首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
基于WACCM+DART的临近空间SABER和MLS臭氧观测同化试验研究   总被引:1,自引:0,他引:1  
本研究在WACCM+DART(Whole Atmosphere Community Climate Model,Data Assimilation Research Test-Bed)临近空间资料同化预报系统中加入SABER(Sounding of the Atmosphere using Broadband Emission Radiometry)和MLS(Microwave Limb Sounder)臭氧观测同化接口,并以2016年2月一次平流层爆发性增温(SSW)过程为模拟个例进行了SABER和MLS臭氧观测同化试验,得出以下结论:同化SABER和MLS臭氧体积浓度观测得出的WACCM+DART臭氧分析场能够较真实反映SSW期间北极上空平流层臭氧廓线随时间的演变特征,且与ERA5(Fifth Generation of ECMWF Reanalyses)再分析资料描述的臭氧变化特征具有很好的一致性;基于SABER和MLS臭氧观测的WACCM臭氧6 h预报检验表明同化臭氧观测对臭氧分析和预报误差的改善效果主要体现在南半球高纬平流层和北半球中高纬平流层中上层-中间层底部;基于ERA5再分析资料的WACCM+DART分析场检验表明同化SABER和MLS臭氧体积浓度资料可在提高北半球高纬地区上平流层-中间层底部臭氧场分析质量的同时减小该地区上平流层-中间层底部温度场和中间层底部纬向风场的分析误差;基于MLS臭氧资料的臭氧中期预报检验表明相对控制试验同化SABER和MLS臭氧体积浓度资料能更好改善0~5 d下平流层和中间层底部臭氧的预报效果。  相似文献   

2.
利用全大气气候通用模式WACCM3对青藏高原夏季臭氧谷(OV)的双心结构进行了模拟。通过模式输出资料和ERA-interim再分析资料、MLS卫星资料的对比分析,对模式模拟性能进行了评估。结果表明:WACCM3能模拟出青藏高原夏季OV的双心结构,尤其对上对流层下平流层区(UTLS)的OV中心位置模拟较好,强度偏强。平流层上部的OV模拟较差,中心偏东,强度偏强。因为WACCM3对夏季高原邻近地区上空UTLS区的环流尤其是南亚高压模拟较好,而UTLS区的臭氧损耗的主要原因是动力输送作用,所以模拟效果好。上部OV模拟较差的原因主要是环流场模拟不佳导致了氯化物和氮氧化物的分布模拟较差。  相似文献   

3.
近30a北极平流层臭氧的季节和年际变化特征   总被引:1,自引:0,他引:1  
综合利用1978-2011年TOMS(Total Ozone Mapping Spectrometer)和OMI(Ozone Monitoring Instrument)臭氧总量资料,MLS(Microwave Limb Sounder)臭氧廓线资料以及NCEP/NCAR再分析气象场资料,对比研究了近30a南北极臭氧总量的年际变化和季节变化差异,重点分析了2010/2011年冬末春初北极臭氧出现的异常损耗现象,探讨北极春季臭氧低值产生的原因。结果表明:与南极地区一年四季都保持一个臭氧低值中心明显不同,北极臭氧总量的减少则是伴随着整个春夏季(4-8月),在秋季(10月)达到最低值,冬季(11月-次年2月)北极臭氧快速恢复,这主要是由于南北半球极地地区环流差异和温度差异造成的。南北两极年均O3总量呈下降趋势,两极地区O3总量年际变化最大的季节是春季。近30a,北极在1997和2011年春季(3-4月)分别达到极低值355DU和361DU,但近年来两极臭氧年际变化趋势不明显。2011年春季,北极地区出现的较严重臭氧低值现象从3月中旬至4月中旬持续了近1个月,2010/2011年冬春季平流层低温和臭氧低值对应关系很好。  相似文献   

4.
为检验臭氧卫星资料同化对臭氧分析场和预报场的影响,基于集合平方根滤波(ENSRF)理论,结合通用地球系统模式(CESM),构建了CESM-ENSRF同化预报系统。系统构建过程考虑了卡尔曼滤波同化中的关键问题:利用全场随机扰动对初始场加扰,结合一般协方差膨胀和松弛协方差膨胀方法实现协方差膨胀,使用五阶距离相关函数进行协方差局地化。将构建的系统用于微波临边探测器(MLS)臭氧廓线数据的同化,分析臭氧卫星资料同化对模式预报的影响。结果表明:构建的CESM-ENSRF同化系统有效实现了臭氧资料同化,臭氧卫星资料同化对臭氧分析场和预报场精度有较大改进。  相似文献   

5.
利用Aura卫星微波临边观测仪(Microwave Limb Sounder,MLS)数据,评估了ERA-I、MERRA、JRA-55、CFSR和NCEP2等5套再分析资料的水汽数据在青藏高原及周边上对流层-下平流层(Upper Troposphere and Lower Stratosphere,UTLS)的质量,然后选取其中质量较好的两套水汽数据,分析它们对青藏高原及周边UTLS水汽的时空分布和演变的表征能力。结果表明,与MLS数据相比,5套再分析资料中在UTLS普遍偏湿,最大偏湿在上对流层215 hPa,约为165%,而在下平流层,ERA-I和MERRA与MLS的差异相对较小。总的来看,ERA-I和MERRA表征的水汽与MLS更为接近。进一步的对比表明,ERA-I和MERRA中青藏高原及周边水汽含量的时空分布与MLS较为接近,夏季能够表征青藏高原在纬向和经向上的水汽高值区,冬季能够表征对流层顶、西风急流中心附近的水汽梯度带,而且MERRA的结果要好于ERA-I。ERA-I、MERRA和MLS中青藏高原地区的水汽季节演变都表现为冬季1-2月水汽含量低,夏季7-8月水汽含量高,水汽的季节变化在200~300 hPa最大。MLS资料显示,在青藏高原地区对流层顶附近,存在随时间向上向极的水汽传输信号。相较而言,ERA-I对向上水汽传输信号的表征更好,而MERRA对下平流层(100 hPa)向极水汽传输信号的表征更好。  相似文献   

6.
利用中高层大气模式(MUAM)研究20世纪末12月平流层气候态的十年际变化,基于一组敏感性试验评估下边界条件、二氧化碳及臭氧浓度变化对平流层温度变化的分别影响,着重探讨了南北极局部增暖的机制差异。结果表明,相较于20世纪80年代,90年代12月北极中上平流层西风减速,中低层增温,这主要与下边界条件变化导致行星1波的上传显著增强(2波削弱)有关。同一时期,南极平流层低层西风加速温度降低,中上层东风减速温度升高,这主要与南极低平流层显著的臭氧损耗有关;下边界条件变化和中层局地的臭氧增加也有一定的贡献,但低层臭氧损耗所诱导的极涡加速使得波传播环境或条件有利于1~2波上传增强(1波主导)至更高高度可能是最终导致中上层增暖的主要原因。  相似文献   

7.
全球平流层下部降温及其对纬向风的影响   总被引:7,自引:0,他引:7  
郑彬  施春华 《气象科技》2006,34(5):538-541
利用NCEP/NCAR再分析资料,结合HALOE的臭氧和甲烷卫星观测资料,分析100~50 hPa的平流层下部温度变率及其与微量气体和平均纬向风的关系。结果表明,全球平流层下部大气温度自1948年至今总体呈下降趋势,而近十几年,全球平流层下部温度下降更加显著。热带和低纬甲烷的增长可能是其降温的一个重要原因。此外,由于平流层下部温度变率的经向不均匀性,同时还会引起该地区平均纬向风的变化。  相似文献   

8.
石柳  郑明华  付遵涛 《高原气象》2011,30(6):1566-1572
利用1948—2007年NCEP/NCAR月平均2m地面气温再分析资料、3月北极涛动(AO)指数和春季臭氧含量资料,采用合成分析方法分析了北极臭氧损耗对初春东亚中高纬地区地面气温的影响。结果表明,臭氧低(高)值年,3月东亚中高纬地区地面气温存在正(负)异常。4月的与3月类似,但气温异常的幅度减小,中心位置也有所变化。对...  相似文献   

9.
利用1981—2011年TOMS卫星逐月TCO资料、NASA极涡面积监测逐日资料及1979—2012年ERA-Interim再分析逐日资料,通过异常增加个例分析研究了北极极涡对极地平流层臭氧含量的影响。结果表明:1984年和1989年2月北极极涡分别表现为偏移型和分裂型,由于中高纬向极地输运的行星波的增强导致极地平流层极涡减弱,使得这2年3月初极涡提前崩溃,进而引起极区温度升高,原本在2月形成的极地平流层云(PSCs)消失,臭氧化学损耗减弱。由于高浓度臭氧从中纬输送到极区,导致这2年3月北极区臭氧柱总量(TCO)异常偏高。值得注意的是,尽管1984年和1989年整个冬季极涡面积都相对较大,但由于3月初极涡的提前崩溃使得这2年臭氧迅速恢复,且极涡的持续时间比极涡面积对臭氧的影响更大。  相似文献   

10.
基于新疆区域数值预报系统(Desert Oasis Gobi Rapid Analysis Forecast System,下称DOGRAFS),开展了同化C波段雷达资料对2010年10月6日发生在新疆的一次强降水过程预报结果影响的试验分析。其中设计包括不同化任何资料、同化常规资料、同化雷达反射率因子、同化雷达径向风、同时同化反射率因子和径向风五组试验,重点分析了雷达资料同化对此次天气过程降水、温度以及风速模拟效果的影响。结果表明:(1)同化雷达径向风和同时同化径向风和反射率因子相对于其他三组试验,对降水预报的TS和ETs评分更高;(2)相对于其他三组试验,同化雷达径向风和同时同化径向风和反射率因子对模式垂直方向上的温度、风速预报偏差具有一定的改善效果;(3)对于地面2 m温度和10 m风速而言,同化常规观测资料比其他四组试验预报的平均偏差和均方根误差更小;其它四组试验误差相当,差别不明显,表明同化雷达对近地面层温度和风的影响不明显。本研究旨在探索C波段雷达观测资料在新疆区域数值预报系统中的适用性,为今后雷达观测资料在业务系统中的应用提供参考。  相似文献   

11.
The stratospheric polar vortex strengthening from late winter to spring plays a crucial role in polar ozone depletion. The Arctic polar vortex reaches its peak intensity in mid-winter, whereas the Antarctic vortex usually strengthens in early spring. As a result, the strong ozone depletion is observed every year over the Antarctic, while over the Arctic short-term ozone loss occasionally occurs in late winter or early spring. However, the cause of such a difference in the life cycles of the Arctic and Antarctic polar vortices is still not completely clear. Based on the ERA-Interim reanalysis data, we show a high agreement between the seasonal variations of temperature in the subtropical lower stratosphere and zonal wind in the subpolar and polar lower stratosphere in the Southern Hemisphere. Thus, the spring strengthening of the Antarctic polar vortex can occur due to the seasonal temperature increase in the subtropical lower stratosphere in this period.  相似文献   

12.
2019-2020冬季北极平流层极涡异常并且持续的偏强,偏冷.利用NCEP再数据和OMI臭氧数据,本文分析了此次强极涡事件中平流层极涡的动力场演变及其对地面暖冬天气和臭氧低值的影响.此次强极涡的形成是由于上传行星波不活跃.持续的强极涡使得2020年春季的最后增温出现时间偏晚.平流层正NAM指数向下传播到地面,与地面AO...  相似文献   

13.
对流层气溶胶的直接气候效应对平流层的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
通过WACCM-3模式中气溶胶光学厚度与卫星资料的对比发现,模式可以很好地再现全球气溶胶的主要分布特征,但在一些区域还存在数值上的差异。利用数值试验研究对流层气溶胶的直接气候效应对平流层气候的影响,结果表明:对流层气溶胶对平流层气候有明显影响,平流层化学过程在这一影响中起重要作用,而对流层气溶胶对平流层辐射的影响不是其直接气候效应对平流层影响的主要原因。其机制可能是对流层气溶胶改变对流层的辐射平衡,影响对流层的温度和大气环流,进而影响行星波的上传,使得平流层气候发生变化;影响区域主要位于高纬度和极地地区,南半球的变化比北半球大,温度变化最大达10 K,纬向风变化最大可达12 m/s,臭氧体积分数最多减少0.8×10-6。  相似文献   

14.
In most climate simulations used by the Intergovernmental Panel on Climate Change 2007 fourth assessment report, stratospheric processes are only poorly represented. For example, climatological or simple specifications of time-varying ozone concentrations are imposed and the quasi-biennial oscillation (QBO) of equatorial stratospheric zonal wind is absent. Here we investigate the impact of an improved stratospheric representation using two sets of perturbed simulations with the Hadley Centre coupled ocean atmosphere model HadGEM1 with natural and anthropogenic forcings for the 1979–2003 period. In the first set of simulations, the usual zonal mean ozone climatology with superimposed trends is replaced with a time series of observed zonal mean ozone distributions that includes interannual variability associated with the solar cycle, QBO and volcanic eruptions. In addition to this, the second set of perturbed simulations includes a scheme in which the stratospheric zonal wind in the tropics is relaxed to appropriate zonal mean values obtained from the ERA-40 re-analysis, thus forcing a QBO. Both of these changes are applied strictly to the stratosphere only. The improved ozone field results in an improved simulation of the stepwise temperature transitions observed in the lower stratosphere in the aftermath of the two major recent volcanic eruptions. The contribution of the solar cycle signal in the ozone field to this improved representation of the stepwise cooling is discussed. The improved ozone field and also the QBO result in an improved simulation of observed trends, both globally and at tropical latitudes. The Eulerian upwelling in the lower stratosphere in the equatorial region is enhanced by the improved ozone field and is affected by the QBO relaxation, yet neither induces a significant change in the upwelling trend.  相似文献   

15.
The Arctic stratospheric polar vortex was exceptional strong, cold and persistent in the winter and spring of 2019–2020. Based on reanalysis data from the National Centers for Environmental Prediction/National Center for Atmospheric Research and ozone observations from the Ozone Monitoring Instrument, the authors investigated the dynamical variation of the stratospheric polar vortex during winter 2019–2020 and its influence on surface weather and ozone depletion. This strong stratospheric polar vortex was affected by the less active upward propagation of planetary waves. The seasonal transition of the stratosphere during the stratospheric final warming event in spring 2020 occurred late due to the persistence of the polar vortex. A positive Northern Annular Mode index propagated from the stratosphere to the surface, where it was consistent with the Arctic Oscillation and North Atlantic Oscillation indices. As a result, the surface temperature in Eurasia and North America was generally warmer than the climatology. In some places of Eurasia, the surface temperature was about 10 K warmer during the period from January to February 2020. The most serious Arctic ozone depletion since 2004 has been observed since February 2020. The mean total column ozone within 60°–90°N from March to 15 April was about 80 DU less than the climatology.摘要2019-2020冬季北极平流层极涡异常并且持续的偏强,偏冷.利用NCEP再数据和OMI臭氧数据, 本文分析了此次强极涡事件中平流层极涡的动力场演变及其对地面暖冬天气和臭氧低值的影响.此次强极涡的形成是由于上传行星波不活跃.持续的强极涡使得2020年春季的最后增温出现时间偏晚.平流层正NAM指数向下传播到地面, 与地面AO指数和NAO指数相一致, 欧亚大陆和北美地面气温均比气候态偏暖, 在欧亚大陆的一些地区, 2020年1月和2月的气温甚至偏高了10K.2020年2月以来北极臭氧出现了2004年以来的最低值, 2020年3-4月60°–90°N的平均臭氧柱总量比气候态偏低了80DU.  相似文献   

16.
Abstract

The 2009–10 Arctic stratospheric winter, in comparison with other recent winters, is mainly characterized by a major Sudden Stratospheric Warming (SSW) in late January associated with planetary wavenumber 1. This event led to a large increase in the temperature of the polar stratosphere and to the reversal of the zonal wind. Unlike other major SSW events in recent winters, after the major SSW in January 2010 the westerlies and polar vortex did not recover to their pre-SSW strength until the springtime transition. As a result, the depletion of the ozone layer inside the polar vortex over the entire winter was relatively small over the past 20 years. The other distinguishing feature of the 2010 winter was the splitting of the stratospheric polar vortex into two lobes in December. The vortex splitting was accompanied by an increase in the temperature of the polar stratosphere and a weakening of the westerlies but with no reversal. The splitting occurred when, in addition to the high-pressure system over northeastern Eurasia and the northern Pacific Ocean, the tropospheric anticyclone over Europe amplified and extended to the lower stratosphere. Analysis of wave activity in the extratropical troposphere revealed that two Rossby wave trains propagated eastward to the North Atlantic several days prior to the vortex splitting. The first wave train propagated from the subtropics and mid-latitudes of the eastern Pacific Ocean over North America and the second one propagated from the northern Pacific Ocean. These wave trains contributed to an intensification of the tropospheric anticyclone over Europe and to the splitting of the stratospheric polar vortex.  相似文献   

17.
To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height, and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infrared radiative cooling by water vapor is a pivotal factor in middle-lower stratospheric cooling. However, in the upper stratosphere (above 45 km), infrared radiation is not a factor in cooling; there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere, and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and signiffcantly affects temperature and ozone in winter over Arctic regions. Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However, ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric temperature change.  相似文献   

18.
The effect of the stratospheric ozone depletion on the thermal and dynamical structure of the middle atmosphere is assessed using two 5-member ensembles of transient GCM simulations; one including linear trends in ozone, the other not, for the 1980–1999 period. Simulated temperatures and observations are in good agreement in terms of mean values, autocorrelations and cross correlations. Annual-mean and seasonal temperature trends have been calculated using the same statistical analysis. Simulations show that ozone trends are responsible for reduced wave activity in the Arctic lower stratosphere in February and March, confirming both the role of dynamics in controlling March temperatures and a recently proposed mechanism whereby Arctic ozone depletion causes the reduction in wave activity entering the lower stratosphere. Changes in wave activity are consistent with an intensification of the polar vortex at the time of ozone depletion and with a weakened Brewer–Dobson circulation: A decrease of the dynamical warming/cooling associated with the descending/ascending branch of the wintertime mean residual circulation at high/low latitudes has been obtained through the analysis of temperature observations (1980–1999). Ozone is responsible of about one third of the decrease of this dynamical cooling at high latitudes. An increase in the residual mean circulation is seen in the observations for the 1965–1980 period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号