首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
近年来,频发的地质构造活动和极端气候灾害诱发了大量堰塞坝,严重威胁上下游群众的生命财产安全。开挖泄流槽是最常用降低堰塞坝溃决风险的措施,由于时间非常急迫、交通极度瘫痪,其开挖量非常有限,因此如何利用有限的开挖量将溃坝风险降低至最小是亟待解决的问题。本文基于水土耦合冲刷机理,提出了考虑不同泄流槽方案的堰塞坝溃决机理分析方法,并应用于唐家山堰塞坝。该方法根据水力学参数和坝体抗冲刷性参数动态计算瞬时坝体冲刷率,进而分析泄流槽对溃决全过程的影响,从而自动获取最优的泄流槽设计方案。将此方法应用于唐家山堰塞坝案例发现:唐家山堰塞坝泄流槽最优设计时溃坝洪峰流量为1700m3·s-1,小于实际峰值流量6500m3·s-1,主要是因为增大泄流槽的纵坡率,显著增强溃坝前的冲刷并形成双洪峰,从而有效降低了溃决峰值流量。由于复合槽相对较小的水力半径限制了溃坝前的冲刷,使得临溃时水位较高,因此溃坝峰值流量比单槽大,溃坝风险降低效果不如单槽。  相似文献   

2.
滑坡堰塞坝作为结构松散的堆积物,随着上游水位的不断上涨,其稳定性不断降低,并存在突然溃坝的风险。以唐家山滑坡堰塞坝为研究对象,基于相似原理,开展符合坝体颗粒级配的室内水槽物理模型实验,模拟了不同坝后蓄水量、不同水位和不同颗粒物质组成条件下坝体渗流、漫顶破坏的整个过程。监测结果显示:堰塞坝漫顶溃坝主要分为渗流、漫顶、冲刷和溃决4个过程;坝体堆积颗粒级配越差,坝体允许渗流坡降越小;相同材料配比的坝体,上游水位相同时,坝体底部水平位移最大,且漫顶溃坝时溃口尺寸与蓄水量正相关。该研究结果揭示了堰塞坝漫顶破坏规律,可为堰塞坝溃坝防治提供理论参考。  相似文献   

3.
堰塞坝险情的形成演化与综合开发治理是防灾减灾领域研究的焦点问题,因坝体形成过程特殊、内部结构复杂、组成材料不均且堆积形态迥异,导致其与人工坝体差异较大,目前仍缺乏有效的安全性评估方法及科学的开发治理措施。本文列举了国内外典型的堰塞坝事件,从堰塞坝的形成、类型和结构特征等方面,总结了已有的研究成果,阐述了堰塞坝的形成机理,重点分析了崩塌、滑坡、泥石流堰塞坝的堆积演化过程研究。归纳了目前堰塞坝应急处置和综合治理的工程措施与非工程措施,列举了堰塞坝蓄水发电、引水灌溉、环境旅游等开发利用的成功案例。通过文献和案例汇编,建立了堰塞坝事件研究的文献资料库。鉴于堰塞坝较高的溃决风险和开发潜能,提出当前研究存在的主要问题和继续努力的研究方向,为堰塞坝的风险预测及开发利用提供有益参考。  相似文献   

4.
针对缺乏地形条件和工程处置措施对堰塞坝溃决过程影响研究的现状,采用4种河床坡度(0°、1°、2°、3°)和3种泄流槽横断面型式(三角形、梯形、复合型),开展了堰塞坝溃决的模型试验。通过分析堰塞坝的溃决流量、溃决历时、溃口发展和坝体纵截面演变过程,研究了不同河床坡度和泄流槽横断面对堰塞坝溃决过程的影响规律。试验结果表明:(1)堰塞坝溃决过程可分为3个阶段。阶段Ⅰ:溃口形成阶段,溃决流量较小;阶段Ⅱ:溃口发展阶段,水流下蚀及侧蚀强烈,溃决流量到达峰值;阶段Ⅲ:衰减-平衡阶段,粗化层形成,溃口停止发展。(2)河床坡度增加意味着下游坝坡、坝顶及泄流槽的坡度增加,导致水流侵蚀能力增强,溃口下切迅猛,因此在0°~3°范围内河床坡度越大,峰值流量越大,峰现时间越早,溃决流量过程曲线越趋于“高瘦型”,且残留坝高越小。(3)泄流槽横断面型式不同导致其槽深、槽宽和侧坡坡度不同,进而影响溃口发展和溃决流量。三角形槽的水土作用面积小,溃口下切及展宽速率最高,峰值流量最大,峰现时间最早;梯形槽的槽底高程最高,水土作用面积最大,溃口下切速率最低,峰现时间最晚;而复合槽介于前两者之间。试验成果将为堰塞坝应急抢险和工...  相似文献   

5.
易贡滑坡堰塞湖溃坝洪水分析   总被引:2,自引:0,他引:2  
滑坡堰塞坝体主要由块石、碎石土等松散材料组成,随着上游水位的不断上升,极易失稳,一旦决口将对给下游人民的生命财产安全造成极大的威胁。因此,研究堰塞坝溃坝问题具有重要的学术意义和应用价值。2000 年 4 月 9 日,西藏林芝地区波密县易贡藏布河扎木弄沟发生大规模山体滑坡堵塞易贡藏布江,形成坝高60m,长约2500m,库容可达288108m3,体积约28108~30108m3的滑坡堰塞湖, 2000年6月10日堰塞坝溃决。本文以易贡堰塞湖溃坝为例,从连续性方程及Navier Stokes方程出发,结合标准型湍流模型,并采用VOF方法进行自由面处理,基于流体计算软件Fluent模拟分析了溃坝洪水在下游弯曲河道的演进过程及不同位置的流速变化。数值模拟结果与实测资料记录基本一致,表明该模型能够模拟溃坝洪水在地形复杂弯曲河道中的演进过程。  相似文献   

6.
为研究易贡滑坡-堰塞坝溃坝链生灾害的动力学特征,基于遥感影像数据建立三维数值模型,运用DAN3D和FLOW3D对易贡滑坡-碎屑流-堰塞坝溃坝全过程进行模拟研究。运用DAN3D模拟滑坡-碎屑流过程,得到滑坡碎屑堆积分布特征及速度变化规律,滑坡持续时间300 s,平均速度35 m/s。基于DAN3D获得的滑坡碎屑堆积分布建立等比例堰塞坝模型,运用FLOW3D模拟溃坝后洪水演进过程,得到洪水演进过程水流特征变化规律,通麦大桥处洪峰流量130 000 m3/s与实测值接近。对易贡滑坡灾害链全过程的模拟和动态特征分析可为高山峡谷区类似的滑坡-堰塞坝溃坝链生灾害风险评价提供参考。  相似文献   

7.
河流堰塞的地貌响应   总被引:1,自引:0,他引:1  
堰塞作为一种极端地表过程,深刻影响着河流地貌的变化,特别是河流纵剖面的变化。其对河流纵剖面的影响主要体现在两方面:一方面,堰塞坝将抬高局地的侵蚀基准面,阻碍了上游河道侵蚀,形成河流裂点;另一方面,堰塞坝溃决往往形成大型/巨型洪水,造成下游河道和岸坡的剧烈侵蚀。稳定的堰塞坝形成后,在1~105 a的时间尺度上对河流裂点的发育以及河流纵剖面变化上甚至会超过构造、气候和岩性作用,占据主导。本文在简要概述堰塞地貌相关概念的基础上,介绍了部分河流堰塞的研究方法和案例,以及河流堰塞的发育过程和研究意义。目前多仅从堰塞坝与河流纵剖面的空间关系的相关性来论证其地貌响应,并且发现一些堰塞坝与河流纵剖面的相关性,但是也有一些古堰塞坝对现代河流纵剖面的影响并不显著,原因可能与堰塞坝规模、溃决洪水次数、堵江的持续时间和距今年代的不同有关,目前还缺乏深入研究。  相似文献   

8.
滑坡堰塞坝是一类典型的地质灾害现象,溃坝将造成极为严重的影响。为了减少灾害的发生,滑坡坝的稳定性研究是关键,文章围绕滑坡坝的稳定性,总结了有关滑坡堰塞坝的形成条件、稳定性的影响因素及稳定性评价方法等方面的研究成果。将滑坡堰塞坝稳定性的评价方法分为定性和定量两大类,其中定量方法又分为统计学,物理模拟,数值模拟和其他等四种方法。但各种方法也明显存在诸多局限性,主要表现在评价方法不成熟,评价内容不全面等,最后针对存在的问题提出了滑坡堰塞坝稳定性研究方面的展望。  相似文献   

9.
堰塞坝是由于崩塌、滑坡、泥石流等形成的天然坝体,不同于人工土石坝,堰塞坝坝体结构松散,颗粒级配不均匀,在较高水头作用下坝体可能发生渗透破坏而导致溃坝,严重威胁下游人民群众的生命及财产安全。由于堰塞坝存在较大粒径颗粒,常规的渗透试验装置难以满足要求,本文研制了直径为60cm的大直径渗透试验仪,进行了不同堰塞坝级配材料的渗透破坏试验,并探讨了堰塞坝体材料渗透特性的主要影响因素。研究发现:(1)堰塞坝材料的渗透破坏形式取决于材料级配,粗颗粒含量较多时为管涌破坏,细颗粒含量较多或粒径缺失时为流土破坏;(2)堰塞坝渗透系数随干密度的增大而减小,主要取决于细料填充粗料孔隙的程度,单独使用不均匀系数或曲率系数不适用于评价渗透系数的变化;(3)基于试验数据提出了用于堰塞坝渗流破坏形式的判别公式,并推导出堰塞坝管涌破坏的临界水力坡降计算公式。  相似文献   

10.
巴曲冰湖溃决型泥石流紧邻川藏铁路某车站,可能对其建设及运营产生威胁。首先基于现场调查和遥感解译查明了巴曲泥石流的基本特征,采用规范公式计算了巴曲暴雨泥石流的动力学参数。然后采用无量纲堵塞指数(DBI)评价了巴曲沟内7个主要冰湖堰塞坝的稳定性。评价结果表明:巴曲1#冰湖堰塞坝的DBI值处于非稳定区,3#、4#和6#堰塞坝的DBI值处于非稳定区与稳定区之间,存在发生冰湖溃决的风险。最后,采用快速物质运动模拟软件(RAMMS)单相流数值方法,模拟分析了巴曲沟在4个极端场景下的冰湖溃决演进过程。模拟结果显示:巴曲冰湖溃决后的演进过程分为开始-汇流-冲出-停积四个阶段,共历时约4.5 h。在1#—4#及6#冰湖堰塞体全部溃决工况下,冰湖溃决泥石流在沟口的最大流速为5.92 m/s,最大深度为4.35 m,最大流量为1 954.42 m3/s,为暴雨型泥石流的5.1倍。除此之外,4个场景下冰湖溃决洪水的影响范围都经过拟建车站,泥石流最大深度分别为1.91,3.36,1.53,4.35 m。因此在车站设计时需采取排导槽或导流堤等工程措施进行防护治理。上述研究结果可为川藏铁路选线及青藏高原东部地区的冰湖溃决型泥石流防治提供参考。  相似文献   

11.
为了解堰塞坝在不同沟床坡度地段的溃口展宽历程,进行了沟床坡度为7°~13°,间隔为1°的7组水槽试验。对比分析7组试验观测数据,评价不同沟床坡度对堰塞坝溃口展宽历程的影响。得到如下结果及结论:(1)漫顶破坏的堰塞坝在不同沟床坡度地段的溃口展宽历程是十分相似的,根据其溃决特征,可将其展宽历程划分为溃口贯通、突变和稳定边坡形成等3个阶段。(2)在突变阶段溃口边坡沿x轴方向会发生多次失稳,溃口顶部形态在背水坡呈“S”型,在坝顶呈“U”型,在迎水坡呈“弧”型。(3)不同沟床坡度条件会影响突变阶段的溃决特征,随沟床坡度的增加突变阶段溃口边坡单次失稳规模表现出先增大后减小的特征,溃口边坡失稳次数呈现出先减少后增加的特征。(4)溃口边坡的稳定性主要取决于溃口的侧蚀宽度和下蚀深度,其与溃口顶、底部侧蚀宽度之差呈负相关关系,与溃口下蚀深度呈正相关关系。(5)不同沟床坡度堰塞坝的溃决流量随溃决时间的延长具有相同的变化趋势,但不同沟床坡度堰塞坝的溃决峰值流量和峰值流量到达时间却不尽相同,随沟床坡度的增加峰值流量逐渐减小,峰值流量到达时间先提前后推迟。  相似文献   

12.
汶川地震后,板子沟曾发生过多次大规模泥石流,尤其是2019年“8·20”泥石流对沟口的道路桥梁以及村寨造成了严重的破坏,将主河道向对岸严重挤压,今后仍存在较大堵河的风险。文章在野外调查以及对泥石流基本特征和形成条件综合分析的基础上,分析了堵河特征,计算了不同频率下泥石流的堵河参数,并预测了各频率下溃决洪水对绵虒镇可能产生的影响。计算结果表明,频率为2%、5%和10%的泥石流造成岷江堵塞的可能性较小,假设发生堵河事件,绵虒镇也不会受到溃坝洪水的危害。频率为1%的泥石流很可能造成主河堵塞。体积约57.38×104 m3的泥石流物质可以到达岷江,形成高度约为51.61 m的堰塞坝。在主河洪水的作用下,堰塞坝发生溃坝,溃坝洪水的峰值流量为5 935.49 m3/s,到达绵虒镇后降至2 312.25 m3/s。由于相应的洪水深度(4.00 m)大于防护堤的高度(3.50 m),因此溃坝洪水很可能会对绵虒镇防护堤附近民房造成破坏。为今后大型泥石流堵河特征的分析,以及溃决洪水对下游城镇可能造成的影响提供了参考。  相似文献   

13.
崩滑堰塞坝(湖)具有显著的地貌环境效应,这种效应在时间尺度上分为短期和长期2种,主要表现在河流水文过程、地貌演变、环境生态、景观等方面.堰塞坝形成初期河流原有生境受到干扰,河流生态和景观出现退化.堰塞体溃决强烈改变下游水文过程及河流地貌,严重冲击河流生境和生态,并可能对下游基础设施和群众生命财产造成灾难性破坏.长期稳定维持的堰塞坝深刻影响河流地貌过程,并显著改善河流生境、生态,提升景观水平.堰塞坝(湖)是河床持续下切、岸坡失稳而自然反馈形成的裂点,能增加河流阻力,控制河床下切,如能长期维持是河流健康稳定的促进因素.  相似文献   

14.
堰塞坝形成机理及稳定性分析   总被引:2,自引:0,他引:2  
滑坡、崩塌和泥石流是形成堰塞坝的三种主要方式,其形成堰塞坝的条件非常复杂,涉及因素广泛。另一方面,堰塞坝完全堵江形成堰塞湖在世界各国山区广泛分布,时有发生,造成严重灾害。因此,有必要对堰塞坝形成机理及安全性状评估进行研究。本文主要针对滑坡、崩塌、泥石流和碎屑流形成堰塞坝机理进行介绍并探讨了堰塞坝的破坏机制。同时,通过渗透稳定性、抗滑稳定性和抗冲刷稳定性3个方面评估了堰塞坝稳定性分析,以期为堰塞湖的防治与治理提供科学依据。  相似文献   

15.
红石河堰塞湖漫顶溃坝风险评估   总被引:6,自引:1,他引:5  
四川省青川县红石河堰塞湖是2008年5月12日汶川大地震形成的34座大型堰塞湖之一,是由东河口滑坡堵塞红石河形成的。该堰塞体高度约50 m、宽度约250 m、顺河向长度约500 m、形成的最大库容约400万m3。本文作者对红石河堰塞体做了较详尽的现场试验,包括土的冲蚀试验、土的基本物性试验等。基于现场试验数据,对土的冲蚀性和漫顶溃坝风险做了详细的分析。结果显示,从土的抗冲蚀性角度考虑,只要有水溢出就会有土体被冲蚀,这说明红石河堰塞体的漫顶溃决可能性较高。本文还提出经验公式来预测红石河堰塞体漫顶的溃决时间,大约为4.5d,如果考虑到大石块对抗冲蚀稳定性的有利影响,这一数值会增大。此外,还研究了溃决深度随时间的变化规律。  相似文献   

16.
土石坝溃决模拟及水流计算研究进展   总被引:5,自引:0,他引:5       下载免费PDF全文
对土石坝溃决模拟技术的最新研究成果进行了总结和评价,在此基础上对该研究领域今后的研究工作提出了若干建议,包括:应研究提出不同坝型溃决可能性分析评价方法;针对不同坝型开展溃坝离心模型试验,揭示在不同致灾因子作用下,土石坝溃决机理和溃口发展过程;开展土石坝初始管涌形成以后发展过程的试验研究,揭示孔流转变为堰流的控制条件;针对溃坝水流的流线曲率较大、溃坝水流大多是非恒定超临界流以及筑坝材料粒径级配范围变化大等特点,开展大型溃坝水工水力学模型试验,揭示不同坝型的溃口流量过程、泥沙输移及下游河道洪水演进规律。  相似文献   

17.
陈剑  崔之久 《沉积学报》2015,33(2):275-284
西藏芒康县金沙江上游雪隆囊河谷史前时期(全新世晚期)发生了一次明显的堰塞事件,形成了一个湖水体积约3.1×108 m3的大型堰塞湖。该堰塞湖形成后期发生溃决并引发异常大洪水,这一溃决事件发生在大约1 117 A.D.。地震诱发山体滑坡可能是金沙江发生堰塞的直接原因。在雪隆囊古堰塞坝体的下游一侧到其下游3.5 km的范围内,发现大量由砾石、砂和少量黏土组成的混杂堆积体,判定其为滑坡堰塞湖的溃坝堆积,是滑坡坝体及上游河床物质在坝体溃决后快速堆积形成。整套溃坝堆积体具有支撑-叠置构造、叠瓦构造和杂基构造等沉积特征,还具有一种特殊的沉积构造:即在垂向剖面上发育粗砾石层与细砂砾层的韵律互层,但剖面中缺少砾或砂的透镜体。这种沉积构造("互层构造")是溃坝堆积相区别于冲-洪积相、泥石流相等的一种重要判别标志。采用水力学模型反演确定雪隆囊古滑坡堰塞湖溃决洪水的平均流速为7.48 m/s,最大洪峰流量为10 786 m3/s。雪隆囊溃坝堆积体沉积特征及其环境的研究,不但有助于揭示古洪水事件发生的过程和机制,同时对于认识金沙江上游地区的环境演变也具有重要意义。  相似文献   

18.
堰塞坝会对山区河流的纵剖面产生强烈扰动,在某些情况下,堰塞坝造成的河流纵剖面变陡很容易与构造作用下基准面下降的迁移裂点混淆。然而,在何种程度下堰塞坝会影响基于地貌测量的构造分析还没有系统的研究。因此本文选取青藏高原东缘的雅砻江流域为研究对象,利用遥感影像解译,结合数字高程模型(DEM),来研究堰塞坝对河流纵剖面的影响。通过遥感影像解译和部分野外判识,在雅砻江流域共发现了34个堰塞坝;同时利用TopoToolbox工具包,选用30 m SRTM DEM提取了雅砻江流域河流纵剖面、河流裂点、河流陡峭指数等地貌参数。分析结果表明,有18个堰塞坝与河流裂点在空间上重叠,其中有8个堰塞坝形成高差>100 m的裂点,对河流纵剖面有显著的影响,并发现滑坡坝比泥石流坝对河流纵剖面的影响更大。进一步分析雅砻江主干流及其支流力丘河,发现堰塞坝所在的河段河流陡峭指数相对较大;在排除岩性和断层活动的影响后,发现堰塞作用也能够解释河流裂点的成因。本研究结果指示,在利用DEMs来提取和分析区域构造信息时,必须考虑由堰塞坝引起的河流裂点的影响。  相似文献   

19.
粘土心墙坝漫顶溃坝过程离心模型试验与数值模拟   总被引:1,自引:0,他引:1  
利用作者研制成功的溃坝离心模型试验系统,对粘土心墙坝漫顶溃决过程进行了试验研究,结果发现粘土心墙坝与均质坝溃决机理与溃口发展规律明显不同,随着漫坝水流对下游坝壳冲蚀程度的增加,粘土心墙发生剪断破坏,溃口洪水流量迅速增大.基于上述试验结果,提出了一个描述粘土心墙坝漫顶溃坝过程的数学模型,并建议了相应的数值计算方法.该模型...  相似文献   

20.
滑坡堰塞坝是由斜坡失稳堵塞河道而形成的天然坝体,且易溃坝诱发洪水,对沿岸群众生命财产构成巨大的威胁。为提升主动减灾防灾能力,急需构建了一种快速预测与判断滑坡堵江成坝能力的方法。通过文献资料查阅,结合遥感技术,提取了70处典型滑坡的地貌特征参数,其中50处为堵江成坝滑坡。运用K-S检验和M-W U检验方法分析了滑坡地貌特征因子的敏感性,利用Boruta算法确定了因子重要度,筛选了滑坡体积、面积、高差、长度及河宽共5个地貌特征参数。基于此,利用Bayes判别法与逻辑回归方法,分别建立了滑坡堰塞坝形成的预测模型,准确率超过90%。选取高重要度且差异显著的因子,利用比值法建立了滑坡堵江成坝阈值判据,实现了滑坡堰塞坝形成的快速判定。统计不同诱因下滑坡地貌特征,对比V-W_r经验公式,确定了滑坡堰塞坝形成与诱因间的关系,为进一步构建不同诱因下滑坡堰塞坝形成预测模型提供了技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号