首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is greatly expected that the relic neutrino background from past supernovae will be detected by Superkamiokande (SK) which is now under construction. We calculate the spectrum and the event rate at SK systematically by using the results of simulations of a supernova explosion and reasonable supernova rates. We also investigate the effect of a cosmological constant, Λ, on the spectrum, since some recent cosmological observations strongly suggest the existence of Λ. We find following results. (1) The spectrum has a peak at about 3 MeV, which is much lower than that of previous estimates (6–10 MeV). (2) The event rate at SK in the range from 10 MeV to 50 MeV, where the relic neutrinos from past supernovae are dominant, is about 25h502(RSN/0.1 yr−1)(nGh50−3/0.02 Mpc−3) events per year, where RSN is the supernova rate in a galaxy, nG is the number density of galaxies, and h50 = H0/(50 km/s Mpc), where H0 is the Hubble constant. (3) The event rate is almost insensitive to Λ. The flux increases in the low energy side (< 10 MeV) with increasing Λ, but decreases in the high energy side (> 10 MeV) in models in which the integrated number of supernovae in one galaxy is fixed.  相似文献   

2.
The Energetic and Relativistic Nuclei and Electron (ERNE) experiment will investigate the solar atmosphere and the heliosphere by detecting particles produced in various kinds of energy release processes. ERNE is at the upper end in energy among the SOHO particle instruments. The instrument will measure the energy spectra of elements in the range Z=1–30. The energy coverage varies dependent on the particle species from a few MeV/n up to a few hundred MeV/n and electrons from 2 to 50 MeV. At high energies, ERNE records also the direction of the incident particles for accurate measurements of the pitch angle distribution of the ambient flux within the viewing cone. Especially the isotope identification capability has been one of the instrument design goals, thus providing new data regarding various fundamental questions in solar physics.  相似文献   

3.
A full three-dimensional, numerical model is used to study the modulation of Jovian and Galactic electrons from 1 MeV to 50 GeV, and from the Earth into the heliosheath. For this purpose the very local interstellar spectrum and the Jovian electron source spectrum are revisited. It is possible to compute the former with confidence at kinetic energies \(E < 50~\mbox{MeV}\) since Voyager 1 crossed the heliopause in 2012 at \(\sim 122~\mbox{AU}\), measuring Galactic electrons at these energies. Modeling results are compared with Voyager 1 observations in the outer heliosphere, including the heliosheath, as well as observations at or near the Earth from the ISSE3 mission, and in particular the solar minimum spectrum from the PAMELA space mission for 2009, also including data from Ulysses for 1991 and 1992, and observations above 1 MeV from SOHO/EPHIN. Making use of the observations at or near the Earth and the two newly derived input functions for the Jovian and Galactic electrons respectively, the energy range over which the Jovian electrons dominate the Galactic electrons is determined so that the intensity of Galactic electrons at Earth below 100 MeV is calculated. The differential intensity for the Galactic electrons at Earth for \(E = 1~\mbox{MeV}\) is \(\sim 4\) electrons \(\mbox{m}^{-2}\,\mbox{s}^{-1}\,\mbox{sr}^{-1}\,\mbox{MeV}^{-1}\), whereas for Jovian electrons it is \(\sim 350\) electrons \(\mbox{m}^{-2}\,\mbox{s}^{-1}\,\mbox{sr}^{-1}\,\mbox{MeV}^{-1}\). At \(E = 30~\mbox{MeV}\) the two intensities are the same; above this energy the Jovian electron intensity quickly subsides so that the Galactic intensity completely dominates. At 6 MeV, in the equatorial plane the Jovian electrons dominate but beyond \(\sim 15~\mbox{AU}\) the Galactic intensity begins to exceed the Jovian intensity significantly.  相似文献   

4.
A bi-directional charged particle telescope has been designed to distinguish electrons, muons and protons incident on the telescope from two opposite directions and to measure the energy of particles which stop in the central total energy detector of the system. This paper describes the design, test and evaluation of the telescope using radioactive sources, cosmic rays and low energy (8 MeV) electron beam from an accelerator. This telescope has been used in an experiment to measure the flux and energy spectrum of low energy electrons in 5 to 24 MeV energy interval and protons in 70 to 110 MeV energy region in the upper atmosphere. This experiment was carried out at high altitudes, using large size scientific balloon over the city of Hyderabad, India in Dec. 1984. Ground level low energy muon flux has been observed at Ahmedabad and Hyderabad.  相似文献   

5.
Using realistic models of cosmic-ray propagation in interplanetary space we present, for electrons, protons and helium nuclei of a given energy near Earth, calculations of their distribution in energy before entering the solar cavity and their mean energy loss. Interplanetary conditions appropriate for the epochs 1965 and 1969 have been used. Cosmic-ray energies in the range of 20 MeV/nucleon to 1000 MeV/nucleon have been considered.  相似文献   

6.
The propagation and modulation of electrons in the heliosphere play an important part in improving our understanding and assessment of the modulation processes. A full three-dimensional numerical model is used to study the modulation of galactic electrons, from Earth into the inner heliosheath, over an energy range from 10 MeV to 30 GeV. The modeling is compared with observations of 6–14 MeV electrons from Voyager 1 and observations at Earth from the PAMELA mission. Computed spectra are shown at different spatial positions. Based on comparison with Voyager 1 observations, a new local interstellar electron spectrum is calculated. We find that it consists of two power-laws: In terms of kinetic energy E, the results give E ?1.5 below ~500 MeV and E ?3.15 at higher energies. Radial intensity profiles are computed also for 12 MeV electrons, including a Jovian source, and compared to the 6–14 MeV observations from Voyager 1. Since the Jovian and galactic electrons can be separated in the model, we calculate the intensity of galactic electrons below 100 MeV at Earth. The highest possible differential flux of galactic electrons at Earth with E=12 MeV is found to have a value of 2.5×10?1 electrons m?2?s?1?sr?1?MeV?1 which is significantly lower (a factor of 3) than the Jovian electron flux at Earth. The model can also reproduce the extraordinary increase of electrons by a factor of 60 at 12 MeV in the inner heliosheath. A lower limit for the local interstellar spectrum at 12 MeV is estimated to have a value of (90±10) electrons m?2?s?1?sr?1?MeV?1.  相似文献   

7.
A Radiation Belt Monitor (RBM) sensitive to protons and electrons with energy 0.5 MeV1 has been designed for the High Energy Transient Experiment (HETE) satellite in order to: first, control the on-off configuration of the experiments (i.e. those susceptible to proton damage); and second, to indicate the presence of proton and/or electron events that could masquerade as legitimate high energy photon events. One of the two RBM channels has an enhanced sensitivity to electrons. Each channel of the RBM, based on a PIN silicon diode, requires a typical power of 6 milliwatts. Tests have been performed with protons with energies from 0.1 to 2.5 MeV (generated by a Cockcroft-Walton linear accelerator via the d(d,p)t reaction), and with electrons with energies up to 1 MeV (from a 1.0 µCi207Bi source).  相似文献   

8.
It is proposed that the instantaneous triple-probe method can be applied to the direct display of parameters; particularly in the case of probe application during measurements carried out from spacecraft. The theory of the triple-probe method has been extended for the very high speed flowing collisionless plasma condition, i.e. in which the spacecraft speed U ≈ the most probable electron thermal velocity ve > the most probable ion thermal velocity vi. This condition is particularly important both in the case of re-entry of spacecraft and in the solar wind plasma. Experiments have been conducted in a free molecular beam plasma chamber for Si = U/vi > 10. The experimental results and their relationship to the appropriate theory are presented.  相似文献   

9.
Measurements were made of the time-averaged gamma ray energy loss spectrum in the energy range 360 keV to 7 MeV by the gamma ray detector on the OSO-7 satellite during the 3B flare on August 4, 1972. The differential photon spectrum unfolded from this spectrum after subtracting the background spectrum and contributions from gamma ray lines is best described by a power law with spectral index of 3.4±0.3 between 360–700 keV and by an exponential law of the form exp (-E/E 0) with E 0 = 1.0±0.1 MeV above 700 keV. It is suggested that this spectrum is due to nonthermal electron bremsstrahlung from a population of electrons, with a strong break in the spectrum at 2 MeV. Since the observational data indicates that the matter number density must be n H ? 5 × 1010 cm-3 in the production region, the number of electrons above 100 keV required to explain the results is ?2 × 1034.  相似文献   

10.
High energy emission (> tens MeV) of Gamma-Ray Bursts (GRBs) provides an important clue on the physical processes occurring in GRBs that may be correlated with the GRB early afterglow. A shallow decline phase has been well identified in about half of Swift Gamma-ray Burst X-ray afterglows. The widely considered interpretation involves a significant energy injection and possibly time-evolving shock parameter(s). We calculate the synchrotron-self-Compton (SSC) radiation of such an external forward shock and show that it could explain the well-known long term high energy (i.e., tens MeV to GeV) afterglow of GRB 940217. We propose that cooperation of Swift and GLAST will help to reveal the nature of GRBs.  相似文献   

11.
During its flyby of Jupiter in February 1992, the Ulysses spacecraft passed through the Southern Hemisphere dusk-side Jovian magnetosphere, a region not previously explored by spacecraft. Among the new findings in this region were numerous, sometimes periodic, bursts of high energy electrons with energies extending from less than 1.5 MeV to beyond 16 MeV. These bursts were discovered by the High Energy Telescope (HET) and the Kiel Electron Telescope (KET) of the COSPIN Consortium. In this paper we provide a detailed analysis of observations related to the bursts using HET measurements. At the onset of bursts, the intensity of > 16 MeV electrons often rose by a factor of > 100 within 1 min, and multiple, pulsed injections were sometimes observed. The electron energy spectrum also hardened significantly at the onset of a burst. In most bursts anisotropy measurements indicated initial strong outward streaming of electrons along magnetic field lines that connect to the southern polar regions of Jupiter, suggesting that the acceleration and/or injection region for the electrons lies at low altitudes near the South Pole. The initial strong outward anisotropies relaxed to strong field-aligned bidirectional anisotropies later in the events. The bursts sometimes appeared as isolated events, but at other times appeared in quasi-periodic series with a period of 40 min. For smaller events shorter periods of the order 2–3 min were also observed in a few cases. For large events, multiple injections were sometimes observed in the first few minutes of the event. Radio bursts identified by the Ulysses URAP experiment in the frequency range 1–50 kHz were correlated with many of the electron bursts, and comparison of the time-intensity profiles for radio and electrons shows that the radio emission typically started several minutes before the electron intensity increase was observed. For the strongest electron bursts, small increases in the low energy (> 0.3 MeV) proton counting rates were also observed. Using a computerized identification algorithm to pick out bursts from the data record using a consistent set of criteria, 121 events were identified as electron bursts during the outbound pass, compared to only three events that satisfied the same criteria during the inbound pass through the day-side magnetosphere. No similar electron burst events have been found outside the magnetopause. Estimates of the electron content of a typical large burst (> 1027 electrons) suggest that these bursts may make significant contributions to the fluxes of electrons observed in Jupiter's outer magnetosphere, and in interplanetary space.  相似文献   

12.
Using the STEERB (storm-time evolution of electron radiation belt) code, we simulate the evolution of radiation belt energetic electrons during geomagnetic storms in the case of low energy electron injection. The STEERB code is used to solve the three-dimensional Fokker–Planck diffusion equation which incorporates wave-particle interaction, Coulomb collisions and radial diffusion. Numerical simulations show that under the short time (~1 h) injection of low energy (0.1 MeV≤E k ≤0.2 MeV) fluxes of radiation belt energetic electrons can increase during the entire storm period. During the main and recovery phases, such injection efficiently enhances chorus-driven acceleration of radiation belt energetic electrons, allowing fluxes of energetic electrons by a factor of 1–2 orders higher than those in the absence of injection. The current results indicate that substorm-induced electron injection must be incorporated to investigate the evolution of radiation belt energetic electrons.  相似文献   

13.
A detailed simulation of the electromagnetic component of extensive air showers generated by 1011–1015 eV photons has been carried out by means of the EPAS code. We present and discuss the results concerning the longitudinal, lateral and temporal distributions of electrons and photons down to 1 MeV energy threshold.  相似文献   

14.
In the advent of next generation gamma-ray missions, we present general properties of spectral features of high-energy emission above 1 MeV expected for a class of millisecond, low magnetic field (∼109 G) pulsars. We extend polar-cap model calculations of Rudak & Dyks by including inverse Compton scattering events in an ambient field of thermal X-ray photons and by allowing for two models of particle acceleration. In the range between 1 MeV and a few hundred GeV, the main spectral component is the result of curvature radiation of primary particles. The synchrotron component arising from secondary pairs becomes dominant only below 1 MeV. The slope of the curvature radiation spectrum in the energy range from 100 MeV to 10 GeV strongly depends on the model of longitudinal acceleration, whereas below ∼100 MeV all slopes converge to a unique value of 4/3 (in a ν ℱ ν convention). The thermal soft X-ray photons, which come either from the polar cap or from the surface, are Compton upscattered to a very high energy domain and form a separate spectral component peaking at ∼1 TeV. We discuss the observability of millisecond pulsars by future high‐energy instruments and present two rankings relevant for GLAST and MAGIC. We point to the pulsar J0437−4715 as a promising candidate for observations.  相似文献   

15.
The data on optical, X-ray and gamma emission from proton flares, as well as direct observations of flare-associated phenomena, show energetic proton acceleration in the corona rather than in the flare region. In the present paper, the acceleration of protons and accompanying relativistic electrons is accounted for by a shock wave arising during the development of a large flare. We deal with a regular acceleration mechanism due to multiple reflection of resonance protons and fast electrons from a collisionless shock wave front which serves as a moving mirror. The height of the most effective acceleration in the solar corona is determined. The accelerated particle energy and density are estimated. It is shown in particular that a transverse collisionless shock wave may produce the required flux of protons with energy of 10 MeV and of relativistic electrons of 1–10 MeV.The proposed scheme may also serve as an injection mechanism when the protons are accelerated up to relativistic energies by other methods.  相似文献   

16.
The diurnal variation of the high latitude outer zone boundary at 1400km has been determined for electrons ?140keV electrons, and for protons in two energy intervals: 0.56?E?1.1 MeV, 1.1?E?3.2 MeV, from detectors aboard the NOAA-2 satellite. The dependence of the 140 keV electron boundary on Dst has been examined as well?. A wel?l defined correlation of boundary position with Dst is found to exist during the main phase of disturbances, together with an evident local time dependence. All the boundaries are found to be consistent witn the supposition of adiabatic drift and demonstrate the stability of the boundary position over approximately ten years of comparable observation. No statistically significant hemispheric differences in boundary location were observed to occur.  相似文献   

17.
The Bethe approximation is used with measured and theoretical values of ionization cross sections and measured values of differential oscillator strengths to derive the initial energy spectrum of auroral secondary electrons. The differential flux of the auroral secondaries is then calculated, using the approximation of continuous energy loss. The calculations are applied to a particular aurora for which rocket data have been published. There is substantial disagreement between theoretical and measured electron spectra. The theoretical spectra show structure at energies less than 20 eV, associated primarily with vibrational and electronic excitation of molecular nitrogen. This structure is largely absent in the measured spectrum. Substantially more high energy electrons were measured than theory predicts. In addition, there are disagreements in the altitude profiles of the total number of non-thermal secondary electrons.

Calculated values of OI green line photon emission rates which result from excitation by secondary electrons and dissociative recombination of O2+ fall short of the measured values. The effect on the excitation rate of varying several parameters is investigated, and it is found that the results are particularly sensitive to competing inelastic processes in N2.  相似文献   


18.
A first estimate of the energy that reaches the Earth's surface and is produced by the inverse Compton effect between the electrons in the Van Allen belt and the solar flux was made. Since in the belt there are electrons with energies between 0.5 and 7 MeV, it was possible to use the Klein-Nishina formula in an approximate form and estimate the energy that is Compton scattered by all the electrons in the Van Allen belt by using Vette, Lucero and Bright's model. The result was compared (a) with the measurements of the continuum in the regions of soft X-rays, and (b) with the energy that is produced by the trapped electrons through the synchrotron mechanism.This paper was presented at the COSPAR meeting held in leningrad on May 20–29, 1970.  相似文献   

19.
Observations, from the Apollo 16 Spacecraft, in lunar orbit, of the total radiance of the K + F corona, from 3 R to 55 R are presented and discussed.

The logarithmic slope of the K + F coronal radiance, in the region r > 20 R, is found to be n = 1.93, slightly less steep than previous determinations. The photometric axis of the radiance is found to be displaced 3 ± 1° north of the ecliptic, for the region r > 20 R, and this displacement is interpreted as an annual variation due to non-coincidence of the ecliptic and the symmetry axis of the zodiacal cloud.  相似文献   


20.
The overabundance of heavy nuclei in solar cosmic rays of energy ?10 Me/nucleon (sometimes up to ?30 MeV/nucleon is explained by taking into account the pre-flare ionization states of these nuclei in the region where they are accelerated. A model is proposed which considers two-step accelerations associated with the initial development of solar flares. The first step is closely related to the triggering process of flares, while the second one starts with the development of the explosive phase. Further ionization of medium and heavy nuclei occurs through their interaction with keV electrons accelerated by the first-step acceleration. It is suggested that the role of these electrons is important in producing fully ionized atoms in the acceleration regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号