首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
We present the study of dust environment of dynamically new Comet C/2003 WT42 (LINEAR) based on spectroscopic and photometric observations. The comet was observed before and after the perihelion passage at heliocentric distances from 5.2 to 9.5 AU. Although the comet moved beyond the zone where water ice sublimation could be significant, its bright coma and extended dust tail evidenced the high level of physical activity. Afρ values exceeded 3000 cm likely reaching its maximum before the perihelion passage. At the same time, the spectrum of the comet did not reveal molecular emission features above the reflected continuum. Reddening of the continuum derived from the cometary spectrum is nonlinear along the dispersion with the steeper slop in the blue region. The pair of the blue and red continuum images was analyzed to estimate a color of the comet. The mean normalized reflectivity gradient derived from the innermost part of the cometary coma equals to 8% per 1000 Å that is typical for Oort cloud objects. However, the color map shows that the reddening of the cometary dust varies over the coma increasing to 15% per 1000 Å along the tail axis. The photometric images were fitted with a Monte Carlo model to construct the theoretical brightness distribution of the cometary coma and tail and to investigate the development of the cometary activity along the orbit. As the dust particles of distant comets are expected to be icy, we propose here the model, which describes the tail formation taking into account sublimation of grains along their orbits. The chemical composition and structure of these particles are assumed to correspond with Greenberg’s interstellar dust model of comet dust. All images were fitted with the close values of the model parameters. According to the results of the modeling, the physical activity of the comet is mainly determined by two active areas with outflows into the wide cones. The obliquity of the rotation axis of the nucleus equals to 20° relative to the comet’s orbital plane. The grains occupying the coma and tail are rather large amounting to 1 mm in size, with the exponential size distribution of a−4.5. The outflow velocities of the dust particles vary from a few centimeters to tens of meters per second depending on their sizes. Our observations and the model findings evidence that the activity of the nucleus decreased sharply to a low-level phase at the end of April–beginning of May 2007. About 190 days later, in the first half of November 2007 the nucleus stopped any activity, however, the remnant tail did not disappear for more than 1.5 years at least.  相似文献   

2.
By processing 494 observations of Comet Harrington–Abell, we obtained a unified system of elements that includes its turn around the Sun during which it closely approached Jupiter to a minimum distance of 0.037 AU in 1974. A study of the cometary orbit before and after the approach showed that, probably, at the approach of the comet to Jupiter, apart from the well-known gravitational perturbations, its motion was affected by an additional force. An improvement of the cometary orbit by assuming that an additional acceleration inversely proportional to the square of the distance to Jupiter exists in its motion yielded the following values: (4.57 ± 0.42) × 10–10 and (–7.20 ± 0.42) × 10–10 AU day–2 for the radial and transversal acceleration components, respectively. As a plausible explanation of the changes in the cometary orbit, we additionally considered a model based on the hypothesis of partial disintegration of the cometary nucleus. The parameter that characterizes the instant displacement of the center of inertia along the jovicentric radius vector was estimated to be –1.83 ± 0.75 km. Based on a unified numerical theory of cometary motion, we determined the nongravitational parameters using Marsden's model for two periods: A 1 = (11.68 ± 1.74) × 10–10 AU day–2, A 2 = (0.53 ± 0.0357) × 10–10 AU day–2 for 1975–1999 and A 1 = (5.92 ± 5.86) × 10–10 AU day–2, A 2 = (0.08 ± 0.028) × 10–10 AU day–2 for 1955–1969, under the assumption that the nongravitational acceleration changed at the approach of the comet to Jupiter.  相似文献   

3.
哈雷彗星在日彗距较大时出现长而直的主彗尾(尾流),这是很有趣的。尾流一般是指等离子体尾流;但是,当地球接近彗星轨道面时,尘埃尾流可能叠加到主彗尾上。在一般感光波段宽的彗星底片上很难区分这两种尾流。本文选取哈雷彗星在不同日彗距的5条主尾流,作了光度测量和比较分析。得出沿各尾轴及其垂直方向几个截面的亮度分布、亮度半极大全宽、尾轴的视风差角和真风差角及彗尾长度。在所分析的蓝敏底片上,过近日点前的2个尾流肯定是等离子体尾流,而5个尾流的相似性以及其他证据说明它们主要都是等离子体尾流,尘埃彗尾的污染是次要的。  相似文献   

4.
We present a simple, semianalytic model of the vaporization of H2O and HDO ice from a comet nucleus. We use this model to show that the flux of HDO relative to H2O can be much higher, at times, than would be expected from the D/H ratio in the nuclear ice itself. This effect varies with position in the comet's orbit. It is negligible sufficiently near the Sun but could lead to erroneous interpretations of the primordial D/H ratio in cometary ice if measurements are made in other parts of the cometary orbit.  相似文献   

5.
Cometary and solar wind data are compared with the purposeof identifying the solar wind conditions which are associated with comet plasma tail disconnection events (DEs),i.e., when the plasma tail appears disconnected from the cometaryhead. The cometary data are fromThe International Halley Watch Atlas ofLarge-Scale Phenomena (Brandt et al.,1992a). A systematic visual analysis of the atlas images(Voelzke and Matsuura, 1998)revealed, among other morphological structures, 47 DEs alongthe plasma tail of comet P/Halley. This work compares the current competitive theories, based on the triggeringmechanisms, in order to explain the cyclic phenomena of DEs, i.e., the ion production effects, the pressure effects and themagnetic reconnection effects are analysed. The distribution of the DEs in time or heliocentricdistance presents abimodal character possibly associated with the cometary passage through the magnetic sector boundaries in the interplanetary medium.The 47 DEs documented in 47 different images allowed the estimation of 19 onsets of DEs, i.e., the time when the cometsupposedly crossed a frontier between magnetic sectors of the solar wind. The solar wind data are taken from in situ measurements of IMP-8 (King, 1982), which is used to construct the actual variation of solarwind speed, density and dynamic pressureduring the analysed interval. These in situ measurements arereferenced to the comet by standard co-rotationmethods. The preliminary results ofthis research reveal that the DEs onsetsof comet P/Halley are correlated with pressureeffects only in 23% of the analysed cases,therefore these effects should not be the principaltriggering mechanism of DEs.  相似文献   

6.
We report the detection of Comet 67P/Churyumov-Gerasimenko's dust trail and nucleus in 24 μm Spitzer Space Telescope images taken February 2004. The dust trail is not found in optical Palomar images taken June 2003. Both the optical and infrared images show a distinct neck-line tail structure, offset from the projected orbit of the comet. We compare our observations to simulated images using a Monte Carlo approach and a dynamical model for comet dust. We estimate the trail to be at least one orbit old (6.6 years) and consist of particles of size ?100 μm. The neck-line is composed of similar sized particles, but younger in age. Together, our observations and simulations suggest grains 100 μm and larger in size dominate the total mass ejected from the comet. The radiometric effective radius of the nucleus is 1.87±0.08 km, derived from the Spitzer observation. The Rosetta spacecraft is expected to arrive at and orbit this comet in 2014. Assuming the trail is comprised solely of 1 mm radius grains, we compute a low probability (∼10−3) of a trail grain impacting with Rosetta during approach and orbit insertion.  相似文献   

7.
《Planetary and Space Science》1999,47(6-7):735-744
Understanding the power balance at the surface of the nucleus is essential to study the chemical and physical evolution of a comet. Therefore, we present a detailed energy budget analysis for the surface of a model comet in the orbit of 46P/Wirtanen, target comet of the European space craft mission Rosetta, for a variety of parameters and assumptions. We will show that for a fast spinning Jupiter-family comet such as 46P/Wirtanen with a rotation period of about 6 h, a fast rotator approximation underestimates the effective energy input. This yields lower gas fluxes from the surface. For an 100% active, non-dust covered surface we obtain a water gas flux on the order of about 1.5×1028 molecules s−1 at perihelion, assuming a radius of 600 m. The calculated gas flux of water is within the order of measured values for comet 46P/Wirtanen. But our calculated values are maximum gas fluxes at noon—not averaged over one cometary day or taking the lesser insolation at the polar areas into account. Therefore, we conclude that either the radius of comet 46P/Wirtanen may be much larger than the accepted value of 600 m. A radius in the order of 2 km seems more likely to explain the measurements. Or, an other possibility could be that water-ice particles are blown off from the surface like dust particles. This may also increase the effective surface area of sublimation.  相似文献   

8.
The plasma tails of comets C/2001 Q4 (NEAT) and C/2004 Q2 (Machholz) are investigated. For each comet we calculate the aberration angle, i.e., the angle between the cometary tail axis and the prolonged radius vector of the comet. The aberration angles are used to estimate the radial velocity of the solar wind in May 2004 and January–February 2005. The calculated velocities are compared to the solar wind velocities measured by space apparatuses in the circumterrestrial space. Possible causes of disagreement between these data are discussed  相似文献   

9.
Abstract— Using visual observations that were reported 140 years ago in the Comptes Rendus de l'Académie des Sciences de Paris, we have determined the atmospheric trajectory and the orbit of the Orgueil meteorite, which fell May 14, 1864, near Montauban, France. Despite the intrinsic uncertainty of visual observations, we were able to calculate a reasonably precise atmospheric trajectory and a moderately precise orbit for the Orgueil meteoroid. The atmosphere entry point was ?70 km high and the meteoroid terminal point was ?20 km high. The calculated luminous path was ?150 km with an entry angle of 20°. These characteristics are broadly similar to that of other meteorites for which the trajectory is known. Five out of six orbital parameters for the Orgueil orbit are well constrained. In particular, the perihelion lies inside the Earth's orbit (q ?0.87 AU), as is expected for an Earth‐crossing meteorite, and the orbital plane is close to the ecliptic (i ?0°). The aphelion distance (Q) depends critically on the pre‐atmospheric velocity. From the calculated atmospheric path and the fireball duration, which was reported by seven witnesses, we have estimated the pre‐atmospheric velocity to be larger than 17.8 km/sec, which corresponds to an aphelion distance Q larger than 5.2 AU, the semi‐major axis of Jupiter orbit. These results suggest that Orgueil has an orbit similar to that of Jupiter‐family comets (JFCs), although an Halley‐type comet cannot be excluded. This is at odds with other meteorites that have an asteroidal origin, but it is compatible with 140 years of data‐gathering that has established the very special nature of Orgueil compared to other meteorites. A cometary origin of the Orgueil meteorite does not contradict cosmochemistry data on CI1 chondrites. If CI1 chondrites originate from comets, it implies that comets are much more processed than previously thought and should contain secondary minerals. The forthcoming return of cometary samples by the Stardust mission will provide a unique opportunity to corroborate (or contradict) our hypothesis.  相似文献   

10.
Comet Grigg–Skjellerup must return to its perihelion on November 29, 2002. Before that, it will pass by Jupiter at a distance of 0.5 AU. A simulation of the meteor swarm that is related to this comet in origin has been made for 19 perihelia since 1907. Particles ejected from the nucleus at velocities ±40 m/s in the direction perpendicular to its radius vector are concentrated around the comet and do not approach the Earth, while for particles ejected at velocities ±60 m/s, conditions for the encounter with Jupiter are different; they approach Jupiter to a distance of 0.1 AU, then pass near the Earth's orbit at a distance of 0.01 AU. However, these particles have substantially different radiant coordinates and hardly form a flow of sufficient density.  相似文献   

11.
The theory of the Poynting-Robertson effect is applied to the motion of meteors relative to a parent-comet describing an undisturbed elliptic orbit. It is shown that initially any emitted particle proceeds to move retrogressively away from the comet to a certain maximum angular distance (as seen from the Sun) depending on its s-value, and thereafter undergoes relative motion in the opposite forward direction. The time taken to reach this greatest elongation behind the comet is the same for all particles, and after twice this time the particles will have returned to zero angular displacement relative to the comet. As the inward radial displacement is of far smaller order of magnitude, this means that a swarm of particles will come together again simultaneously, and then move on forwards relative to the comet as they are drawn in slowly towards the Sun. For comet Encke the time for the elongation to return to zero is about 6600 y, for Halley it is about 2×105 y, and for Tempel-Tuttle (1965 IV) just over 105 y. Since this last comet is known to have been deflected from a long-period orbit to a short-period orbit in the year 126 A.D., the theory yields an upper limit to the s-values of about 2.3×10–2 g cm–2 for such of its particles as have spread right round the orbit to give rise to the annual November Leonids. Also, for the great meteor-storms associated with this comet, the particles are still moving close behind the comet itself, and their s-values must be about 6.2×10–2 g cm–2. This result together with their observed brightnesses suggest that the particles have an effective density little more than 0.1 g cm–3.  相似文献   

12.
Photometric measurements of photographic images of comet C/1987 P1 Bradfield have been carried out with a flat-bed scanner equipped with a slide module. Lengthwise and transverse photometric profiles of the cometary plasma tail have been obtained. Magnetic field induction and some other physical characteristics of the cometary plasma tail observed in November 1987 have been estimated with the use of the diffusion model for a cometary tail by Shul’man and Nazarchuk (1968). It has been shown that the scanned images of comets can be used for estimating the physical characteristics of cometary tails.  相似文献   

13.
CCD images of comet P/Swift-Tuttle, obtained in April 1994 with the 2.2m telescope at ESO La Silla/Chile, showed a comaless stellar nucleus. From absolute photometry we estimated the equivalent radius of the cometary nucleus to be about 11 km (assuming an albedo of 0.04 as for P/Halley) for two rotation phase angles which differ by about 75 deg. From that we conclude that the nucleus is either of rather spherical shape or that the viewing geometry was almost pole-on during our observations.An analysis of the plasma tail and inner coma of the comet by means of photographic plates and CCD images through IHW and BVR filters, obtained with the 80cm Schmidt camera and the 1.2m telescope at Calar Alto/Spain in November 1992, revealed several tail rays, head streamers and substructures in brightness excess areas in the coma. While some of the tail rays extended to several million km nuclear distance, most of them can be traced to starting points which lie in a region just 20000–35000 km projected distance tailward from the nucleus.  相似文献   

14.
The varying overall nature of the solar wind interaction with the ionospheres of CO and CO2-dominated comets is investigated and compared with previous results for H2O-dominated comets. It is shown that as a comet approaches the sun, it may exhibit one of two types of ionospheric transitions. (In rare circumstances, the cometary ionosphere may display a third type of transition in addition to one of the first two). For both transitions, the ionosphere turns from being hard (in other words, the ionosphere is not susceptible to compression under sudden solar wind pressure increases) to soft. However, for one type of transition, the bow shock changes from being weak (M2) to being strong (M10), whereas for the other type of transition, the bow shock remains weak. The heliocentric distance at which these transitions may occur is found to be a function of the cometary nuclear radius, the latent heat of sublimation of the surface volatiles, the surface bolometric albedo and the following ionospheric properties: the optical depth, the average ionization time scale and the amount of heat addition. Two important consequences of the strong shocks are the large solar wind velocity modulation of the energization of electrons at the bow-shock and the relatively quick formation of cometary plasma tails.These results are applied to the case of comet Humason (1962 VIII). It is shown that either a CO or CO2 dominated surface can explain not only the strong coma and tail activity of this comet at large heliocentric distances, but it can also explain the irregular activity of this comet at such distances.  相似文献   

15.
Within the framework of a pair two-body problem (Sun–Jupiter, Sun–comet), the kinematics of the encounter of a minor body with a planet is investigated. The notion of points of low-velocity tangency of the orbits of the comet and Jupiter, as well as the point of Jovicentric velocity and the low-velocity tangent section of a cometary orbit, is introduced. The conditions and definitions of low-velocity and high-velocity encounters are proposed. The systems of inequalities relating the aand eparameters, which make it possible to single out those comets that are likely to be objects with low-velocity encounters, are presented. The regions of orbits that have low-velocity tangent sections, i.e., regions of low-velocity tangency of orbits, are singled out on the (a, e) plane. These regions agree well with the corresponding parameters of the orbits of real comets whose evolution contains low-velocity encounters with Jupiter.  相似文献   

16.
We determined brightness distribution in the plasma tail of comet C/2009 R1 (McNaught) using observations with a small Newtonian reflector (200/1000) on June 9?C12, 2010. Images of the comet were detected using short exposures with a Canon CMOS APS-C camera. The brightness distribution is simulated and the parameters of the cometary plasma tail are obtained within the diffusion model. The magnetic field induction in the cometary tail, lifetime of light particles, and the lengthwise and transverse ion diffusion coefficients are estimated.  相似文献   

17.
W.T. Thompson 《Icarus》2009,200(2):351-357
The bright Kreutz Comet C/2007 L3 (SOHO) entered the fields of view of the twin Solar Terrestrial Relations Observatory (STEREO) COR1 telescopes on 7–8 June 2007. The 12° separation between the two spacecraft at the time afforded the opportunity to derive the position of the comet's tail in three-dimensional space using direct triangulation. The track of the comet's orbit is compared against more traditional orbital calculations using observations from the STEREO COR2 telescopes, and from the Large Angle and Spectrometric Coronagraph (LASCO) aboard the Solar and Heliospheric Observatory (SOHO). The shape of the comet's tail shows that it is composed of dust particles released when the comet was between 18 and 22 solar radii, with no significant dust production after that. The comet did not survive perihelion passage, but a rare faint remnant of the comet tail persisted for several hours after the break-up, and was seen by both the SOHO and STEREO coronagraphs to drift slowly away from the Sun. This tail remnant was found to be composed of particles far back from the head of the comet. The motion of the tail remnant shows a loss of angular momentum during the passage through the solar corona. Atmospheric drag is estimated to account for a significant fraction of this change in angular momentum, but indications are that other mechanisms may be required to completely account for the total amount of change.  相似文献   

18.

The results of the first polarimetric measurements of near-Earth asteroid 2014 JO25 and comet 41P/Tuttle-Giacobini-Kresák performed on April 19, 2017, with a CCD sensor at the prime focus (f/3.85) of the 2.6-m Shajn Telescope of the Crimean Astrophysical Observatory in the R filter are reported. The degree of linear polarization of the asteroid is P = 2.69 ± 0.44% at a phase angle of 55.6°, which is typical of an S-type asteroid. Its geometric albedo is ρv ≈ 0.2. A digital filter applied to the direct image of the comet reveals a jet and a tail directed toward the Sun (PA = 45.1°) and away from it (PA = 241.2°), respectively, in the coma. The maximum degree of linear polarization in the near-nucleus region of the comet is 18% at a phase angle of 69.8°. The polarization decreases to 16.2–10.7% in coma regions with a radius of 865–4856 km. Various factors affecting the maximum degree of polarization and the polarization-degree distribution over the coma are discussed.

  相似文献   

19.
Cometary tail rays are traces of the magnetic fields caught in the cometary magnetosphere. Time variations of these rays give us a way to measure the local solar wind velocity at the location of a comet. We introduce a simple method for determining the radial velocity of the solar wind by observing the ray folding motion, and show an example of its application to comet P/Brorsen-Metcalf 1989o, which resulted in 340 ± 35 km s–1.  相似文献   

20.
G. Herman  M. Podolak 《Icarus》1985,61(2):252-266
A one-dimensional simulation of pure water-ice cometary nuclei is presented, and the effect of the nucleus as a heat reservoir is considered. The phase transition from amorphous to crystalline ice is studied for two cases: (1) where the released latent heat goes entirely into heating adjacent layers and (2) where the released latent heat goes entirely into sublimation. For a Halley-like orbit it was found that for case 1 the phase boundary penetrates about 15 m on the first orbit and does not advance until sublimation brings the surface to some 10 m from the phase boundary. For case 2 the phase boundary penetrates about 1 m below the surface and remains at this depth as the surface sublimates. For an orbit like that of Schwassmann-Wachmann 1 the phase boundary penetrates about 50 m initially for case 1 and about 1 m for case 2. There is no further transformation until the entire comet is heated slowly to near the transition temperature, after which the entire nucleus is converted to crystalline ice. For an Encke-type orbit case 1 gives a nearly continuous transition of the entire nucleus to crystalline ice, while for case 2 the initial penetration is about 8 m and remains at this depth relative to the surface as sublimation decreases the cometary radius. Thus the entire comet is converted to crystalline ice just before it is completely dissipated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号