首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
We formulate rate equations for the reaction network coupling H, H, H+, H2, and H2 +. We attempt to systematize the notation, and to write the equations in a form suitable for modern computational methods of handling the coupled rate equations and radiative transfer equations, for both dynamical and static atmospheres. We have accounted for more processes than are generally considered in most current work; some of these may have an impact on the equilibrium of H (hence its opacity) and on charge conservation (hence the proton density) in the atmospheres of solar-type stars.Operated by the Association of Universities for Research in Astronomy, Inc. under Contract AST 78-17292 with the National Science Foundation.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
We compare microphotometer intensity traces perpendicular to dispersion in simultaneous spectrograms of good spatial resolution traced at various 's in each of the lines. Cross correlations between the different traces show the following: (a) For each K there is a corresponding b 1at which the coefficient of correlation, r, is a maximum, usually > 0.8. (b) No such high correlations are found between H and H. (c) Comparison of traces in the continuum and at all observed 's in K, H, b1, b2 show a range of 's in each line over which r is very significantly negative, while H shows no such peculiarity.  相似文献   

20.
We point out that the conclusions of a recent Letter by Yavuzet al. are based on a misunderstanding of basic perturbation theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号