structural properties of interstellar silicates, the expected high degree of lattice disorder and spectral features expected for interstellar silicate grains are discussed. In Section 3 a review on laboratory investigations of AIIS is given. Physical and chemical methods for producing amorphous silicates are summarized. Important measurements of optical data for AIIS are listed. Spectral characteristics of amorphous silicates produced in order to simulate the interstellar dust silicates are discussed. From the comparison of the observed MIR silicate bands with those of the experimentally produced silicates it is concluded that at least two types of dust silicates exist in interstellar space: molecular-cloud silicate (suggested to be of pyroxene-type) and late-type star silicate (suggested to be of olivine-type). The mass absorption coefficient at the 10 m peak of both types of silicate grains amounts to 3000 cm2 g–1 and the ratio of 20 to 10 m peaks amounts to about 0.5. Finally, open questions in connection with laboratory experiments are mentioned and recommendations for future experiments are given.Paper presented at a Workshop on The Role of Dust in Dense Regions of Interstellar Matter, held at Georgenthal, G.D.R., in March 1986.  相似文献   

16.
A model representing the profile of the silicate absorption band at 9.8 μm in the spectra of BECKLIN -NEUGEBAUER objects has been developed, solving the equation of radiative transfer. The model based on the condition of radiative equilibrium, on an analytical temperature distribution and on the assumption of constant density in the circumstellar shell allows the evaluation of the optical depth in the band's centre and the investigation of the effect of the temperature variation at the inner boundary of the envelope. The optical depth in the band's centre ist calculated for the BN point source.  相似文献   

17.
Comets and the chondritic porous interplanetary dust particles (CP IDPs) that they shed in their comae are reservoirs of primitive solar nebula materials. The high porosity and fragility of cometary grains and CP IDPs, and anomalously high deuterium contents of highly fragile, pyroxene-rich Cluster IDPs imply these aggregate particles contain significant abundances of grains from the interstellar medium (ISM). IR spectra of comets (3–40 μm) reveal the presence of a warm (near-IR) featureless emission modeled by amorphous carbon grains. Broad andnarrow resonances near 10 and 20 microns are modeled by warm chondritic (50% Feand 50% Mg) amorphous silicates and cooler Mg-rich crystalline silicate minerals, respectively. Cometary amorphous silicates resonances are well matched by IRspectra of CP IDPs dominated by GEMS (0.1 μm silicate spherules) that are thought to be the interstellar Fe-bearing amorphous silicates produced in AGB stars. Acid-etched ultramicrotomed CP IDP samples, however, show that both the carbon phase (amorphous and aliphatic) and the Mg-rich amorphous silicate phase in GEMS are not optically absorbing. Rather, it is Fe and FeS nanoparticles embedded in the GEMS that makes the CP IDPs dark. Therefore, CP IDPs suggest significant processing has occurred in the ISM. ISM processing probably includes in He+ ion bombardment in supernovae shocks. Laboratory experiments show He+ ion bombardment amorphizes crystalline silicates, increases porosity, and reduces Fe into nanoparticles. Cometary crystalline silicate resonances are well matched by IR spectra of laboratory submicron Mg-rich olivine crystals and pyroxene crystals. Discovery of a Mg-pure olivine crystal in a Cluster IDP with isotopically anomalous oxygen indicates that a small fraction of crystalline silicates may have survived their journey from AGB stars through the ISM to the early solar nebula. The ISM does not have enough crystalline silicates (<5%), however, to account for the deduced abundance of crystalline silicates in comet dust. An insufficient source of ISMMg-rich crystals leads to the inference that most Mg-rich crystals in comets are primitive grains processed in the early solar nebula prior to their incorporation into comets. Mg-rich crystals may condense in the hot (~1450 K), inner zones of the early solar nebula and then travel large radial distances out to the comet-forming zone. On the other hand, Mg-rich silicate crystals may be ISM amorphous silicates annealed at ~1000 K and radially distributed out to the comet-forming zone or annealed in nebular shocks at ~5-10 AU. Determining the relative abundance of amorphous and crystalline silicatesin comets probes the relative contributions of ISM grains and primitive grains to small, icy bodies in the solar system. The life cycle of dust from its stardust origins through the ISM to its incorporation into comets is discussed.  相似文献   

18.
An overview is given of the PAH and crystalline silicate emissions seen in the SWS guaranteed-time programme on planetary nebulae. Of the 9 objects on which good continuum measurements were obtained above 29 μm, 7 show evidence of olivine emission at 33.5 μm. PAH emission is seen in 5 of these objects, 3 objects show both PAH's and olivines. The presence of both types of features in a single object points to separate carbon-rich and oxygen-rich episodes of mass ejection. The spectrum of the nebula NGC 6302 shows a wealth of features in the range between 20 and 45 μm, many of which can be identified with olivines or pyroxenes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
This paper reviews spectra obtained with the SWS on board of ISO of dust shells around O-rich objects. These spectra reveal the presence of many new emission features between 10 and 45 μm. These bands are generally much narrower than the well-known 10 and 20 μm silicates features. The strength of these features relative to the underlying broad continuum varies from source to source (≅ 5-50%). The 10 μm region shows evidence for the presence of Al2O3 grains. At longer wavelength, the spectra are dominated by features due to crystalline olivine and pyroxene. The exact peak position of these features shows that the emitting grains consist of the Mg-rich end-members of these minerals with an Fe-content of < 10%. The underlying continuum is attributed to amorphous silicate grains. These observations of aluminum-rich and magnesium-rich compounds compare well with the thermodynamic condensation sequence of minerals expected for O-rich outflows. The observations also imply that freeze out (ie., kinetics) of this condensation sequence at different temperatures is an important characteristic of dust formation in these objects. It is suggested that the absence of Fe-rich silicates is a natural consequence of the low temperature at which gaseous Fe reacts with Mg-rich silicates in these outflows, resulting in amorphous grains with little characterizing spectral detail. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The composition of the interstellar silicate dust is investigated. Condensation or alteration of silicate grains at temperatures of a few hundred degrees, in the presence of H2O, would result in hydrous or phyllosilicates, the silicate type most abundant in the type I carbonaceous chondrites. Infrared spectra of small particles (~0.1 μ) of the high temperature condensates, olivine and pyroxene, at 300 K and 4 K do not give a good match to the interstellar absorption band near 9.8 μ. Laboratory spectra of several phyllosilicates give better agreement as does the spectrum of a carbonaceous chondrite. We propose that the silicates in the interstellar grains are predominantly phyllosilicates and suggest additional spectral tests for this hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号