首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maps are presented of 3 P 13 P 0[C  i ] and J =2→1 C18O line emission from the interstellar molecular cloud G35.2−0.74N. The maps are interpreted with reference to a previous model for the structure of the cloud in which opposing jets from a central object, embedded in a rotating interstellar disc, precess and drive a bipolar molecular outflow. The C18O emission traces the rotating interstellar disc, but the [C  i ] emission shows several features. An unresolved component is observed which probably results from dissociation of CO in the centre of the disc by UV radiation from the central source. Background [C  i ] emission is also observed which shares the rotation of the disc on larger scales. The C  i /CO ratio in these components is typically a few per cent. High-velocity [C  i ] emission, where C  i /CO is high (>0.1–0.4), is observed between the CO molecular outflow and the cavity exacavated by the jet. This material has probably been accelerated by the jet but dissociated by far-UV radiation propagating through the cavity. The C  i /CO ratio falls as the shocked outflow later sweeps up CO.  相似文献   

2.
We present the local linear stability analysis of rotating jets confined by a toroidal magnetic field. Under the thin flux tube approximation, we derive the equation of motion for slender magnetic flux tubes. In addition to the terms responsible for the conventional instability of the toroidal magnetic field, a term related to the magnetic buoyancy and a term corresponding to the differential rotation become relevant for the stability properties. We find that the rigid rotation stabilizes while the differential rotational destabilizes the jet in a way similar to the Balbus–Hawley instability. Within the frame of our local analysis, we find that if the azimuthal velocity is of the order of or higher than the Alfvén azimuthal speed, the rigidly rotating part of the jet interior can be completely stabilized, while the strong shearing instability operates in the transition layer between the rotating jet interior and the external medium. This can explain the limb-brightening effect observed in several jets. However, it is still possible to find jet equilibria that are stable all across the jet, even in the presence of differential rotation. We discuss observational consequences of these results.  相似文献   

3.
We present hydrodynamic simulations of molecular outflows driven by jets with a long period of precession, motivated by observations of arc-like features and S-symmetry in outflows associated with young stars. We simulate images of not only H2 vibrational and CO rotational emission lines, but also of atomic emission. The density cross-section displays a jaw-like cavity, independent of precession rate. In molecular hydrogen, however, we find ordered chains of bow shocks and meandering streamers which contrast with the chaotic structure produced by jets in rapid precession. A feature particularly dominant in atomic emission is a stagnant point in the flow that remains near the inlet and alters shape and brightness as the jet skims by. Under the present conditions, slow jet precession yields a relatively high fraction of mass accelerated to high speeds, as also attested to in simulated CO line profiles. Many outflow structures, characterized by HH 222 (continuous ribbon), HH 240 (asymmetric chains of bow shocks) and RNO 43N (protruding cavities), are probably related to the slow-precession model.  相似文献   

4.
A spatially unresolved velocity feature, with an approaching radial velocity of  ≈100 km s−1  with respect to the systemic radial velocity, in a position–velocity array of [O  iii ] 5007-Å line profiles is identified as the kinematical counterpart of a jet from the proplyd LV 5 (158–323) in the core of the Orion nebula. The only candidate in Hubble Space Telescope ( HST ) imagery for this jet appears to be a displaced, ionized knot. Also an elongated jet projects from the proplyd GMR 15 (161–307). Its receding radial velocity difference appears at  ≈80 km s−1  in the same position–velocity array.
A 'standard' model for jets from young, low-mass stars invokes an accelerating, continuous flow outwards with an opening angle of a few degrees. Here an alternative explanation is suggested which may apply to some, if not all, of the proplyd jets. In this, a 'bullet' of dense material is ejected which ploughs through dense circumstellar ambient gas. The decelerating tail of material ablated from the surface of the bullet would be indistinguishable from a continuously emitted jet in current observations.  相似文献   

5.
Active galactic nuclei can produce extremely powerful jets. While tightly collimated, the scale of these jets and the stellar density at galactic centres implies that there will be many jet/star interactions, which can mass load the jet through stellar winds. Previous work employed modest wind mass outflow rates, but this does not apply when mass loading is provided by a small number of high mass-loss stars. We construct a framework for jet mass loading by stellar winds for a broader spectrum of wind mass-loss rates than has previously been considered. Given the observed stellar mass distributions in galactic centres, we find that even highly efficient (0.1 Eddington luminosity) jets from supermassive black holes of masses M BH≲ 104 M are rapidly mass loaded and quenched by stellar winds. For  104 M < M BH < 108 M  , the quenching length of highly efficient jets is independent of the jet's mechanical luminosity. Stellar wind mass loading is unable to quench efficient jets from more massive engines, but can account for the observed truncation of the inefficient M87 jet, and implies a baryon-dominated composition on scales ≳2 kpc therein even if the jet is initially pair plasma dominated.  相似文献   

6.
王红池 《天文学进展》2000,18(3):216-228
赫比格-哈罗天体(HH天体)包含了有关原恒星吸积和抛射过程的许多重要信息,HH天体高分辨观测研究取得了一系列新进展:分辨出激波峰面、马赫盘和辐射冷却区;分辨出喷流节点的结构,发现它们大多是内工作面,而不是由Kelvin-Helmholtz不稳定性所产生的斜激波;发现喷流宽度随到激发源距离的减小仅缓慢减小,对喷流的准直和加速模型提供了限制条件;HH天体在小尺度上尚有复杂的激发结构。对这些进展进行了评  相似文献   

7.
CO was observed on March 11, 1997 in comet Hale–Bopp with theIRAM Plateau de Bure interferometer. The maps show evidence for asymmetrical patterns, due to the Existence of CO jets. Analysis of the spectra and their velocity shifts shows that there is a spiral CO jet rotating in a plane almost perpendicular to the sky plane.This is the first time that rotating jets are observed for parent molecules.We have developed a 3-D model simulating rotating spiral jets of CO gas.We present here the comparison between the observations and our model.  相似文献   

8.
We present an analytical model for jets in Fanaroff & Riley Class I (FR I) radio galaxies, in which an initially laminar, relativistic flow is surrounded by a shear layer. We apply the appropriate conservation laws to constrain the jet parameters, starting the model where the radio emission is observed to brighten abruptly. We assume that the laminar flow fills the jet there and that pressure balance with the surroundings is maintained from that point outwards. Entrainment continuously injects new material into the jet and forms a shear layer, which contains material from both the environment and the laminar core. The shear layer expands rapidly with distance until finally the core disappears, and all of the material is mixed into the shear layer. Beyond this point, the shear layer expands in a cone and decelerates smoothly. We apply our model to the well-observed FR I source 3C 31 and show that there is a self-consistent solution. We derive the jet power, together with the variations of mass flux and entrainment rate with distance from the nucleus. The predicted variation of bulk velocity with distance in the outer parts of the jets is in good agreement with model fits to Very Large Array observations. Our prediction for the shape of the laminar core can be tested with higher-resolution imaging.  相似文献   

9.
We present [N  ii ] and H α images and high-resolution long-slit spectra of the planetary nebula IC 4846, which reveal, for the first time, its complex structure and the existence of collimated outflows. The object consists of a moderately elongated shell, two (and probably three) pairs of collimated bipolar outflows at different orientations, and an attached circular shell. One of the collimated pairs is constituted by two curved, extended filaments the properties of which indicate a high-velocity, bipolar precessing jet. A difference of ≃10 km s−1 is found between the systemic velocity of the precessing jets and the centroid velocity of the nebula, as recently reported for Hu 2-1. We propose that this difference is as a result of orbital motion of the ejection source in a binary central star. The orbital separation of 30 au and period 100 yr estimated for the binary are similar to those in Hu 2-1, linking the central stars of both planetary nebulae to interacting binaries. Extraordinary similarities also exist between IC 4846 and the bewildering planetary nebula NGC 6543, suggesting a similar formation history for both objects.  相似文献   

10.
11.
In this paper the results of multiwavelength investigation of an unusual nebular object SNO 85 are presented. In 2MASS images this object looks like a star with a jet. In DSS2 R image the end of the jet is connected with an interesting symmetric structure, consisting of arcs and loops. Such a structure is seen also in the opposite direction from the central star; it favors the existence of two opposite jets, which repeat the rotation and precession movements of the central star. The results of 12CO observations of the dark nebula LDN 288, connected with SNO 85, are also given. From these observations the following results were obtained: SNO 85 is situated in a dense condensation and the neighbor B type star GSC 0625400181 is surrounded by a hollow cavity. The velocity of the dark cloud is ∼2.5 km/s and its distance is estimated as (380–990) pc. The object SNO 85 itself is associated with an IRAS point source IRAS 17547-1832, the infrared colors of this source are typical for a non-evolved source embedded in the dense dark cloud. This region is perhaps a star formation one because there is also another star with a straight jet in the vicinity of B type star GSC 0625400181. Published in Astrofizika, Vol. 49, No. 4, pp. 621–629 (August 2006).  相似文献   

12.
The bipolar morphology of the planetary nebula (PN) K 3 − 35 observed in radio-continuum images was modelled with 3D hydrodynamic simulations with the adaptive grid code yguazú-a . We find that the observed morphology of this PN can be reproduced considering a precessing jet evolving in a dense AGB circumstellar medium, given by a mass-loss rate     and a terminal velocity   v w= 10 km s−1  . Synthetic thermal radio-continuum maps were generated from numerical results for several frequencies. Comparing the maps and the total fluxes obtained from the simulations with the observational results, we find that a model of precessing dense jets, where each jet injects material into the surrounding CSM at a rate     (equivalent to a density of 8 × 104 cm−3), a velocity of 1500 km s−1, a precession period of 100 yr and a semi-aperture precession angle of 20° agrees well with the observations.  相似文献   

13.
CO isotopes are able to probe the different components in protostellar clouds. These components, core, envelope and outflow have distinct physical conditions, and sometimes more than one component contributes to the observed line profile. In this study, we determine how CO isotope abundances are altered by the physical conditions in the different components. We use a 3D molecular line transport code to simulate the emission of four CO isotopomers, 12CO   J = 2 → 1, 13CO J = 2 → 1  , C18O   J = 2 → 1  and C17O   J = 2 → 1  from the Class 0/1 object L483, which contains a cold quiescent core, an infalling envelope and a clear outflow. Our models replicate James Clerk Maxwell Telescope (JCMT) line observations with the inclusion of freeze-out, a density profile and infall. Our model profiles of 12CO and 13CO have a large linewidth due to a high-velocity jet. These profiles replicate the process of more abundant material being susceptible to a jet. C18O and C17O do not display such a large linewidth as they trace denser quiescent material deep in the cloud.  相似文献   

14.
We have performed 3D numerical simulations of an over-pressurized Herbig–Haro-type jet which propagates into a sidestreaming environment. The interaction between the jet and the sidewind results in a perpendicular acceleration of the jet material, and a consequent curvature of the jet as it moves into the anisotropic medium. We find that an approximately steady configuration is achieved both for a sidewind that is perpendicular to the jet and for a sidewind inclined at 45° towards the jet source. The curvature obtained in both these models is consistent with analytic models of the jet/sidewind problem.   We have also calculated Hα maps, which show an emitting sheath around the upwind (with respect to the sidewind) side of the jet beam. This emitting sheath may explain part of the observed emission from curved stellar jets.  相似文献   

15.
We investigate the conditions under which a self-gravitating system of particles of different masses may be gravitationally unstable if there is a systematic correlation between the random velocity of a particle and its mass. For an isotropic uniform medium without rotation but with mass spectrum and velocity depending on the particle mass, a situation arises where the Jeans length for such a system may be significantly smaller than for the case when some mean values are used instead of mass and velocity spectra. For a differentially rotating medium, representing a spiral galaxy, we obtain the analogue of the Toomre parameter for a heterogeneous (multi-component) system. We demonstrate that the gas system in spirals represented by an ensemble of giant molecular clouds may be considerably less stable in the case of random velocity–mass correlation than for a system with unique velocity dispersion.  相似文献   

16.
We present new infrared imaging of the NGC 2264 G protostellar outflow region, obtained with the InfraRed Array Camera (IRAC) onboard the Spitzer Space Telescope . A jet in the red outflow lobe (eastern lobe) is clearly detected in all four IRAC bands and, for the first time, is shown to continuously extend over the entire length of the red outflow lobe traced by CO observations. The redshifted jet also extends to a deeply embedded Class 0 source, Very Large Array (VLA) 2, confirming previous suggestions that it is the driving source of the outflow ( Gómez et al. 1994 ). The images show that the easternmost part of the redshifted jet exhibits what appear to be multiple changes of direction. To understand the redshifted jet morphology, we explore several mechanisms that could generate such apparent changes of direction. From this analysis, we conclude that the redshifted jet structure and morphology visible in the IRAC images can be largely, although not entirely, explained by a slowly precessing jet (period ≈8000 yr) that lies mostly on the plane of the sky. It appears that the observed changes in the redshifted jet direction may be sufficient to account for a significant fraction of the broadening of the outflow lobe observed in the CO emission.  相似文献   

17.
We present 13 CO J  = 1 − 0 line observations of the H  ii region complex W51B located in the high-velocity (HV) stream. These observations reveal a filamentary and clumpy structure in the molecular gas. The mean local standard of rest (LSR) velocity ∼ + 65 km s−1 of the molecular gas in this region is greater than the maximum velocities allowed by kinematic Galactic rotation curves. The size and mass of the molecular clouds are ∼ 48 × 17 pc2 and ∼ 2.4 × 105 M⊙ respectively. In a position–velocity diagram, molecular gas in the southern part comprises a redshifted ring structure with v LSR=+ 60 to +73 km s−1. The velocity gradient of this ring is ∼ 0.5 km s−1 pc−1, and the mass is ∼ 6.2 × 104 M⊙. If we assume that the ring is expanding with a uniform velocity, the expansion velocity, radius and kinetic energy are ∼ 7 km s−1, ∼ 13 pc and ∼ 3.0 × 10 49 erg respectively. The kinetic energy and mass spectrum of the ring could be explained by an expanding cylindrical cloud with a centrally condensed mass distribution. The locations of two compact H  ii regions, G49.0−0.3 and G48.9−0.3, coincide with the two molecular clumps in this ring. We discuss star formation, and the mechanism that produced the ring structure.  相似文献   

18.
We calculate the disc and boundary layer luminosities for accreting rapidly rotating neutron stars with low magnetic fields in a fully general relativistic manner. Rotation increases the disc luminosity and decreases the boundary layer luminosity. A rapid rotation of the neutron star substantially modifies these quantities as compared with the static limit. For a neutron star rotating close to the centrifugal mass shed limit, the total luminosity has contribution only from the extended disc. For such maximal rotation rates, we find that well before the maximum stable gravitational mass configuration is reached, there exists a limiting central density, for which particles in the innermost stable orbit will be more tightly bound than those at the surface of the neutron star. We also calculate the angular velocity profiles of particles in Keplerian orbits around the rapidly rotating neutron star. The results are illustrated for a representative set of equation of state models of neutron star matter.  相似文献   

19.
We present 5-GHz Multi-Element Radio-Linked Interferometer Network (MERLIN) radio images of the microquasar GRS 1915+105 during two separate outbursts in 2001 March and July, following the evolution of the jet components as they move outwards from the core of the system. Proper motions constrain the intrinsic jet speed to be  >0.57 c   , but the uncertainty in the source distance prevents an accurate determination of the jet speed. No deceleration is observed in the jet components out to an angular separation of ∼300 mas. Linear polarization is observed in the approaching jet component, with a gradual rotation in position angle and a decreasing fractional polarization with time. Our data lend support to the internal shock model whereby the jet velocity increases leading to internal shocks in the pre-existing outflow before the jet switches off. The compact nuclear jet is seen to reestablish itself within 2 d, and is visible as core emission at all epochs. The energetics of the source are calculated for the possible range of distances; a minimum power of 1–10 per cent of the Eddington luminosity ( L Edd) is required to launch the jet.  相似文献   

20.
The central arcminute of the Perseus cooling flow galaxy, NGC 1275, has been mapped with the JCMT in 12CO(2–1) at 21-arcsec resolution, with detections out to at least 36 arcsec (12 kpc). Within the limits of the resolution and coverage, the distribution of gas appears to be roughly east–west, consistent with previous observations of CO, X-ray, Hα and dust emission. The total detected molecular hydrogen mass is ∼ 1.6 × 1010 M, using a Galactic conversion factor. The inner central rotating disc is apparent in the data, but the overall distribution is not one of rotation. Rather, the line profiles are bluewards-asymmetric, consistent with previous observations in H  i and [O  iii ]. We suggest that the blueshift may be due to an acquired mean velocity of ∼ 150 km s−1 imparted by the radio jet in the advancing direction. Within the uncertainties of the analysis, the available radio energy appears to be sufficient, and the interpretation is consistent with that of Bo¨hringer et al. for displaced X-ray emission. We have also made the first observations of 13CO(2–1) and 12CO(3–2) emission from the central 21-arcsec region of NGC 1275 and combined these data with IRAM data supplied by Reuter et al. to form line ratios over equivalent, well-sampled regions. An LVG radiative transfer analysis indicates that the line ratios are not well reproduced by single values of kinetic temperature, molecular hydrogen density and abundance per unit velocity gradient. At least two temperatures are suggested by a simple two-component LVG model, possibly reflecting a temperature gradient in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号